Keywords
spatial nagivation, maps, terrain, spatial representation, spatial cognition, topographic map comprehension
Abstract
Navigating, and studying spatial navigation, is difficult enough in two dimensions when maps and terrains are flat. Here we consider the capacity for human spatial navigation on sloped terrains, and how sloping terrain is depicted in 2D map representations, called topographic maps. First, we discuss research on how simple slopes are encoded and used for reorientation, and to learn spatial configurations. Next, we describe how slope is represented in topographic maps, and present an assessment (the Topographic Map Assessment), which can be administered to measure topographic map comprehension. Finally, we describe several approaches our lab has taken with the aim of improving topographic map comprehension, including gesture and analogy. The current research reveals a rich and complex picture of topographic map understanding, which likely involves perceptual expertise, strong spatial skills, and inferential logic.
Creative Commons License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.
Recommended Citation
Newcombe, Nora S.; Weisberg, Steven M.; Atit, Kinnari; Jacovina, Matthew E.; Ormand, Carol J.; and Shipley, Thomas F.
(2015)
"The Lay of the Land: Sensing and Representing Topography,"
Baltic International Yearbook of Cognition, Logic and Communication:
Vol. 10.
https://doi.org/10.4148/1944-3676.1099
References
Alibali, M. W., & Kita, S. (2010). Gesture highlights perceptually present information for speakers. Gesture, 10(1), 3-28.
Alles, M., & Riggs, E. M. (2011). Developing a process model for visual penetrative ability. Qualitative inquiry in geoscience education research. Boulder, CO: Geological Society of America. Special Paper, 474, 63-80.
Atit, K., Goksun, T., Ormand, C. J., Manduca, C. A., Resnick, I., Shipley, T. F., & Tikoff, B. (2013). Spatial gestures point the way: A broader understanding of the gestural referent. Proceedings of the 35th Annual Meeting of the Cognitive Science Society (pp. 1786-1791). Austin, TX: Cognitive Science Society.
Atit, K., Gagnier, K., & Shipley, T. F., (2015). Students’ gestures help their penetrative thinking skills. Journal of Geoscience Education, 63, 66-72.
Atit, K., Shipley, T. F., & Tikoff, B. (2014). What do a geologist’s hands tell you? A framework for classifying spatial gestures in science education. In D. Montello, K. Grossner, & D. Janelle (Eds.), Space in Mind: Concepts for Spatial Learning and Education. Cambridge, MA: MIT Press.
Chang, K. T., Antes, J., & Lenzen, T. (1985). The effect of experience on reading topographic relief information: Analyses of performance and eye movements. The Cartographic Journal, 22(2), 88-94.
Cheng, K., Huttenlocher, J., & Newcombe, N. S. (2013). 25 years of research on the use of geometry in spatial reorientation: a current theoretical perspective. Psychonomic Bulletin & Review, 20(6), 1033-1054.
Clark, D., Reynolds, S., Lemanowski, V., Stiles, T., Yasar, S., Proctor, S., Lewis, E.,
Stromfors, C., & Corkins, J. (2008). University students’ conceptualization and interpretation of topographic maps. International Journal of Science Education, 30(3), 377-408.
Gilhooly, K. J., Wood, M., Kinnear, P. R., & Green, C. (1988). Skill in map reading and memory for maps. The Quarterly Journal of Experimental Psychology, 40(1), 87-107.
Gladwin, T. (1970). East is a big bird: Navigation and logic on Puluwat. Harvard University Press: Cambridge, Mass, 186.
Goldin-Meadow, S. & Beilock, S. L. (2010). Action’s influence on thought: The case of gesture. Perspectives on Psychological Science, 5, 664-674.
Goldin-Meadow, S., Nusbaum, H., Kelly, S. D., & Wagner, S. (2001). Explaining math: Gesturing lightens the load. Psychological Science, 12, 516-522.
Heiser, J., Tversky, B., & Silverman, M. (2004). Sketches for and from collaboration. In J. S. Gero, B. Tverksy, & T. Knight (Eds.), Visual and Spatial Reasoning in Design III. Sydney: Key Centre for Design Research.
Holmes, C., Nardi, D.N., Newcombe, N.S., & Weisberg, S.M. (in press). Children's use of slope to guide navigation: Sex differences relate to spontaneous slope perception. Spatial Cognition and Computation.
Hutchins, E. (1995). Cognition in the Wild. Cambridge, MA: The MIT Press.
Huth, J. E. (2013). The Lost Art of Finding Our Way. Harvard University Press.
Jacobs, L. F., & Menzel, R. (2014). Navigation outside of the box: What the lab can learn from the field and what the field can learn from the lab. Movement Ecology, 2(1), 3.
Jacobs, L. F., & Schenk, F. (2003). Unpacking the cognitive map: The parallel map theory of hippocampal function. Psychological Review, 110, 285–315.
King, A. J., & Parsons, C. H. (1999). Improved auditory spatial acuity in visually deprived ferrets. European Journal of Neuroscience, 11(11), 3945-3956.
Lozano, S. C., & Tversky, B. (2006). Communicative gestures facilitate problem solving for both communicators and recipients. Journal of Memory and Language, 55(1), 47-63.
Markman, A. B., & Gentner, D. (2001). Thinking. Annual review of psychology,52(1), 223-247.
McGuigan, F. J. (1957). An investigation of several methods of teaching contour interpretation. Journal of Applied Psychology, 41(1), 53-57.
Miniaci, M. C., Scotto, P., & Bures, J. (1999). Place navigation in rats guided by a vestibular and kinesthetic orienting gradient. Behavioral Neuroscience, 113(6), 1115.
Nardi, D., & Bingman, V. P. (2009). Pigeon (Columba livia) encoding of a goal location: the relative importance of shape geometry and slope information. Journal of Comparative Psychology, 123, 204.
Nardi, D., Nitsch, K. P., & Bingman, V. P. (2010). Slope-driven goal location behavior in pigeons. Journal of Experimental Psychology. Animal Behavior Processes, 36, 430–442.
Nardi, D., Newcombe, N. S., & Shipley, T. F. (2011). The world is not flat: Can people reorient using slope? Journal of Experimental Psychology: Learning, Memory, and Cognition, 37, 354–367. doi:10.1037/a0021614
Novack, M. A., Congdon, E. L., Hemani-Lopez, N., & Goldin-Meadow, S. (2014). From action to abstraction using the hands to learn math. Psychological Science, 25(4), 903-910.
Petcovic, H. L., Libarkin, J. C., & Baker, K. M. (2009). An empirical methodology for
investigating geocognition in the field. Journal of Geoscience Education, 57(4), 316-328.
Petie, R., Garm, A., & Nilsson, D. E. (2011). Visual control of steering in the box jellyfish Tripedalia cystophora. The Journal of Experimental Biology,214(17), 2809-2815.
Phillips, R. J., Lucia, A., & Skelton, N. (1975). Some objective tests of the legibility of
relief maps. The Cartographic Journal, 12(1), 39-46.
Pick, H. L., Heinrichs, M. R., Montello, D. R., Smith, K., & Sullivan, C. N. (1995).
Topographic map reading. In P. Hancock, J. Flach, J. Caird, & K. Vicente (Eds.), Local Applications of the Ecological Approach to Human-Machine Systems (Vol. 2 pp. 255-284). Hillsdale, NJ: Lawrence Erlbaum Associates.
Pingel, T., & Clarke, K. (2014). Perceptually shaded slope maps for the visualization of digital surface models. Cartographica: The International Journal for Geographic Information and Geovisualization, 49(4), 225-240.
Potash, L. M., Farrell, J. P., & Jeffrey, T. S. (1978). A technique for assessing map relief legibility. The Cartographic Journal, 15(1), 28-35
Rapp, D. N., Culpepper, S. A., Kirkby, K., & Morin, P. (2007). Fostering students'
comprehension of topographic maps. Journal of Geoscience Education, 55(1), 5-16.
Sauter, M., Uttal, D. H., Alman, A. S., Goldin-Meadow, S., & Levine, S. C. (2012). Learning what children know about space from looking at their hands: The added value of gesture in spatial communication. Journal of Experimental Child Psychology, 111(4), 587-606.
Stieff, M. (2011). Improving representational competence using molecular simulations embedded in inquiry activities. Journal of Research in Science Teaching, 48(10), 1137-1158.
Stull, A. T., Hegarty, M., Dixon, B., & Stieff, M. (2012). Representational translation with concrete models in organic chemistry. Cognition and Instruction, 30(4), 404-434.
Taylor, H. A., Renshaw, C. E., & Choi, E. J. (2004). The effect of multiple formats on understanding complex visual displays. Journal of Geoscience Education, 52(2), 115-121.
Wallraff, H. G. (2004). Avian olfactory navigation: Its empirical foundation and conceptual state. Animal Behaviour, 67(2), 189-204.
Wiener, J., Shettleworth, S., Bingman, V.P., Cheng, K., Healy, S., Jacobs, L.F., Jeffery, K.J., Mallot, H.A., Menzel, R. & Newcombe, N.S. (2011). Animal navigation: A synthesis. In R. Menzel & J. Fischer (Eds.), Animal thinking: Contemporary issues in comparative cognition (pp. 51-76). Strüngmann Forum Report, Vol. 8, J. Lupp, series ed. Cambridge, MA: MIT Press.
Wilkening, J., & Fabrikant, S. I. (2011). How do decision time and realism affect map-based decision making? In Spatial Information Theory (pp. 1-19). Berlin Heidelberg: Springer.
Weisberg, S.M., Nardi, D.N., Newcombe, N.S., & Shipley, T.F. (2014). Up by upwest: Is slope like north? Quarterly Journal of Experimental Psychology. 67(10), 1959-1976. doi: 10.1080/17470218.2014.880122
Weisberg, S.M. & Newcombe, N.S. (2014). A slippery directional slope: Individual differences in using slope as a directional cue. Memory & Cognition, 42, 648-661. doi: 10.3758/s13421-013-0387-5
Zhao, M., & Warren, W. H. (2015). How you get there from here: Interaction of visual landmarks and path integration in human navigation. Psychological Science, 0956797615574952.
Included in
Cognition and Perception Commons, Typological Linguistics and Linguistic Diversity Commons