Architecture Between the Lines: A week long design studio with Peter Eisenman

Helen J. Maib
Architecture Between The Lines

Helen J. Malb

"A mind stretched by a new idea can never return to its original dimensions." — Socrates

As the fall semester’s Ekdahl Lecture Series guest, New York architect Peter Eisenman visited Kansas State University for five days in November of 1979. His extended visit allowed him to conduct a special studio for selected students of the College of Architecture and Design which explored various issues and aspects of his current architectural theory. The sixteen students selected worked on a series of exercises involving the union and transformation of two L-shaped cubes as a vehicle of discussion to investigate these issues.

The task of each student was to set up a rule system by which the transformations required by Mr. Eisenman could be made. Each day the products of the previous day’s work were reviewed by the students, faculty members and Mr. Eisenman to decide which projects were the consequence of a valid rule system and, if valid, could be considered ‘architecture.’ At the end of each day’s reviews, a new requirement for the rule system was set for the students to work on for the next day. The basic requirements set for the rule system each day were as follows: For the first day, a union of the two Els which created a product not clearly deducible from them; for the second, a union which exhibited movement in the X, Y, and Z planes; and for the third, a union involving three-dimensional movement which created windows and doors in the object. It was intended by Mr. Eisenman that the end result of these daily projects could ultimately be a house.

The task for the students, however, involved much more than just fulfilling the requirements of the system for each day, for their products were supposed to be ‘architecture,’ which Mr. Eisenman described as being ‘something more’ than the objects themselves, or the process which transformed them, or even the resultant object created by the system. The goal of the tasks set by Mr. Eisenman was to try to discover if there was a separate, individual entity which could be labeled ‘architecture,’ and, if so, to find and define it.

Through discussions of the student projects and on architecture in general, the students were required to examine their ideas concerning architecture. Mr. Eisenman rejected most current ideas as to what comprises architecture; including form, function, ‘path plus process,’ ‘frozen process,’ and such ideological bases as political, economic, or socio-cultural. He insisted that architecture existed, as an entity, separate from any of these elements. To enable the students to find it, he encouraged the divorce of the ego from the architectural process to allow the student to approach the problem without bias.

Because Mr. Eisenman’s approach required the students to reject most conventional ideas about architecture, most of the students encountered difficulties approaching the problem. Mr. Eisenman encouraged them by saying, "I guarantee that tomorrow when you set these objects on the floor, you’ll immediately be able to see which ones work. They just stand out." This proved true during the first day’s presentation of projects when the success of a few valid projects was unanimously consented to among the other students. Although success was achieved by only a few students, the understanding and awareness of all the participants increased dramatically day by day. By the end of the week the number of successful projects produced by the students constituted a majority of the projects, which indicated the overall level of understanding achieved in the studio.

As the level of understanding in the studio increased, Mr. Eisenman continued embellishing his theory of conceptual architecture. He encouraged each student to view architecture as a process of

Peter Eisenman during one of the daily critique sessions.
'finding' or rationally discovering rather than 'designing' in the traditional sense. The rule system of each student allowed him to approach architecture in this way: Once the student adopted and accepted his rules, he essentially 'followed' them through the process and watched while a new object was created.

Mr. Eisenman made further stipulations about the rule systems and objects created from them. The rules and movements of the system were required to be unique and possible only with the L-shaped cubes. Any movement or rule which would apply equally to other types of objects or produce the same transformation in a different object was considered invalid because it was not inherently peculiar to the given L-shaped cube. The system was required, therefore, to take the L-shaped cubes and move them under a rule system generated by the properties of L-shaped cubes in hopes of finding an object which could be considered 'architecture.'

The number of systems which would satisfy all the requirements above at first seemed limitless to the students, for there existed an infinite number of collisions between L-shaped cubes which would produce an object which exhibited no properties of the original cubes or the process used. But, to Mr. Eisenman, all the possible conditions were only 'geometry' because no one was more special than another and, as he suggested, "if all conditions work, if all conditions are architecture, then what have you got?" It was his feeling that, if all conditions were architecture, a computer would be better able to create it than a person.

Although complete objectification of the system by the student was not possible, Mr. Eisenman's theory accommodated this by realizing that the entity of architecture existed at a level above either the original ELs, the rule system used, or the resultant object, and therefore could not be defined in terms of any of them singly or in combination. In fact, the students found that 'architecture' in Mr. Eisenman's terms could not be defined at all, except in terms of what it was not; it could only be discussed in terms of its origins, system, and result. Mr. Eisenman's concept of architecture allowed for this ultimate failure of the system to systematically produce architecture, much in the same way a language will inevitably fail to describe experience.

As noted by R.D. Laing and D.G. Cooper, in Reason and Violence, "Sartre recognizes that the prose writer, at his moment of success, having arrived at meanings that outstrip the language, meanings that are in a sense secreted between the lines of his pages, cannot do more than reveal what he cannot say. All great prose is a special kind of failure. Yet the writer must play this game with despair if he is to honor his commitment to write philosophy which is not trivial."

Through the student projects and discussion, Mr. Eisenman presented to the students his special view of architecture as a condition of the object, something which must transcend its objecthood and rules of formation, in order to emerge from the realm of the non-trivial.

Helen J. Maib is a senior in architecture and philosophy at Kansas State University. She is from Wichita, Kansas.

Participants:

ARCHITECTURE
Design V — Brian Ball
Lance Braht
Terri Cermak
Todd Rhoades

Design III — Linda Brooks-Pilling
Helen Maib
Dixie Roberts

Design I — Frank Czyzewski
Dan Miller
Jonathon Ruder
Tom Waggoner

LANDSCAPE ARCHITECTURE
Design VI — Jim Nicolay
Design I — Rodney Harms

INTERIOR ARCHITECTURE
Design III — Darlene Brown-Thompson

ENVIRONMENTAL DESIGN STUDIO,
PRE-DESIGN PROFESSIONS
Chris Rollhaus
Andy Sebacher

The following drawings were done by Rodney Harms (Junior, Landscape Architecture). His project is an extension, and is fairly typical of some of the work done by the students during this week-long session.
Begin: Two "L" forms, the smaller, one half the dimensions of the larger. In the beginning, the small "L" is mass and the large "L" void. The process begins when the smaller "L" nestles with the larger to form a cube.

Upon forming the cube, the smaller "L" passes into the larger along the X axis and is then governed by the following rule system which in itself determines the resultant form.

Rule System: Once the small "L" is within the envelope of the larger "L"...

Mass consumes void
Void consumes mass

Movement of the small "L" is as follows.

- Enters along axis -- X - Y - Z
- Moves along axis --- Y - Z - X
- Moves along axis --- Z - X - Y
- Moves along axis --- X - Y - Z
- Moves along axis --- Y - Z - X
- Exits along axis --- Z - X - Y

The small "L" may only enter and leave the large "L" through the three original planes of contact.

When the small "L" exits the large "L", its dimensions reduce by a factor of two; and the "L" forms reverse states of being, the small "L" becoming void and the trace the small "L" left in the large "L" during the previous movement becoming solid.

This process of tracing and carving would in theory continue until the small "L" reduces itself to nothingness, however, only three movements have been shown here. The further breakdown of surfaces and spaces within the form can be accomplished with additions to the rule system.