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NON-NORMAL DATA IN AGRICULTURAL EXPERIMENTS 
W.W. Stroup, University of Nebraska, Lincoln 

 
ABSTRACT 

Advances in computers and modeling over the past couple of decades have greatly expanded 
options for analyzing non-normal data. Prior to the 1990’s, options were largely limited to 
analysis of variance (ANOVA), either on untransformed data or after applying a variance 
stabilizing transformation. With or without transformations, this approach depends heavily on 
the Central Limit Theorem and ANOVA’s robustness. The availability of software such as R’s 
lme4 package and SAS® PROC GLIMMIX changed the conversation with regard to non-normal 
data. With expanded options come dilemmas. We have software choices – R and SAS among 
many others. Models have conditional and marginal formulations. There are GLMMs, GEEs 
among a host of other acronyms. There are different estimation methods – linearization (e.g. 
pseudo-likelihood), integral approximation (e.g. quadrature) and Bayesian methods. How do we 
decide what to use? How much, if any, advantage is there to using GLMMs or GEEs versus 
more traditional ANOVA-based methods? Stroup (2013) introduced a design-to-model thought 
exercise called WWFD (What Would Fisher Do). This paper illustrates the use ofWWFD to 
clarify thinking about plausible probability processes giving rise to data in designed experiments, 
modeling options for analyzing non-normal data, and how to use the two evaluate small-sample 
behavior of competing options. Examples with binomial and count data are given. While the 
examples are not exhaustive, they raise issues and call into question common practice and 
conventional wisdom regarding non-normal data in agricultural research.   

 

1. INTRODUCTION 
Once, before there was a Conference on Applied Statistics in Agriculture, analyzing non-

normal data from designed experiments seemed to be a settled issue. For most of the past century 
“standard statistical methods” in agricultural research equated to analysis of variance 
(ANOVA).Because ANOVA focuses on means, statistical analysis placed heavy reliance on the 
Central Limit Theorem: given sufficient experimental units per treatment – read “properly 
designed experiment” – sample meanscould be assumed to have an approximate normal 
distribution.  

A major problem with this line of reasoning stemmed from potential heterogeneity of 
variance. For example, with binomial data, count data, and other non-normal data common in 
agricultural research, the variance is a function of the mean; if the mean differs by treatment, so 
must the variance. Bartlett (1947) proposed variance-stabilizing transformations for 
distributionscommonly encountered in experimental research. Use of transformationsbecame 
standard operating procedure for many agricultural disciplines. Most statistical methods texts, 
e.g. Snedecor and Cochran (1989) or Steel and Torrie (1980), include a section on 
transformations Bartlett proposed, often with minor variations.  

With or without transformations, reliance on ANOVA seemed further justified by its 
robustness. In his book Beyond ANOVA, Miller (1997 – originally published 1986) provided an 
in depth exploration of ANOVA assumptions and the extent to which they had to be violatedto 
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render ANOVA results unreliable or not credible. Reading Miller and related works seemed to 
vindicate the research community’s confidence in ANOVA.  

Things became more complicated in the 1990s, when theory and methods that had been 
incubating for decades reached a tipping point of awareness, availability and practicality.Early in 
the 1970s, Nelder and Wedderburn (1972) introduced generalized linear models (GLMs). GLMs 
required only assuming that the data distribution belongs to the exponential family, or, even less 
restrictively, to the family of quasi-likelihoods. ANOVA with fixed effectsis a special case of the 
generalized linear model that assumes a normal distribution with homoscedastic variance. Linear 
mixed model (LMM) methodology appeared even earlier. Yates (1940) introduced recovery of 
inter-block information, a crucial precursor of LMM analysis. Eisenhart (1947) introduced 
formal conceptual distinctions between fixed-effects-only and mixed-effects models. Henderson 
(1953, 1963), and subsequently Harville (1976, 1978) did seminal work essential to the 
development of modern LMM theory and methods.Prior to the 1980s, LMMs were seen as the 
concern of only a few highly specialized applications, notably plant and animal genetics. Laird 
and Ware (1982) and a USDA-supported regional project, S-189 (1989) brought mixed model 
methods to the attention of larger research communities, including agriculture. This awareness 
included the realization that ANOVA for multi-level designs, e.g. split-plots, is best implemented 
using LMM methods.Before the last decade of the 20th Century, GLMs and LMMs were not 
practical because of limitations in computer capability and the absence of useable software. This 
changed in the early 1990s with the introduction of software such as SAS® PROC MIXED and 
PROC GENMOD. Thanks in part to the efforts of Applied Statistics in Agriculture conference 
participants, by the mid-1990s LMMs had become mainstream in agricultural circles and GLMs 
were well-known, if not quite mainstream. 

The appearance of GLM and LMM software created a dilemma with regard to non-normal 
data. With designs for which fixed-effects-only models were appropriate, data analysts now had 
a choice among ANOVA without transformation, ANOVA with transformation, or GLM-based 
analysis. Analyses from these three methods could – and often did – producemutually exclusive 
results. Which result should the researcher report and how was the choice to be justified to 
referees and reviewers? For designs that called for LMM-based analysis – e.g. split-plot or 
repeated measures experiments, or data with spatial correlation – non-normal data raised another 
issue. How would transformations – if they seemed warranted – interact with random model 
effects? If random effects were approximately normal on the original data scale, would 
transforming the data distort the random effect distribution and compromise the analysis? 

Things became even more complicated in the 2000s. Generalized linear mixed model 
(GLMM) theory advanced rapidly in the 1990s.These developments and the continued 
improvement in computers allowed, in the mid-2000s, the introduction of GLMM software such 
as R’s lme4 package and SAS PROC GLIMMIX.Today’s data analyst is faced with a wide 
variety of options for analyzing non-normal data from designs that call for a mixed-model 
approach. Should one use a GLMM, an LMM on transformed data, an LMM on untransformed 
data, or something else? What is needed is a way to think about the problem, a way to make 
sensible and defensible choices among competing options. 

The purpose of this paper is to present an approach that facilitates making comparisons 
among GLMM- and ANOVA-based methods and to illustrate ways in which this approach might 
be employed. The technique demonstrated here can be used both as a research tool to compare 
different methods of analysisand as a teaching tools – e.g. to help linear model students learn 
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how to think about modeling complex experiments or to help consulting clients understand the 
many ways that sources ofvariation affect can affect the data they observe. The illustrations are 
meant to be examples. They are not intended to be exhaustive and should not be interpreted as a 
comprehensive comparison of GLMM vs. ANOVA vs. transformations, although the cases 
considered here certainly speak to the GLMM vs. ANOVA vs. transformation issue and contain 
ample food for thought.  

Although the examples in this paper are limited to three cases of interest, the approach 
shown in this paper could be implemented in an exhaustive manner to provide the basis for a 
comprehensiveGLMM vs. ANOVA vs. transformation vs. other-alternatives-of-interest 
comparison. The author invites interested readers to do so. 

2.  THE APPROACH: DEFINING THE MODELING PROBLEM 
Littell, et al. (2006) describe statistical models as “...mathematical descriptions of how data 

conceivably can be produced.” Beginning students and unsophisticated practitioners of statistics 
tend to regard the model exclusively as a template for data analysis. In doing so they miss a 
crucial – arguably the most crucial – aspect of modeling: “how data conceivably can be 
produced.”That is, in terms of sources of variation and probability distributions,what are 
plausible narratives – typically there is more than one – that might explain how the observed data 
arose? Addressing both “how did the data arise?” and “how will the data be analyzed?” are 
essential. Aligning the two is the key to informative statistical modeling. The data creation 
narrative is especially important for designing a simulation study to provide a meaningful 
comparison among competing methods of analysis. 

2A. What Would Fisher Do – A Review 
Stroup (2013) presented a gimmick entitled WWFD (What Would Fisher Do?) as a 

technique to help linear models students and statistical consultants translate the description of a 
study design into a plausible statistical model. WWFD is based on comments by Fisher 
following a presentation by Yates (1935) to the Royal Statistical Society. Fisher said that any 
study could be characterized in terms of its “topographical” and “treatment” aspects. Federer 
(1955) would later refer to these as the “experiment design” and the “treatment design,” 
respectively.  Fisher said that if one wrote separate ANOVA sources of variation and degrees of 
freedom for each aspect and then combined them, it should be clear how to proceed with the 
analysis. WWFD starts with this ANOVA-based process and adds a GLMM twist. The approach 
is similar to strategy employed for messy data by Milliken and Johnson (2008).  

To illustrate, consider a randomized block design. The “topographical,” a.k.a. “experiment 
design” ANOVA can be written  

Source of Variation d.f. 
block 1b −  
exp. units (block) ( )1b u −  
TOTAL 1bu −  

 

whereb denotes the number of blocks and u denotes the number of experimental units per block. 
Here we assume that each block has the same number of experimental units, but do not 
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necessarily assume a complete block design.Adding the treatment aspect (assuming t treatments) 
yields 

“Topographical” “Treatment” 
Source of Variation d.f. Source of Variation d.f. 
block 1b −    
  treatment 1t −  
exp. units (block) ( )1b u −  “parallels” bu t−  

TOTAL 1bu −  TOTAL 1bu −  

The placement of the treatment source of variation matters. Notice that it is placed in the line 
above the unit to which treatment levels are randomly assigned. The term “parallels” is Fisher’s. 
He used the term to mean everything else that treatment sources of variation did not account for 
in the “treatment” ANOVA. As will be clear below, “parallels” play no role in the combined 
ANOVA.  

The combined ANOVA appears as follows. 

“Topographical” “Treatment” Combined 
Source  d.f. Source  d.f. Source of Variation d.f. 
block 1b −    block 1b −  
  treatment 1t −  treatment 1t −  
exp. units (block) ( )1b u −  “parallels” bu t−  e.u. (block) | trt 

a.k.a. block × trt 
a.k.a. “residual” 

1bu b t− − +  

TOTAL 1bu −  TOTAL 1bu −  TOTAL 1bu −  

Traditionally, linear models students are taught to read the combined ANOVA in model form as 
ij i j ijy b eµ τ= + + + , where there is a one-to-one correspondence between subscripted terms on 

the right-hand side and terms listed under “Source of Variation.” That is, block ib⇒ , treatment

jτ⇒  and e.u.(block) |trt (read “unit within block after accounting for treatment”) a.k.a. 
“residual” ije⇒ . However, GLMM textbooks call this the “model equation” approach, and point 
out that it obstructs constructing a plausible model if the data are not Gaussian. Instead, start with 
the unit on which observations are taken, in this case, e.u.(block) | trt. For a properly constructed 
combined ANOVA, the unit of observation will always correspond to thesource of variation that 
appears in the last line. Write the probability distribution considered plausible for observations at 
the unit level.For example,if independent, homoscedastic Gaussian observations are assumed, 

( )2~ ,ij ijy NI µ σ . On the other hand, if the observations are binomial with N independent binary 
observations per experimental unit, i.e. the observations are the number of successes out of N , 
then a plausible distribution is ( )~ Binomial ,ij ijy N π where ijπ denotes the probability of a 

success for the thi block, thj treatment.  

The next model-construction step involves deciding how the other sources of variation affect 
the subscripted parameter of the unit-level distribution. In other words, one needs to choose a 
link function and a linear predictor. For example, for Gaussian data, the standard link is the 
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identity and the standard linear predictor for a randomized block design is ij i jbµ µ τ= + + ; for 

binomial data, the standard link is the logit, ( ) ( )logit log 1ij ij ijπ π π = − = ij i jbη η τ= + + .  

The final model-construction step involves deciding which, in any, of the effects in the 
linear predictor have a probability distribution. For example, if the blocks in the study represent a 
sample of the target population and one intends to infer results of the study back to that 
population, then, by definition, one has a strong case for associating a probability distribution 
with the block effects.  

In principle, WWFD can be applied to designs of arbitrary complexity. For example, a split-
plot design with whole-plot units applied in randomized blocks – r blocks, w whole plot units per 
block, s split plot units per whole plot, a levels of the whole plot factor (factor A), and b levels of 
the split plot factor (factor B) – would have the following WWFD ANOVA: 

Topographical Treatment Combined 
Source d.f. Source d.f. Source d.f. 
block 1r −    block 1r −  
  A 1a −  A 1a −  
whole plot 
unit (block) 

( )1r w −    w.p.u(blk) | A ( ) ( )1 1r w a− − − =
rw a−  

  B 1b −  B 1b −  
  A×B ( ) ( )1 1a b− −  A×B ( ) ( )1 1a b− −  
split plot unit 
(w.p.u.) 

( )1rw s −  “parallels”  s.p.u.(w.p.) | B,A 
a.k.a. “residual” 

( ) ( )1 1rw s a b− − −  

TOTAL 1rws −  TOTAL 1rws −  TOTAL 1rws −  

After writing the ANOVA, one would need to assign a plausible distribution to observations at 
the unit level – e.g. ( )2| , ~ ,ijk i ij ijky r w NI µ σ for independent Gaussian dataor 

( )| , ~ Binomial ,ijk i ij ijky r w N π for binomial data – then a link and a linear predictor, e.g. 

( )ijk i j ij k jkr wη η α β αβ= + + + + + , where block ir⇒ , A jα⇒ , whole plot ijw⇒ , B kβ⇒  and 

( )A B
jk

αβ× ⇒ . Obviously, at least the whole plot unit effect, ijw , would have to be defined as a 

random effect with an assumed probability distribution.  

To summarize, the steps of the WWFD ANOVA process are 

• obtain the combined ANOVA sources of variation from the “topographical” and 
“treatment” ANOVAs 

• write the assumed unit-level distribution, i.e. the distribution of the observations 
conditional on sources of variation assumed to be random. Typically in GLMM theory y 
denotes the observation vector, b denotes the random effect vector, and ( )|f y b denotes 
the p.d.f. of the unit-level distribution.  

• write the link function ( )|g=η μ b , where ( )| |E=μ b y b  
• write the linear predictor = +η Xβ Zb  
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• write the assumed distribution of those effects considered random. The p.d.f. of the 
random effects is denoted ( )f b . 

 
2B. Using WWFD to Describe How Data Arose 

The obvious use of the WWFD device is to define a GLMM to be used for data analysis. 
However, as we will see in Section 2C, WWFD can lead to several models within the GLMM 
family, each of which plausibly follows from the model-construction process. In order to 
compare competing models, we need to describe a process by which we think the data arose and 
then see how well each model estimates or tests aspects deemed most important. In this section, 
we show how to use WWFD to conceptualize how the data arose. We use the randomized block 
to illustrate. 

The combined WWFD ANOVA for the randomized block design is 
Combined 

Source of Variation d.f. Implied p.d.f. 
block 1b −  ( )f b  
treatment 1t −  none if trt effect fixed 
e.u. (block) | trt 
a.k.a. block × trt 
a.k.a. “residual” 

1bu b t− − +  ( )| ; |f y b μ b  

TOTAL 1bu −   

The process that follows can be described in stages. First, the mean of the unit-level distribution, 
|μ bmust depend in some way on the block and treatment effects. Once the unit-level mean is 

determined, the observations arise from a distribution with p.d.f. ( )| ; |f y b μ b . 

If the observations are assumed to be Gaussian, this is straightforward: ij i jbµ µ τ= + + . 
Assuming the block effects are random, they follow a probability distribution, e.g. 

( )2~ 0,i Bb NI σ  . The observations then arise according to a ( )2,i jNI bµ τ σ+ +  distribution.  

If the observations are assumed to be non-Gaussian, the process leading to the unit-level 
mean can take several forms. Two obvious possibilities are 

• ( )1|ij i i jb g bµ η τ−= + + , where ( )1g − •  denotes the inverse link function 

• |ij i i jb bµ η τ= + +  

In the former, block and treatment effects perturb the unit-level mean on the scale defined by the 
link function. For example, this would describe a scenario in which the block and treatment 
directly affect the canonical parameter of the distribution. In the latter, the additive effects of 
block and treatment perturb the unit-level mean directly. In some cases with direct additive 
effects, one would have to place boundaries on i jbη τ+ +  to keep ijµ  within the parameter 
space. For example, for binomial data, i jbη τ+ +  is not constrained to be between 0 and 1 but 
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the unit-level binomial mean, commonly denoted |ij ibπ , obviously cannot be <0 or >1.  
Variations on this theme could include 

• ( )1|ij i i jb g bµ η τ−= + +  

• ( )1|ij i j ib g bµ η τ−= + +  

While one or more of the above might be more plausible in a given context, there is no reason in 
theory to preclude any of the above. This is important, because if one wants to do a 
comprehensive comparison among competing models, their behavior under each of the above 
scenarios should be evaluated.  

Once one defines the way in which blocks and treatments perturb the unit-level mean, then 
one can trace the process by which observations arise. First, block effects arise via ( )if b . Note 

that under standard GLMM theory ( )if b is Gaussian, but there is no reason why block effects 
must arise according to a Gaussian distribution. In fact, it is of great interest in understanding the 
small-sample behavior of GLMMs to ask what happens when block effects do not have a 
Gaussian distribution.  Once the block effects arise, they, along with the jτ determine the unit 

level mean |ij ibµ and the observations subsequently arise according to ( )| ; |ij i ij if y b bµ .  

2C. Using WWFD to Define Modeling Options 
By “modeling options” we mean different GLMMs one might use for data analysis. To 

illustrate, consider a randomized block design with binomial data. Three obvious modeling 
options are 

• Option 1: assume the sample proportion ij ijp y N= has an approximate normal 

distribution and fit the model ij i j ijp b eµ τ= + + + , where ( )2~ 0,ije NI σ  

• Option 2: use the arc sine square root transformation, i.e. ( )1sin ij i j ijp b eµ τ− = + + +

where ( )2~ 0,ije NI σ  

• Option 3: basic GLMM, i.e. ( )| ~ Binomial ,ij i ijy b N π ; link ( )logitij ij i jbη π η τ= = + + , 

( )2~ 0,i Bb NI σ  

Properly understood, the WWFD ANOVA reveals a potential problem with Option 3, the basic 
GLMM. Specifically, unlike the normal distribution, the binomial only has one parameter. With 
a Gaussian linear model, knowing the model parameters yields i j ijbµ τ µ+ + = , but ijµ says 
nothing about the unit-level variance. On the other hand, in the binomial case, knowing the 
model parameters yields ( ){ }1 1 exp i j ijbη τ π + − + + =  , which also determines the unit level 

variance, ( )1ij ij Nπ π− . In the Gaussian case, the “residual” line of the ANOVA contains the 

information needed to estimate 2σ and also accounts for any experimental unit uniqueness not 
attributable to the block and treatment effects. In the basic binomial GLMM, Option 3, the last 
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line is not used. If non-negligible unit-level uniqueness exists, the model contains nothing to 
account for it. Option 3 is prone to overdispersion as a result of this oversight. 

Several options exist to account for unit-level uniqueness in the binomial GLMM. 

• Option 4: add a block× treatment term to the linear predictor. The amended GLMM is
( ) ( )| , ~ Binomial ,ij i ijijy b bt N π ; link ( ) ( )logitij ij i j ijb btη π η τ= = + + + , ( )2~ 0,i Bb NI σ , 

( ) ( )2~ 0, BTijbt NI σ . The block × treatment term is interpreted as unit-level uniqueness. 

• Option 5: reparameterize Option 4 as a compound symmetry model: 
( ) ( )| ~ Binomial ,ij ijijy bt N π ; link ( ) ( )logitij ij j ijbtη π η τ= = + + , 

( )
( )

21

2

0 1
~ ,

0 1
i

CS
i

bt
N

bt
ρ

σ
ρ

      
      

     
. This would be especially useful if Option 4 yielded 

negative variance component estimates. 
• Option 6: Add a unit-level scale parameter to the basic GLMM in Option 3. That is, 

( )| ~ Binomial ,ij i ijy b quasi N π− ; link ( )logitij ij i jbη π η τ= = + + , ( )2~ 0,i Bb NI σ , 

( ) ( )Var | 1ij i ij ijquasi y b φπ π− ∝ −  
• Option 7:Replace the compound symmetry covariance structure in Option 5 with a 

working covariance. That is, ( )~ Binomial ,ij jy quasi N π− ; link ( )logitj jη π= jη τ= + , 

( )1

2

1
Var 1

1
i w

ij ij
i w

y
quasi

y
ρ

π π φ
ρ

   
− ∝ −   

   
 where wρ denotes working correlation. This 

model targets the mean of the marginal distribution of ijy , not jπ , and is variously called 
a marginal GLMM (whereas Options 4 and 5 are called conditional GLMMs) or a GEE 
model.  

• Option 8:  Similar to Option 4 except assume that ijπ  is perturbed at the unit-level by a 
non-Gaussian random effect. The beta-binomial is the most important example of such a 
model. Assume at the unit-level, ( )| ~ ,ij i ij ijb Beta c dπ . Notice that this means the 
parameters of the beta distribution depend on block and treatment. Assuming constantN, 
one can fit this model with GLMM software as follows. Use the sample proportion

ij ijp y N= . Assume ( )| ~ ,ij i ijp b Beta π ϕ , using the GLMM-friendly reparameterization 

of the Beta from Ferrari and Cribari-Neto (2004). The link ( )logitij ij i jbη π η τ= = + + , 

where ( )2~ 0,i Bb NI σ  

Other options undoubtedly exist, but Options 1 through 8 are the major alternatives of interest. In 
the next section we will illustrate a comparison of these models using one commonly assumed 
scenario leading to binomial data. We will also consider model alternatives and their 
performance with two plausible scenarios giving rise to count data.  

110

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2013/proceedings/8



3. THREE EXAMPLES 
In this section, three model-comparison scenarios are presented. The first illustration 

compares the models listed as Options 1 through 8 in the previous section with Binomial data. 
The second and third scenarios use count data arising in two different ways and compare models 
analogous to Options 1 through 8. All three scenarios assume a randomized complete block 
design with eight blocks and two treatments, referred to as treatment 0 (e.g. control or standard) 
and treatment 1 (experimental or test). Each scenario is divided into two parts: one with equal 
treatment means, the other with unequal treatment means. For each part, model comparisons are 
based on 2000 simulated experiments. Model-comparison criteria are 

• rejection rate of 0 0 1:H τ τ= , the hypothesis of no treatment effect. For equal treatments, 
rejection rate implies type I error rate; for unequal treatments, rejection rate implies 
power.  

• average estimate of the treatment mean on the data scale. For binomial data, this would 
be ˆ jπ , 0,1j = , the estimate of the probability of a success for the thi treatment – or the 
estimate of the marginal mean (which is not ˆ jπ ) for marginal models, as noted below.  

• the average upper and lower 95% confidence bound for each treatment mean 
• the observed percent coverage of the 95% confidence interval for each treatment mean   
Finally, all ANOVAs, whether on untransformed or transformed data,were analyzed using 

standard REML-based LMM analysis assuming random block effect. The conditional GLMMs 
(i.e. those not defined on a quasi-likelihood) can be analyzed using either linearization or integral 
approximation. In this illustration,we compared linearization using SAS PROC GLIMMIX 
pseudo-likelihood (RSPL, the default, REML-like version) and integral approximation using 
adaptive quadrature. The Laplace integral approximation was also considered, but no results are 
shown because the difference between Laplace and adaptive quadrature was consistently 
negligible in the scenarios considered here (there are designs and distribution for which this 
would undoubtedly not be true). For marginal GLMMs (those defined on quasi-likelihoods) SAS 
GLIMMIX pseudo-likelihood was used. For GEE models (e.g. Option 7 shown above) true 
generalized estimating equation methods, e.g. SAS PROC GENMOD using a REPEATED 
statement or the GEE package in R, could have been used. In the interest of space, and because, 
for these scenarios, differences between GEE and pseudo-likelihood results are trivial, this was 
not done in these illustrations.  

For R users, for the ANOVA models, REML results from the lme4 package are identical to 
REML with SAS GLIMMIX. For conditional GLMMs, R’s lme4 and GLIMMIX adaptive 
quadrature yield essentially identical results. To the author’s knowledge, R does not have a 
package equivalent to pseudo-likelihood; the closest is the GLMPQL package that implements 
penalized quasi-likelihood. However, GLMPQL imposes a scale parameter that cannot be turned 
off, meaning PQL cannot be used with a true conditional GLMM.  

A. Binomial Scenario 
This scenario used a beta-binomial template with Gaussian random block effects. There 

were four cases: all possible combinations of equal and unequal treatment probabilities with 
10N =  and 100N = . Data generation was as follows. 
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• Step 1. The 8 block effects, 1 2 8, ,...,b b b were generated from a ( )20, BN σ distribution with 
2 0.5Bσ =  

• Step 2.Block-perturbed, unit-level ijη were computed for each experimental unit. In the 

equal treatment case, jπ was set to 0.9 for both treatments. Hence, ( )logit 0.9ij ibη = + for 
1,2,...,8;i = 0,1j = . In the unequal treatment case, when 100N = , 0 0.9π =  and 

1 0.8;π =  when 10N = , 0 0.9π =  and 1 0.7π = . Hence, ( )logitij j ibη π= + . 

• Step 3. Block-perturbedprobabilities were computedas ( )1 1 exp ijη + −  . Denote the 

block perturbed probabilities Blk
ijp . 

• Step 4: Probabilitieswere further perturbed at the unit-level according to a Beta 
distribution. Beta variates were generated using the fact that ( ),Beta c d =

( ) ( ) ( ),1 ,1 ,1c c dΓ Γ + Γ   , where ( ),1cΓ denotes a Gamma variate with shape parameter 

c  and scale parameter 1, and expected value of the Beta variate is ( )c c d+ . The Beta 

parameter d was set to 5 and c  was obtained by solving Blk
ijp = ( )c c d+ ⇒ c =

( )1Blk Blk
ij ijd p p −  . Thus, the unit level probabilities were generated as 

( )( )~ 5 1 ,5Blk Blk
ij ij ijBeta p pπ  −  variates.  

• Step 5. The observed number of successes for the thi  block, thj  treatment was generated 
as a ( )~ Binomial ,ij ijy N π  variate.  

Notice that in this scenario, it is presumed that data arise by blocks and treatments affecting the 
likelihood of a success at the canonical parameter level, i.e. the level that corresponds to the 
model or link scale in a GLMM.  

B. Count Scenarios 
Count data have modeling options analogous to the binomial Options 1-8 described above. 

Denoting the observed count as ijy the analogous options are as follows: 

• Option 1: assume the counts are approximately normal. Fit the ANOVA model 

ij i j ijy b eµ τ= + + + , where ( )2~ 0,ije NI σ  

• Option 2: use a variance stabilizing transformation. Three major types of transformations 
are commonly used for count data. Each has several variations. The following were used 
in this illustration 

o Log: ( )log 1ij i j ijy b eµ τ+ = + + + where ( )2~ 0,ije NI σ  

o Square root: 3 8ij i j ijy b eµ τ+ = + + + where ( )2~ 0,ije NI σ  

o Power: 
2

3
ij i j ijy b eµ τ= + + + where ( )2~ 0,ije NI σ  
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The log and square root transformations are forms suggested by Snedecor and Cochran 
(1989). The power transformation follows a suggestion from McCullach and Nelder 
(1989).  

• Option 3: basic GLMM. ( )| ~ Poissonij i ijy b λ ; link and linear predictor

( )logitij ij i jbη π η τ= = + + , ( )2~ 0,i Bb NI σ  

Like the binomial Option 3, the basic Poisson GLMM ignores unit-level perturbation of ijλ and 
is, as a result, prone to overdispersion. Possibilities for accounting for unit-level perturbation 
include 

• Option 4: add a block× treatment term to the linear predictor. The amended GLMM is
( ) ( )| , ~ Poissonij i ijijy b bt λ ; link ( ) ( )logitij ij i j ijb btη π η τ= = + + + , ( )2~ 0,i Bb NI σ , 

( ) ( )2~ 0, BTijbt NI σ  

• Option 5: reparameterize Option 4 as a compound symmetry model: 
( ) ( )| ~ Poissonij ijijy bt λ ; link ( ) ( )logitij ij j ijbtη π η τ= = + + , 

( )
( )

21

2

0 1
~ ,

0 1
i

CS
i

bt
N

bt
ρ

σ
ρ

      
      

     
. This is especially useful if Option 4 yields negative 

variance component estimates. 
• Option 6: Add a unit-level scale parameter to the basic GLMM in Option 3. That is, 

( )| ~ Poissonij i ijy b quasi λ− ; link ( )logitij ij i jbη π η τ= = + + , ( )2~ 0,i Bb NI σ , 

( )Var |ij i ijquasi y b φλ− ∝  
• Option 7:Replace the compound symmetry covariance structure in Option 5 with a 

working covariance. That is, ( )~ Poissonij jy quasi λ− ; link ( )logitj jη π= jη τ= + , 

1

2

1
Var

1
i w

ij
i w

y
quasi

y
ρ

λ φ
ρ

   
− =   

   
 where wρ denotes working correlation. Like the 

binomial Option 7, model targets the mean of the marginal distribution of ijy , not jλ , 
and is variously called a marginal GLMM or a GEE model.  

• Option 8:  Similar to Option 3 but assume ( )~ NegativeBinomial ,ij ijy λ ϕ rather than 
Poisson. This is actually Option 4 assuming thatthe rate parameter is perturbed by a 
Gamma-distributedunit-level random effect. Specifically, if ( )| , ~ Poissonij i ij ij ijy b u uλ  

and ( )~ 1 ,iju ϕ ϕΓ then ( )| ~ NegativeBinomial ,ij i ijy b λ ϕ One can think of the model as 

Poisson with link ( )log ij ijuλ and linear predictor ( )logi j ijb uη τ+ + + where 

( )~ 1 ,iju ϕ ϕΓ , or as negative binomial with link ( )log ijλ  and linear predictor 

ij i jbη η τ= + + .In both cases, ( )2~ 0,i Bb NI σ . The latter formulation meets strict GLMM 
requirements and can be fit using SAS PROC GLIMMIX. The former model can be fit, 
e.g. using SAS PROC MCMC. Both approaches yield essentially identical results.  
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Data Generation 
Two scenarios were considered. The first simulates data arising fromblocks and treatments 

presumed to affect the expected counts at the canonical parameter level. The canonical parameter 
is ( )log ijλ . The first scenario presumes that ( )log ijλ is a linear function of block and treatment 
effects. The second scenario presumes that the rate parameter itself is a direct linear function of 
block and treatment effects. These scenarios were compared to see if the data generation 
mechanism favors certain models. That is, GLMMs model block and treatment effects occurring 
on the link scale. If blocks and treatments affect the rate parameter as a linear function of 

( )log ijλ this may give GLMMs an advantage relative to ANOVA models. On the other hand, 
ANOVA models presume that blocks and treatments affect the rate parameter as a direct linear 
function. Perhaps ANOVA models have an inherent advantage over GLMMs under scenario 
two. 

In both scenarios, block effects were generated as Gamma variates so that the distribution of 
block effects would be right skewed. This allows investigating how the various models perform 
when the standard assumption of Gaussian random model effects is violated. 

Scenario 1. 

• Step 1. The 8 block effects, 1 2 8, ,...,b b b were generated from a ( )5,0.45Γ distribution.  
• Step 2. Block perturbed canonical parameters, ij j ibη η= + , were computed. For the equal 

treatments case, ( )log 0.75jη = . This implies ( )ijE η =1.96, which in turn implies that the 

expected, block perturbed rate parameter is ( )exp 7ijE η  =  . Following the remaining 

steps yielded a marginal distribution of counts with similar median, mean and variance to 
a distribution resulting from Gaussian block effects and a rate parameter of 6. 

• Step 3. Compute the block perturbed rate parameter, ( )expij ijλ η=  

• Step 4. Generate the unit-level random effect, ( )~ 1 ,iju ϕ ϕΓ . In this case, 0.5.ϕ =  

• Step 5. Generate the observed counts as ( )Poisson ij ijuλ variates. Notice that this implies 

that, conditional on the block effects, the observed counts, denoted ijy have a ( )NB ,ijλ ϕ  
distribution. 

Scenario 1 results in count data with a right-skewed block effect distribution. Figure 1 shows the 
distribution of block effects generated in the equal treatment case. In the equal treatment case, 
the rate parameter – the expected value of |ij iy b is the rate parameter 6λ = , and the marginal 

mean, ( )ijE y , is 14.5. For the unequal treatment case, in Step 2 ( )0 log 0.75η = and 

( )1 log 1.875η = resulting in rate parameters of 0 6λ = and 1 15λ = and marginal means of 14.5 and 
34.5 for treatments 0 and 1 respectively. 
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Scenario 2. 

• Step 1. Generate 8 block-perturbed, pre-treatmentrate parameters, from a ( )6,1Γ

distribution for the equal treatment case and from a ( )11,1Γ  distribution for the unequal 
treatment case. Denote these values ibλ +  

• Step 2.For the equal treatment case, 0 1 0τ τ= =  and hence the result of Step 1 is the sum 
of the overall rate parameter plus the block effect. For unequal treatments, effects were 
set to 0 5τ = − and 1 5τ = . Block perturbed and treated rate parameters were thus computed 
as ij i jbλ λ τ= + + .  

• Step 3. Generate the unit-level random effect, ( )~ 1 ,iju ϕ ϕΓ . In this case, 0.5.ϕ =  

• Step 4. Generate the observed counts as ( )Poisson ij ijuλ variates. Notice that this implies 

that the observed counts, denoted ijy have a ( )NB ,ijλ ϕ  distribution. 

Notice that in the equal treatment case, the expected rate parameter is 6. In the unequal 
treatments case, the expected rate parameters are 6 and 16 for treatment 0 and treatment 1 
respectively. Also, in scenario 2 the rate parameter and marginal expectation of the observed 
counts are identical, whereas in scenario1, the marginal expected counts are considerably greater 
than the rate parameter.  

 
4. SIMULATION RESULTS 

Results for the binomial scenarios appear in Tables 1 through 4. Results for the count data 
scenarios appear in Tables 5 through 8. Before discussing these results, it is useful to review 
what we think we know about analyzing binomial and count data. What advice do students and 
practitioners get from current applied statistics literature? What is the reigning conventional 
wisdom among GEE and GLMM experts? Here is an admittedly non-exhaustive list of 
conventional wisdom articles of faith: 

• Convention Wisdom Item 1 (henceforth referred to as CW1): Standard ANOVA and 
GEE target the marginal mean. GLMMs target the expectation of |ij iy b , that is π for the 
binomial scenarios and λ for the count scenarios. Therefore, ANOVA and GEE should 
show more accurate confidence interval coverage for the marginal mean and GLMM 
should yield more accurate coverage of π andλ . 

• CW2: As a consequence of the Central Limit Theorem, standard ANOVA should provide 
accurate type I error control and confidence interval coverage in equal treatment case. 
However, variance heterogeneity in the unequal treatment case conflicts with standard 
ANOVA’s homoscedasticity assumption. If there are problems with standard ANOVA, 
they will show up in the unequal treatment case.  

• CW3: Variance stabilizing transformations should address any problems with ANOVA 
in the unequal treatment case – assuming, that is, that transformations do not affect 
random model effects in ways that distort the resulting inference.  
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• CW4:GEEs are robust to model misspecification. If conventional wisdom is correct, 
GEEs should be less susceptible to violations of standard GLMM assumptions built into 
the scenarios considered in this paper, e.g. the beta-binomial process in Scenario 1 and 
the skewed block effect distributions in the count data scenarios.  

• CW5:Sandwich estimators are widely regarded as preferable to model-based inferential 
statistics in conjunction with the GEE. 

• CW6:Pseudo-likelihood has well-known accuracy issues with certain GLMMs. For 
example, Breslow and Clayton (1993), in their seminal GLMM publication, noted 
estimation bias issues with the logistic GLMM for binomial data with small cluster sizes. 
According to conventional wisdom, quadrature should address these issues. 

• CW7:Following the last point, quadrature is generally portrayed as preferable to pseudo-
likelihood. If this conventional wisdom turns out not to be true, the implications for R 
users are especially significant, since R’s primary GLMM package, lme4, uses quadrature 
exclusively.  

Each item on the above list follows from linear model theory, which is largely asymptoticfor 
GEEs and GLMMs. However, as experience with linear mixed models has shown, asymptotic 
theory does not always accurately predict small sample behavior. Surprises happen. As the sports 
pundits say (at these those not associated with college football’s BCS), “The game is played on 
the field, not on paper.” Simulation results below will be discussed in the light of how they 
support or, in several cases, contradict reigning GEE and GLMM conventional wisdom.  

A. Binomial Data 

Table 1 shows results for the equal treatment scenario with cluster size 10N = . Table 2 
shows results for the equal treatment scenario with 100N = . Tables 3 and 4 show results for the 
unequal treatment scenarios with small( 10N = ) and large ( 100N = ) cluster sizes, 
respectively.In the tables, “analysis method” refers to the options listed in Section 2C.Each table 
shows the rejection rate (percent of simulated data sets for which 0 0 1:H τ τ= was rejected with 

0.05α = ), the average estimate, average lower and upper 95% confidence bound, and the 
percent coverage for the 95% confidence interval. For standard ANOVA, the estimate is the 
mean of ij ijp y N= for each treatment. For all other methods, the estimate is the “Least Squares 

Mean” ˆ ˆ jη τ+ expressed on the data scale: the back-transformation ( ) 2
ˆ ˆsin jη τ +   for the arc sine 

square root transformation and the inverse logit link ( )ˆ ˆ1 1 exp jη τ + +   for the GEEs and 

GLMMs. Confidence bounds were obtained by first determining the 95% confidence interval for 
the least square means on the model scale then back-transforming or inverse-linking the lower 
and upper confidence bounds as appropriate. For the equal treatment case, estimates and 
confidence bounds were averaged over both treatments. For the unequal treatment case in Tables 
3 and 4, estimates, confidence bounds and coverage are reported separately for each treatment. 
Also, in Tables 3 and 4, analysis methods that failed to control type I error, in other words, 
methods with rejection rates in excess of “nominal” as defined below, are shaded to indicate that 
these are methods one should avoid in practice.  

In reporting the results, the word “nominal” will appear often. In the equal treatment case, 
the expected rate of type I errors is 0.05if 0.05α = . Using standard margin-of-error methods for 
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percent, with 2000 simulated experiments, “nominal” means a rejection rate between 0.035 and 
0.065, with 0.03 or 0.07 characterized as “marginally nominal.” For confidence interval 
coverage,“nominal” means 0.935 to 0.0965, with 0.93 and 0.97 characterized as “marginally 
nominal.” For the unequal treatment case, the method that yielded maximum power among those 
methods whose type I error control was acceptable (i.e. nominal) was used as a reference for 
assessing the power of competing methods. The term “power loss” in the discussion below refers 
to how much lower the rejection rate of a given method was as a percentage of the reference 
method.  

How did the methods perform with regard to conventional wisdom outlined above? 

• CW1: ANOVA and GEE target the marginal mean; GLMMs target π .  

ANOVA and GEE yielded average estimates equal to the marginal mean, 0.88 in the equal 
treatment case, 0.88 and 0.68 for unequal treatments with 10N = , 0.88 and 0.78 for 100N = . 
GLMMs all yielded average estimates within 0.01 of the target π for each scenario.  

Confidence interval coverage was a different story. In the equal treatments case, ANOVA 
showed nominal confidence interval coverage of π for both cluster sizes (N=10 and N=100) but 
coverage for the marginal mean deteriorated as cluster size increased, yielding less than nominal 
coverage (0.92) when 100N = . For the unequal treatments case, ANOVA over-covered the 
larger mean (0.99) and under-covered the smaller mean (0.92) – as one would expect since 
ANOVA produces confidence intervals of equal width, whereas the variance of the binomial 
decreases as π approaches 1. With small cluster size, GEE provided nominal marginal mean 
coverage with the sandwich estimator but not with model-based statistics.The opposite occurred 
with larger cluster size: the sandwich estimate under-covered the mean (0.92) and yielded a 
greater than nominal type I error rate (0.086), whereas model-based statistics yielded acceptable 
results.  SAS PROC GLIMMIX offers an optional bias correction for sandwich estimates due to 
Morel, et al. (2003). For the scenarios in this study, the Morel procedure was not needed with 
small cluster size and was excessively conservative with larger cluster size, yielding a power loss 
of 24%.  

With small cluster size, the GLMM with unit-level random effectyielded higher than 
nominal confidence interval coverage (0.98). It did so in conjunction with extremely low 
rejection rate (type I error rate 0.008, power loss 12%) when implemented via pseudo-likelihood 
and unacceptably high rejection rate (type I error rate 0.154) when implemented via quadrature. 
Basic GLMM and GLMM with overdispersion scale parameter showed nominal coverage in the 
equal treatment case but greater than nominal coverage with unequal treatments. Only the 
GLMM assuming / ~y N Beta showed nominal coverage of π in both the equal and unequal 
treatment case.  

With large cluster size, basic GLMM and the quadrature implementation of GLMM with 
unit-level random effect under-covered π and showed excessive type I error rate (0.215 and 
0.113 respectively). The GLMM with overdispersion scale parameter, the pseudo-likelihood 
implemented GLMM with unit-level random effect and the GLMM assuming / ~y N Beta
implemented either with quadrature or pseudo-likelihood showed nominal coverage of π and 
acceptable type I error control. The pseudo-likelihood implemented GLMM with unit-level 
random effect showed 5% power loss, but these four methods were otherwise quite similar.  
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• CW2: Standard ANOVA should perform nominally in equal treatment case but exhibit 
problems related to equal-variance assumption in unequal treatment case. 

The only surprise here was that coverage of the marginal mean in the equal treatment case 
became worse as cluster size increased. Coverage was poor in the unequal treatment case 
regardless of cluster size.  

• CW3: Transformation should address ANOVA issues in unequal treatment case. 
Definitely not the case. The arc sine square root transformation is not needed when treatment 
means are equal and made things worse when treatment means were unequal. For small cluster 
sizes, confidence interval coverage was 0.89 and 0.93, both lower than nominal, for treatment 0 
and 1 respectively. For large cluster size, coverage was 0.97 and 0.93, marginally higher than 
nominal for treatment 0 and marginally lower than nominal for treatment 1. These scenarios 
produced no evidence to support the use of the arc sine square root transformation in conjunction 
with mixed models and considerable reason to discourage their use.  

• CW4: GEEs are robust to model misspecification. 
No evidence from these scenarios. With small cluster size, the GEE with sandwich estimator 
yielded results equivalent to the GLMM with ~y N Beta in terms of coverage, type I error 
control and power. Equivalent, but not better. With larger cluster size, the GEE with model-
based statistics showed a 7% power loss. This is typical of GEEs with binomial data: because the 
marginal distribution is skewed toward 0.5, marginal means are closer together than 
corresponding π resulting in loss of power relative to the GLMM.  

• CW5:Sandwich GEE estimators are preferable to model-based 
No consistent evidence from these scenarios. Sandwich estimator yielded more accurate 
coverage and better type I error control for small cluster size. The opposite was true with large 
cluster size. In fact, it is well-known that sandwich estimators produce downward-biased 
standard errors and hence inflated type I error rates when the number of experimental units is 
relatively small, as they are in most agricultural research. The Morel correction was developed to 
address this bias, but it appears to be overkill for the scenarios investigated in this paper. 

• CW6: Quadrature addressed well-known pseudo-likelihood issues in conjunction with small 
cluster size. 

No evidence. For the GLMM with random unit-level effect, the GLMM one would expect to be 
most affected by cluster size, pseudo-likelihood did indeed perform poorly – confidence intervals 
coverage was well above nominal (0.98 and above) and the rejection rate was well below 
nominal (24-30% power loss). However, quadrature’s performance was equally unacceptable, 
with type I error rate exceeding 0.15. Quadrature is a maximum likelihood procedure. It 
produces ML estimates of variance components and these have the same issues with GLMMs as 
their well-known problems with LMMs: downward-biased variance component estimates and 
hence inflated test statistics.  

• CW7: Quadrature is preferable to pseudo-likelihood.  
Not always. In these scenarios, not at all. See previous bullet point. This is of special relevance 
to R users. The primary GLMM package in R is lme4, which is a quadrature-only procedure. 
While SAS GLIMMIX was used for these simulations, for the GLMMs considered, lme4 yields 
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identical results. Pseudo-likelihood is superficially similar to penalized quasi-likelihood (PQL) , 
a procedure one can implement in R using the glmpql package. However, there is one crucial 
difference: PQL imposes a mandatory overdispersion scale parameter, whereas SAS GLIMMIX 
pseudo-likelihood does notinclude an overdispersion scale parameter on default –the user must 
specify it as an option. For the GLMM with unit-level random effect and the GLMM with 

~y N Beta , adding an additional overdispersion scale parameter is nonsense. Until a true 
pseudo-likelihood package is developed in R, this is a major limitation on the literate use of 
GLMMs with R.   

B. Count Data 
Tables 5 and 6 show results for the equal and unequal treatments cases with negative 

binomial counts arising according to the link-scale mean process described in Section 3B 
Scenario 1. Tables 7 and 8 show results for the equal and unequal treatment cases with the 
additive mean model described in Section 3B, Scenario 2. Analysis methods correspond to the 
options described earlier in Section 3B. The rejection rate, average estimate, average lower and 
upper confidence bounds and confidence interval coverage for the rate parameter, λ  and 
marginal mean are similar to criteria reported in the previous section for binomial data. 

As with the binomial data, the estimates are of treatment sample means for standard 
ANOVA, back-transformed least square means for ANOVA with transformation, and inverse-
linked least squares means for the GEEs and GLMMs. Three transformations, described under 
model Option 2 in Section 3C were considered. The inverse link for all GEEs and GLMMs is 

( )ˆ ˆexp jη τ+ . One additional analysis method appears in Tables 5 and 7: the negative-binomial 
GLM – model Option 8 with fixed block effects. The inverse link for this model is 

( )ˆ ˆexp 1 8j i
i

bη τ + + 
 

∑ . This was included to illustrate that the fixed-block/random-block 

decision, while inconsequential for complete block designs with Gaussian data, is highly 
consequential  for GLMMs, even with complete block designs.  

Link Mean Model Case 
As with the binomial data, results are summarized with regard to ANOVA and GLMM 

conventional wisdom. 

• CW1: ANOVA and GEE target the marginal mean; GLMMs targetλ  

Standard ANOVA and GEE models yielded average treatment mean estimates of 14.5, the 
marginal mean, for the equal treatment case, and 14.0-14.1 for treatment 0 and 34.6 for treatment 
1, close to the marginal means of 14.5 and 34.5. While point estimates were accurate, confidence 
interval coverage was not, with coverage ranging between 0.69 and 0.84 compared to nominal 
0.95.  

The negative binomial GLMMs yielded accurate treatment mean estimates and nominal 
confidence interval coverage, as did the Poisson unit-level random effect GLMM provided it was 
implemented using pseudo-likelihood. When implemented with quadrature, the Poisson unit-
level random effect GLMM showed inflated (0.125) type I error rate and less than nominal 
(0.85) coverage of λ . Basic GLMM yielded elevated type I error rate with scale parameter 
(0.195) and severely elevated type I error rate (0.459) with no overdispersion scale parameter.  
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Note that deciding whether to regard block effects as fixed or random matters. While the 
negative binomial GLMM with random block effects yields nominal results, the negative 
binomial GLM with fixed block effects yielded grossly inflated type I error (0.469) – similarto 
basic GLMM with no overdispersion parameter. In addition, confidence interval coverage (0.75) 
was substantially less than nominalalthough the point estimate itself was accurate (6.1 in the 
equal treatment case).   

• CW2: Standard ANOVA should perform nominally in equal treatment case but exhibit 
problems related to equal-variance assumption in unequal treatment case. 

In the equal treatment case, standard ANOVA yielded average treatment mean estimate of 14.5, 
equal to the marginal mean, but coverage was only 0.69. Interestingly, coverage was 0.95 for the 
rate parameterλ , not a result one would expect from standard ANOVA. However, the average 
confidence bounds were -5.1 and 34.1, the lower bound being especially unhelpful. What is the 
actual confidence associated with an interval that must be truncated at 0?In the unequal 
treatment case, ANOVA provided greater than nominal coverage of the treatment 0 mean (0.99) 
and lower than nominal (0.88) coverage of the treatment 1 mean. Also, for treatment 1, the 
average lower confidence bound was -18.7. Power loss was over 50%. Clearly, if this scenario 
accurately describes the process by which data arise, standard ANOVA will not do.  

• CW3: Transformation should address ANOVA issues in unequal treatment case. 

Mixed results.The log transformation yielded accurate estimates (6.2 in the equal treatment case, 
6.1 and 15 in the unequal treatment case) and nominal confidence interval coverage. The square 
root and power transformation due to Nelder yield relatively inflated treatment mean estimates. 
Their confidence interval coverage was nominal in the equal treatment case but no better than 
standard ANOVA in the unequal treatment case. While the log transformation yielded accurate 
estimates and nominal type I error control, power loss was 16% relative to GLMMs that also 
provided nominal type I error control. Not evidence that supportsusing transformations.  

• CW4: GEEs are robust to model misspecification. 

No evidence from these scenarios. GEE with sandwich estimators performed poorly. The type I 
error rate was 0.191 with uncorrected sandwich estimators; power loss was over 50% with the 
Morel bias correction. With model-based statistics things were a little better but not much. Type 
I error rate was nominal, but power loss was over 30%. Confidence interval coverage was 0.78 
for the marginal mean, 0.77 for λ . 

• CW5:Sandwich GEE estimators are preferable to model-based. 
No. See previous bullet. 

• CW6: Quadrature is preferable to pseudo-likelihood.  
Not always. The negative binomial GLMM yielded the most accurate analyses of any method 
considered: nominal type I error control, maximum power, nominal confidence interval coverage 
in both equal and unequal treatment cases. Pseudo-likelihood and quadrature yielded virtually 
identical results. On the other hand, the Poisson unit-level random effect GLMM yielded an 
analysis similar to the log transformation (accurate treatment mean estimates, good type I error 
control but underpowered) when implemented with pseudo-likelihood, but with quadrature, type 
I error rate was too high (0.125) and confidence interval coverage decreased to 0.85. This was 
among the approximately 80% of the data sets for which convergence could be obtained. The 
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problem with quadrature is that it is uses numerical approximation to solve an exact likelihood. 
The Poisson GLMM assumes Gaussian block and unit-level effects. The data actually arose from 
skewed (Gamma) block effects and negative binomial unit-level data. When the discrepancy 
between model assumptions and data process is too great, quadrature struggles. Pseudo-
likelihood seems to be more forgiving.  

Additive Mean Model Case 
Recall that the GLMM assumes a link-mean process and Gaussian block effects. In the link-

mean scenario, only the block effect assumption was altered – their distribution was right-
skewed Gamma rather than Gaussian. In the additive mean case both the mean model and block 
effect distribution violate GLMM assumptions. In theory, data arising from the additive mean 
model process should be closer to the standard ANOVA linear model, and ANOVA should have 
a competitive advantage relative to GLMM-based analysis. Also, if the GEE is truly more robust 
to model misspecification, this scenario should be revealing.  

In fact, this scenario illustrates “the game is played on the field, not on paper” principle. 
While there are differences between the performance of the various analyses in the this scenario 
relative to the link-mean scenario, they are more differences in degree than in kind. What is truly 
striking is how little the big picture changes.  

Standard ANOVA performs wellwhen treatment means are equal:nominal type I error rate, 
accurate confidence interval coverage. With unequal treatment means, however, ANOVA 
yielded poor confidence interval coverage (0.99 for treatment 0, 0.88 for treatment 1) and loss of 
power (20%). Transformations don’t help, but this time the Nelder power transformation is the 
least inaccurate and the log transformation is the most inaccurate.  

GEE with sandwich estimates perform poorly, with or without Morel correction, for the 
same reasons they performed poorly in the link-mean case. As before, GEE with model-based 
statistics is a bit better, but in the unequal treatment case, confidence interval coverage is above 
nominal (0.97) for treatment 0, below nominal (0.92) for treatment 1, and power loss is just 
under 15%.  

The basic GLMM still shows severely inflated type I error rate (0.26) with no overdispersion 
scale parameter. With scale parameter, the basic GLMM’s type I error rate is still inflated 
(0.082), but not quite as badly as in the link-mean scenario. The change of mean scenario does 
affect the negative binomial GLMM and the Poisson random-unit effect GLMM when 
implemented by pseudo-likelihood. For the negative binomial, type I error control and power are 
nominal but confidence interval coverage for treatment 0 is only 0.91; for the Poisson random 
unit-level GLMM power loss is similar to the GEE (just under 15%) and confidence interval 
coverage is below nominal (0.89 to 0.93). With quadrature, the model assumption failures for the 
Poisson unit-level random effect GLMM are so severe that convergence rate falls below 50% 
and theestimates one does obtain are nonsense. However the negative binomial GLMM 
implemented via quadrature yields the best performance of any analysis method – nominal type I 
error control, maximum power and generally nominal confidence interval coverage (marginally 
nominal, 0.93, for treatment 0 in the unequal treatment case. This is the only case in which 
quadrature did in fact outperform pseudo-likelihood.  

As with the link-mean case, changing from random to fixed block effects dramatically alters 
results for the negative binomial GLMM. With fixed block effects, type I error rate was 0.209 
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and confidence interval coverage decreased to 0.78. Unlike ANOVA, with generalized linear 
models the fixed/random block effect decision is not one to make lightly.  

 
5. CONCLUSIONS AND CAVEATS 

First, the caveat. This paper should not be taken as a definitive, exhaustive comparison of 
analysis methods for binomial and count data. The results in the previous section apply to 
specific scenarios representing examples of how the probability processes giving rise to binomial 
and count data might be conceptualized and how the various alternatives for analysis perform 
under these scenarios. There are other plausible scenarios that, in the interest of time and space, 
were not considered in this paper.  

The primary purpose of this paper is to illustrate how the ANOVA thought process can be 
adapted to construct plausible scenarios for how data arise consistent with the design structure, 
the primary response variable, and what is known – or what seems reasonable – aboutthe 
probability distribution of the design’s major sources of variation. Students of statistical 
modeling and practitioners should find this useful. Students can use this approach to deepen their 
understanding of the theory and practice of statistical modeling. Practitioners can adapt the data 
generation and comparison of analysis alternatives demonstrated in this paper to conduct their 
own investigations to shed light on which method of analysis would be best suited to the needs to 
their particular problem.   

While the results in Section 4 should not be considered exhaustive, they do provide food for 
thought both about how statistical scientists approach the analysis of non-normal data and what 
we teach beginning students and practitioners about analyzing non-normal data. The results here 
do call several items of common practice into question. 

First, standard ANOVA’s performance was notencouraging in any of the scenarios we 
investigated. As long as treatment means were equal, standard ANOVA typically provided 
nominal type I error control and confidence interval coverage. However, with unequal treatments 
ANOVA performed poorly. Power was reduced – in some cases drastically reduced –and 
confidence interval coverage of treatment means was inaccurate. Because the coverage issue 
stems from the mean-variance relationship in non-normal data, one would expect coverage 
inaccuracy to increase with increased difference among treatment means. Most agricultural 
experiments are conducted because researchers strongly suspect a treatment difference exists, so 
ANOVA’s performance in the equal treatment case is something of a moot point. Often the 
question is not so much “is there a difference?” as it is “we know there is a difference – howbig 
is it?” The results here clearly cast doubt on whether ANOVA is up to the task of determining 
“how big?” 

Second, transformations consistently were no help and often made matters worse. Almost 
everyone associated with agricultural research knows somebody whose opinion is, “why fool 
with that GLMM stuff? Just transform the data, compute ANOVA, and get on with your life.” 
Introductory statistical methods typically “protect” students from generalized linear models by 
assuring them that transformation plus ANOVA is all they need. The results here should at least 
giveus pause. Researchers whose work depends on working with non-normal response variables 
are not well served by this kind of mentality.    
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Third, several items of GLMM conventional wisdom did not fare well. GEEs are reputed to 
be less susceptible to model misspecification. They showed no evidence of robustness in these 
scenarios. Integral approximation methods – quadrature and Laplace – are generally portrayed as 
preferable to pseudo-likelihood and penalized quasi-likelihood. These scenarios provided little 
evidence to support this. If anything, pseudo-likelihood appeared to be somewhat more robust 
than quadrature. Admittedly, these results are scenario dependent, but that is exactly the point. 
Sometimes quadrature is better, sometimes pseudo-likelihood is better, there is a place for both, 
and both options need to be understood and available. Finally, the models that did perform best 
in these scenarios are not the ones most likely to occur to users, nor are they necessarily 
alternatives that appear in current GLMM literature. For example, almost all GLMM literature 
focuses on the standard logit or probit binomial GLMM rather than the alternative with sample 
proportion distributed as beta.  

The last two points have particular implications for two sets of GLMM users: the R 
community and Bayesians. R’s only viable GLMM package, lme4, uses quadrature exclusively. 
This needs to change. In addition to lme4, R needs a flexible pseudo-likelihood package. The 
closest thing R currently has to a pseudo-likelihood package, glmpql, is antiquated, lacks needed 
features, and should not be considered a viable alternative. Bayesian methods and quadrature 
have in common the fact that they work from a well-defined and specific likelihood – a complex 
likelihood that can be evaluated only via numeric approximation or Monte Carlo methods or 
both, but a specific likelihood nonetheless. Several results in Section 4 illustrate how quadrature 
struggles and ceases to provide useable analysis when the model being fit differs substantially 
from the processes that gave rise to the data. Because Bayesian analysis is equally specific about 
the likelihood, it is similarly vulnerable. This is not so much a criticism of quadrature and 
Bayesian methods as it is a recognition that if these methods are to realize their potential, 
modelers must include an awareness of how data arise in their thought process and be disciplined 
about questioning whether the model they are fitting and the processes that gave rise to the data 
are a good match.   

All this raises the final point. What do we tell students and practitioners? Here, we seem to 
be between a rock and a hard place. On one hand, standard ANOVA is clearly not a dependable 
tool for non-normal data. ANOVA with transformed data is even less suitable. ANOVA is 
especially problematic in the unequal treatment case, the case that, in practice, is usually the rule, 
not the exception. The power issue alone highlights the issue: few agricultural experiments are 
over-powered; inadequately replicated, under-powered experiments are far more common. 
University budgets being what they are – research budgets in general being what they are –we 
are not likely to see a profusion of lavishlyreplicated agricultural experiments in the foreseeable 
future. Given this reality, compounding the problem by using a method of analysis whose power 
is potentially less than 50% that of readily available, methodologically sound alternatives makes 
no sense.  

On the other hand, the readily available, methodologically sound alternative, the GLMM, 
has a steep learning curve. The results in Section 4 suggest two things. On the good side, a well-
chosen GLMM, properly implemented, provides nominal type I error control, accurate 
confidence interval coverage and maximum power. On the bad side, a poorly chosen GLMM, or 
a well-chosen but ineptly implemented GLMM, may yield results as bad as or even worse than 
standard ANOVA. How do we make the former – well-chosen, competently implemented 
GLMM-based analysis – available to agricultural researchers? What aspects of the GLMM are 
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teachable – and should be taught – to consumers of statistical analysis?   What about graduate 
students and graduate curriculum in statistics programs? Currently, graduate programs are all 
over the map in terms of the amount of attention paid to the modeling-design-probability 
interface. Unfortunately, graduates from our programs with superficial, glib, a-little-knowledge-
is-a-dangerous-thing semi-competence in this area are all too common. Part of the problem 
appears to be that the mind-set promoted by the traditional graduate-level modeling course, while 
well-suited to Gaussian data, does not help students to think more broadly. In fact, the traditional 
first course in modeling does much to misdirect and impede students’ thinking about modeling 
non-normal data. This needs to change. 

If a statistics graduate student or a linear models instructor asked, “What is the most 
important single thing in this paper?” I would tell them, without hesitation, focus on the WWFD 
process – learn to think clearly: how did the data arise?   
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Figure 1. Distribution of Block Effects in Equal Treatment Count Data Scenario 
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Table 1. Simulation Results, Binomial Response, Equal Treatment, N=10  

 Conditional 0.9jπ = ; Marginal ˆ 0.88
jPµ = ; j=0,1 

analysis method 
rejection 

rate 

average coverage 

estimate 

Lower 
Confidence 

Bound 

Upper 
Confidence 

Bound 

conditional 
ˆ jπ  

marginal 
ˆ

jPµ  

standard ANOVA1 0.044 0.88 0.78 0.99 0.96 0.94 
ANOVA with 
transformation2 0.051 0.92 0.80 0.99 0.90 0.83 

GEE – model-based 0.027 0.88 0.73 0.95 0.96 0.98 
GEE - sandwich 0.055 0.88 0.74 0.95 0.95 0.94 
basic GLMM 0.021 0.90 0.75 0.96 0.96 >0.99 
basic GLMM + scale 
parameter 0.052 0.90 0.75 0.96 0.96 0.97 

GLMM + unit-level 
random effect – PL3 0.008 0.90 0.74 0.96 0.98 >0.99 

GLMM + unit-level 
random effect – Q4 0.154 0.90 0.73 0.97 0.97 0.97 

GLMM with unit ~ 
Beta – PL3,5 0.070 0.89 0.75 0.96 0.95 0.96 

GLMM with unit ~ 
Beta – Q4,5 0.042 0.90 0.77 0.95 0.96 0.96 

1 response variable p y n=  

2 response variable ( )1sin y n−  

3 PL denotes “pseudo-likelihood” – SAS GLIMMIX Method=RSPL  
4 Q denotes adaptive quadrature – SAS GLIMMIX Method=QUAD 
5 response variable p y n= , | ~ip b Beta  
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Table 2. Simulation Results, Binomial Response, Equal Treatment, N=100  

 Conditional 0.9jπ = ; Marginal ˆ 0.88
jPµ = ; j=0,1 

analysis method 
rejection 

rate 

average coverage 

estimate 

Lower 
Confidence 

Bound 

Upper 
Confidence 

Bound 

conditional 
ˆ jπ  

marginal 
ˆ

jPµ  

standard ANOVA1 0.039 0.88 0.81 0.96 0.96 0.92 
ANOVA with 
transformation2 0.048 0.90 0.82 0.95 0.94 0.88 

GEE – model-based 0.051 0.88 0.78 0.94 0.94 0.95 
GEE - sandwich 0.086 0.88 0.79 0.93 0.91 0.92 
basic GLMM 0.215 0.90 0.82 0.95 0.93 0.86 
basic GLMM + scale 
parameter 0.070 0.89 0.80 0.95 0.96 0.93 

GLMM + unit-level 
random effect – PL3 0.048 0.90 0.82 0.95 0.95 0.89 

GLMM + unit-level 
random effect – Q4 0.113 0.90 0.83 0.95 0.85 0.81 

GLMM with unit ~ 
Beta – PL3,5 0.070 0.89 0.81 0.94 0.95 0.92 

GLMM with unit ~ 
Beta – Q4,5 0.071 0.90 0.81 0.94 0.94 0.91 

1 response variable p y n=  

2 response variable ( )1sin y n−  

3 PL denotes “pseudo-likelihood” – SAS GLIMMIX Method=RSPL  
4 Q denotes adaptive quadrature – SAS GLIMMIX Method=QUAD 
5 response variable p y n= , | ~ip b Beta  
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Table 3. Simulation Results, Binomial Response, Unequal Treatment, N=10  

 0 | 0.9ibπ = ; 1 | 0.7ibπ =  

analysis method 
reject 
rate 

average for 0π  average for 1π  
est LCB UCB coverage est LCB UCB coverage 

standard ANOVA1 0.617 0.88 0.73 1.03 0.99 0.68 0.53 0.84 0.92 
ANOVA with 
transformation2 0.640 0.92 0.78 0.99 0.89 0.71 0.52 0.87 0.93 

GEE – model-based 0.575 0.88 0.70 0.96 0.97 0.68 0.50 0.83 0.96 
GEE - sandwich 0.661 0.88 0.74 0.95 0.95 0.68 0.50 0.83 0.94 
GEE - swch+MBN3 0.464 0.88 0.68 0.96 0.98 0.68 0.45 0.85 0.99 
basic GLMM 0.736 0.90 0.75 0.96 0.98 0.70 0.50 0.85 0.96 
basic GLMM + scale 
parameter 0.647 0.89 0.74 0.96 0.97 0.70 0.49 0.85 0.97 

GLMM + unit-level 
random effect – PL4 0.583 0.90 0.74 0.96 0.98 0.70 0.48 0.85 0.97 

GLMM + unit-level 
random effect – Q5 0.670 0.90 0.73 0.96 0.95 0.71 0.49 0.85 0.94 

GLMM with unit ~ 
Beta – PL4,6 0.661 0.89 0.74 0.96 0.96 0.70 0.49 0.84 0.94 

GLMM with unit ~ 
Beta – Q5,6 0.582 0.88 0.73 0.95 0.96 0.70 0.52 0.84 0.94 

1 response variable p y n=  

2 response variable ( )1sin y n−  

3 sandwich estimate with small-sample bias correction using More1, et al. (2003) procedure 
4 PL denotes “pseudo-likelihood” – SAS GLIMMIX Method=RSPL  
5 Q denotes adaptive quadrature – SAS GLIMMIX Method=QUAD 
6 response variable p y n= , | ~ip b Beta  
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Table 4. Simulation Results, Binomial Response, Unequal Treatment, N=100 

 0 | 0.9ibπ = ; 1 | 0.8ibπ =  

analysis method 
reject 
rate 

average for 0π  average for 1π  
est LCB UCB coverage est LCB UCB coverage 

standard ANOVA1 0.585 0.88 0.78 0.98 0.99 0.78 0.68 0.88 0.92 
ANOVA with 
transformation2 0.648 0.90 0.81 0.96 0.97 0.80 0.68 0.89 0.93 

GEE – model-based 0.636 0.88 0.78 0.94 0.92 0.78 0.66 0.86 0.90 
GEE - sandwich 0.712 0.88 0.79 0.94 0.89 0.78 0.68 0.87 0.92 
GEE - swch+MBN3 0.519 0.88 0.76 0.95 0.97 0.78 0.61 0.89 0.97 
basic GLMM 0.944 0.90 0.82 0.95 0.92 0.70 0.67 0.88 0.94 
basic GLMM + scale 
parameter 0.707 0.90 0.81 0.95 0.94 0.79 0.66 0.86 0.94 

GLMM + unit-level 
random effect – PL3 0.651 0.90 0.81 0.95 0.96 0.81 0.66 0.90 0.96 

GLMM + unit-level 
random effect – Q4 0.738 0.91 0.82 0.95 0.86 0.81 0.68 0.89 0.85 

GLMM with unit ~ 
Beta – PL3,5 0.685 0.89 0.80 0.95 0.95 0.70 0.66 0.88 0.95 

GLMM with unit ~ 
Beta – Q4,5 0.678 0.89 0.80 0.95 0.93 0.70 0.67 0.88 0.94 

1 response variable p y n=  

2 response variable ( )1sin y n−  

3 sandwich estimate with small-sample bias correction using More1, et al. (2003) procedure 
4 PL denotes “pseudo-likelihood” – SAS GLIMMIX Method=RSPL  
5 Q denotes adaptive quadrature – SAS GLIMMIX Method=QUAD 
6 response variable p y n= , | ~ip b Beta  
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Table 5. Simulation Results, Counts, Link-Scale Mean Model, Equal Treatment  

 Conditional 6jλ = ; Marginal ˆ 14.5
jCµ = ; j=0,1 

analysis method 
rejection 

rate 

average coverage 

estimate 

Lower 
Confidence 

Bound 

Upper 
Confidence 

Bound 

conditional 
ˆ

jλ  
marginal 

ˆ
jCµ  

standard ANOVA 0.028 14.5 -5.1 34.1 0.95 0.69 
ANOVA on 
transformed 
response 

( )log 1c +  0.053 6.2 2.0 17.3 0.94 0.49 

3
8c +  0.049 9.0 1.9 24.2 0.94 0.59 

2
3c  0.043 10.5 1.6 27.4 0.95 0.63 

GEE – model-based 0.058 14.5 4.6 62.0 0.78 0.77 
GEE - sandwich 0.191 14.5 4.7 57.0 0.76 0.73 
GEE –sandwich + MBN 0.075 14.5 3.5 85.4 0.89 0.84 
basic GLMM 0.459 6.7 2.7 18.2 0.92 0.51 
GLMM + OD scale 0.195 8.2 3.2 23.0 0.90 0.65 
GLMM + unit-level 
random effect – PL  0.047 6.4 2.4 18.9 0.96 0.56 

GLMM + unit-level 
random effect – Q 0.125 6.1 2.5 17.6 0.85 0.52 

GLMM, | ic b ~ NB PL 0.057 7.2 2.7 20.9 0.94 0.63 

GLMM, | ic b ~ NB Q 0.068 7.6 2.7 23.4 0.95 0.69 
GLM, ~ NBc , fixed ib  0.469 6.1 3.3 10.6 0.75 0.29 
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Table 6. Simulation Results, Counts, Link-Scale Mean Model, Unequal Treatment  

 Conditional: 0 6λ = ; 1 15λ =   Marginal: 
0

14Cµ = ;
1

34.5Cµ =  

analysis method 
reject 
rate 

average  
est LCB UCB coverage est LCB UCB coverage 

standard ANOVA 0.23 14.1 -18.7 46.8 0.99 34.6 1.9 67.4 0.88 
ANOVA on 
transformed 
response 

( )log 1c +
 

0.46 6.1 1.9 17.7 0.95 15.0 5.5 41.0 0.93 

3
8c +  0.40 8.8 1.3 29.1 0.97 22.3 6.6 50.6 0.91 

2
3c  0.35 10.2 0.6 34.6 0.98 25.8 6.7 56.0 0.90 

GEE – model-based 0.37 14.0 3.4 94.9 0.87 34.6 13.4 105.8 0.70 
GEE - sandwich 0.63 14.0 4.6 53.8 0.77 34.6 11.7 127.4 0.77 
GEE –sandwich + MBN 0.40 14.0 3.1 92.3 0.92 34.6 9.3 175.7 0.87 
basic GLMM not shown – excessive type I error rate (see Table 5) GLMM + OD scale 
GLMM + unit-level 
random effect – PL  0.45 6.4 2.4 18.6 0.96 15.4 5.8 44.3 0.95 

GLMM + unit-level 
random effect – Q 0.61 6.1 2.5 17.3 0.86 15.2 6.2 42.7 0.88 

GLMM, | ic b ~ NB PL 0.55 7.2 2.7 20.5 0.94 17.6 6.8 49.7 0.95 

GLMM, | ic b ~ NB Q 0.54 7.5 2.7 22.5 0.95 18.7 6.9 54.9 0.95 
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Table 7. Simulation Results, Counts, Additive Mean Model, Equal Treatment  

 6jλ = ; j=0,1 

analysis method 
rejection 

rate 

average coverage 

estimate 

Lower 
Confidence 

Bound 

Upper 
Confidence 

Bound 

conditional = marginal 
= ˆ

jλ  

standard ANOVA 0.038 6.0 1.5 10.5 0.95 
ANOVA on 
transformed 
response 

( )log 1c +  0.047 4.4 1.9 9.0 0.85 

3
8c +  0.047 5.1 2.0 9.4 0.89 

2
3c  0.046 5.3 2.0 9.6 0.91 

GEE – model-based 0.057 6.0 3.1 11.9 0.94 
GEE - sandwich 0.087 6.0 3.1 12.0 0.93 
GEE –sandwich + MBN 0.038 6.0 2.6 14.6 0.98 
basic GLMM 0.260 5.1 2.8 9.4 0.88 
GLMM + OD scale 0.082 5.6 2.8 11.6 0.95 
GLMM + unit-level 
random effect – PL  0.049 4.9 2.5 10.0 0.92 

GLMM + unit-level 
random effect – Q 0.283 4.6 3.1 8.1 0.58 

GLMM, | ic b ~ NB PL 0.065 5.5 2.7  11.5 0.95 

GLMM, | ic b ~ NB Q 0.061 5.6 2.7 11.8 0.94 

GLM, ~ NBc , fixed ib  0.209 4.6 2.7 7.9 0.78 
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Table 8. Simulation Results, Counts, Additive Mean Model, Unequal Treatment  

 Conditional = Marginal: 0 6λ = ; 1 16λ =    

analysis method 
reject 
rate 

average  
est LCB UCB coverage est LCB UCB coverage 

standard ANOVA 0.49 6.0 -1.2 13.2 0.99 16.1 8.8 23.3 0.86 
ANOVA on 
transformed 
response 

( )log 1c +
 

0.56 4.1 1.7 8.7 0.80 12.4 6.2 24.4 0.90 

3
8c +  0.57 4.9 1.4 10.4 0.93 14.1 7.6 22.8 0.88 

2
3c  0.55 5.1 1.1 11.2 0.96 14.7 8.0 22.8 0.87 

GEE – model-based 0.53 6.0 2.7 14.1 0.97 16.1 9.7 27.0 0.92 
GEE - sandwich not shown – excessive type I error rate (see Table 7) 
GEE –sandwich + MBN 0.41 6.0 2.3 16.6 0.98 16.1 8.0 32.2 0.97 
basic GLMM not shown – excessive type I error rate (see Table 7) 
GLMM + OD scale 0.65 5.7 2.7 12.2 0.94 15.1 8.7 26.7 0.93 
GLMM + unit-level 
random effect – PL  0.54 4.7 2.3 9.6 0.89 13.0 6.7 25.8 0.93 

GLMM + unit-level 
random effect – Q not shown: convergence failure rate > 50% 

GLMM, | ic b ~ NB PL 0.66 5.5 2.8 10.9 0.91 14.8 7.9 28.4 0.95 

GLMM, | ic b ~ NB Q 0.62 5.6 2.7 12.0 0.93 15.2 7.8 30.2 0.96 
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