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A SIMULATION STUDY OF THE SMALL SAMPLE PROPERTIES OF LIKELIHOOD 
BASED INFERENCE FOR THE BETA DISTRIBUTION 

 
Kevin Thompson and Edward Gbur 

Agricultural Statistics Laboratory, Arkansas Agricultural Experiment Station 
University of Arkansas, Fayetteville AR 72701 

 
Abstract 
 
Researchers often collect proportion data that cannot be interpreted as arising from a set of 
Bernoulli trials. Analyses based on the beta distribution may be appropriate for such data. The 
SAS® GLIMMIX procedure provides a tool for these analyses using a likelihood based approach 
in the context of generalized linear mixed models. Since the t and F-distribution based inference 
employed in this approach relies on asymptotic properties, it is important to understand the 
sample sizes required to obtain reasonable approximate answers to inference questions. In 
addition, the complexity of the likelihood functions can lead to numerical issues for optimization 
algorithms that may or may not be related to sample size issues. This simulation study is based 
on a simple intercept-only model for known beta distributed responses. Convergence and 
estimation issues are investigated over a range of beta distributions and sample sizes. 
 
Keywords  Generalized linear mixed model, Beta distribution, GLIMMIX, Simulation  
 
1.  Introduction 
 
Proportions that are measured on a continuum are often modeled by a beta distribution because 
of the wide range of possible shapes for its pdf. Our objective in this paper was to study the small 
sample likelihood based inference properties for the beta in the context of the one sample 
problem using PROC GLIMMIX in SAS®. This study represents the first step toward examining 
small sample inference for the beta in the context of generalized linear mixed models (GLMM). 
 
2.  Beta Distribution 
 
The standard form of the pdf of a beta distribution is given by 
 

f(y | α, β) = y(α – 1)(1 – y)(β – 1)/B      for 0 < y < 1, 
 
where B is the beta function with parameters α > 0 and β > 0.  For a GLMM, the alternative 
parameterization 
 

f(y | μ, φ) = y(μφ – 1)(1 – y)(φ(μ – 1) – 1)/B, 
 
with parameters 0 < μ < 1 and φ > 0 is often used, where μ = α/(α + β) and φ = α + β. For this 
parameterization we have 
 

136

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2013/proceedings/9



E(Y) = μ and Var(Y) = μ(1 – μ)/(1 + φ). 
 
The parameter space for the beta can be divided into regions defined by α and β that determine 
the general shape of its pdf as shown in the Figure 1. Shapes of distributions with µ > 0.5 are 
mirror images of the corresponding distributions having µ < 0.5. Distributions with µ = 0.5 are 
symmetric regardless of value of φ. For φ > 10, distributions have the same general shapes as 
those shown in Figure 1 for φ = 10. 
 

 
Figure 1.  General shapes of the pdf for beta distributions when µ ≤ 0.5 and φ ≤ 10. 
 
3.  Simulation and Analysis Details 
 
The simulation was performed on a rectangular grid on (μ, φ) parameter space with 
 

μ = 0.1, 0.2, 0.3, 0.4, 0.5  
φ = 0.5, 1, 1.5, 2, 3, 5, 10, 15, 25, 50, 75, 100 
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and sample sizes of N = 5, 10, 15, 20, 50, 100. Two thousand samples were generated for each 
(μ, φ, N) combination using the RAND(“Beta”) function in SAS. The software used was 32 bit 
SAS® for Windows, Version 9.3 (TS1M2, Analytics version 12.1). 
  
Each sample was analyzed as a generalized linear model (GLM) using PROC GLIMMIX with a 
logit link function η = logit(µ) . Numerical techniques used were pseudo-likelihood (RSPL) and 
Laplace. The MODEL statement contained one factor having only one level. The no intercept 
(NOINT) and SOLUTION options provided estimates for η and φ. The LSMEANS statement 
provided 90%, 95% and 99% confidence intervals for η based on the t-distribution. Estimates 
and confidence intervals for µ were obtained by back-transforming using the ILINK option on 
the LSMEANS statement. 
 
4.  Convergence Issues 
 
Convergence issues were divided into four categories: 

(1)  Convergence was declared and all estimates and standard errors were calculated, 
(2)  Convergence was declared but SE(φ-hat) was missing or zero, 
(3)  Convergence was declared but SE(η-hat) was missing or zero, 
(4)  Convergence was not attained. 

 
Convergence results for RSLP are reported below. Results for Laplace were similar. 
 
For sufficiently large µ and φ combinations, non-convergence was not an issue. For all φ ≥ 3 and 
all (µ, N) combinations, at least 92.5% of the samples were in category 1. For φ < 3 and small 
values of µ, the percentage of samples in category 1 decreased dramatically to as small as 16% 
as N increased. Except for φ = 0.5 and µ = 0.1, most of the non-category 1 samples were in 
category 2. For φ = 0.5 and µ = 0.1, between 15% and 19% of the samples were in category 3 
and inference on µ would not be possible for these samples. 
 
In the results that follow, only samples from categories 1 and 2 combined were used in the 
construction of the tables. 
 
5.  Confidence Intervals for μ 
 
Trends for empirical confidence interval coverage levels for nominal 90%, 95% and 99% 
confidence levels were similar. Only results for 95% are presented here. The results for RSPL 
and Laplace were similar as well and only numerical results for RSPL will be presented. 
 
For all φ ≥  3 and all (μ, N) combinations, the empirical confidence interval coverage for 
nominal 95% confidence intervals for μ ranged from 92.4% to 96.1% for both RSPL and 
Laplace. Empirical coverage levels for φ < 3 using RSPL are presented in Table 1 with coverage 
levels less than 90% printed in red.  
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Table 1.  Empirical coverage levels for nominal 95% confidence intervals for µ based on RSPL 
for selected (μ, φ, N) combinations. Trends for Laplace are similar. 
 

φ  N  µ = 0.1 μ = 0.2 μ = 0.3 μ = 0.4  μ = 0.5 

2.0 5 91.0 93.4 93.7 93.7 93.9 

 10 91.4 94.5 94.0 93.9 93.9 

 20 89.7 93.8 95.0 95.1 93.9 

 50 83.9 94.7 94.3 95.8 95.1 

 100 73.1 94.6 94.6 95.2 95.3 

1.5 5 88.9 93.7 95.0 93.4 94.1 

 10 85.6 92.9 94.9 95.8 94.2 

 20 77.3 93.6 94.5 94.6 94.9 

 50 56.1 94.8 95.7 94.7 94.8 

 100 34.6 94.3 95.0 95.4 96.1 

1.0 5 78.4 93.0 94.1 94.7 94.5 

 10 65.8 92.8 93.9 94.7 95.2 

 20 44.6 91.8 94.8 94.7 94.9 

 50 18.2 85.4 94.3 93.9 95.5 

 100 10.2 77.1 93.7 95.7 95.2 

0.5 5 63.6 85.6 92.2 95.1 95.6 

 10 38.8 70.4 92.4 94.9 94.8 

 20 28.5 50.3 85.3 94.7 95.3 

 50 22.4 17.8 67.0 90.3 94.5 

 100 22.9 9.6 43.2 84.5 92.5 

 
From Table 1 the following trends emerge. 
• For each (φ, N) combination, as µ increases to 0.5 the empirical coverage levels tend to 

increase and then stabilize; i.e., as the shape of the distribution changes from highly skewed 
to symmetric, the coverage level tends to increase. 

 
• For fixed N and small values of µ, as φ decreases, the coverage level decreases; i.e., as the 

distribution changes from a reverse J shape to a U shape, the coverage decreases. 
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• For each (µ, φ) combination where the empirical coverage level is consistently much smaller 
than the nominal level (entries in red), as the sample size N increases, the coverage levels 
tend to decrease which is contrary to what would be expected. 

 
Issues that may contribute to poor empirical coverage levels include: 
• Bias in the estimates of μ. 
• Problems estimating φ, including potential effects of highly skewed distributions. 
• Estimates of μ having large biases that are coupled with large overestimates of φ to produce 

narrow confidence intervals not centered near μ. 
 
6.  Estimation of μ and its effect on empirical coverage levels 
 
The means of the estimates of μ obtained by back-transformation for both RSLP and Laplace 
were calculated. The results are presented in Table 2 for selected (μ, φ, N) combinations using 
RSPL. Entries in red correspond to empirical coverage levels for a nominal 95% level that are 
less than 90% in Table 1. The results for Laplace are similar. 
 
For φ ≥  3 and all (µ, N) combinations, the means of the estimates were within 0.005 of µ for 
both RSPL and Laplace with most of the biases less than or equal to 0.001. For φ < 3 in Table 2, 
the means tend to be biased downward but trends or lack thereof appear to depend on the (μ, φ) 
combination. The largest biases correspond to empirical coverages in Table 1 that were well 
below the nominal 95% level. 
 
The means of the lengths of the confidence intervals for μ obtained by back-transformation for 
both RSLP and Laplace were calculated. The means for RSPL are presented in Table 3 for 
selected (μ, φ, N) combinations, again with entries in red corresponding to poor empirical 
coverage levels in Table 1. The trends for Laplace are similar. 
 
The following conclusions can be drawn from Table 3. 
• For each (μ, φ) combination, as N increases, the mean confidence interval width for μ 

decreases. This would be expected and provides a potential explanation for decreasing 
patterns of poor empirical coverage levels in Table 1 despite the relatively small biases in the 
mean estimates of μ in Table 2. 

 
• For each (μ, N) combination except N = 100, as φ decreases the mean width increases. Again 

this might be expected since Var(Y) = μ(1 – μ)/(1 + φ). The exception for N = 100 may arise 
from samples which have more observations in the upper tail of the distribution that are far 
from μ. 

 
• For each (φ, N) combination, as μ increases toward μ = 0.5, the mean width increases; i.e., as 

the shape of the distribution changes from highly skewed to symmetric the mean width 
increases. 
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Table 2.  Means of the estimates of µ based on RSPL obtained by back-transformation for 
selected (μ, φ, N) combinations. Trends for Laplace are similar. 
 

φ N µ=0.1 µ=0.2 µ=0.3 µ=0.4  µ=0.5 

2.0 5 0.095 0.195 0.296 0.394 0.504

 10 0.095 0.193 0.297 0.399 0.503

 20 0.097 0.198 0.299 0.402 0.500

 50 0.098 0.198 0.299 0.400 0.499

 100 0.099 0.200 0.300 0.399 0.499

1.5 5 0.094 0.191 0.300 0.399 0.502

 10 0.095 0.192 0.295 0.401 0.499

 20 0.097 0.196 0.300 0.402 0.500

 50 0.096 0.199 0.300 0.400 0.499

 100 0.100 0.200 0.299 0.399 0.501

1.0 5 0.096 0.191 0.287 0.391 0.502

 10 0.094 0.192 0.289 0.401 0.502

 20 0.087 0.195 0.297 0.398 0.500

 50 0.091 0.202 0.300 0.400 0.500

 100 0.119 0.203 0.302 0.399 0.500

0.5 5 0.120 0.189 0.289 0.393 0.501

 10 0.096 0.182 0.298 0.391 0.505

 20 0.085 0.167 0.298 0.398 0.503

 50 0.086 0.136 0.308 0.408 0.500

 100 0.097 0.138 0.319 0.416 0.501
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Table 3. Mean confidence interval widths of the back-transformed nominal 95% confidence 
intervals for μ using RSPL for selected (μ, φ, N) combinations. Trends for Laplace are similar.  
 

φ N µ=0.10 µ=0.20 µ=0.30 µ=0.40  µ=0.50  

2.0 5 0.387 0.444 0.484 0.506 0.509 

 10 0.226 0.286 0.321 0.341 0.348 

 20 0.146 0.198 0.224 0.239 0.243 

 50 0.085 0.123 0.141 0.150 0.153 

 100 0.054 0.087 0.099 0.106 0.108 

1.5 5 0.412 0.482 0.523 0.539 0.548 

 10 0.231 0.305 0.345 0.368 0.372 

 20 0.141 0.212 0.242 0.256 0.261 

 50 0.067 0.132 0.151 0.161 0.164 

 100 0.033 0.093 0.106 0.114 0.116 

1.0 5 0.407 0.516 0.556 0.578 0.589 

 10 0.214 0.330 0.370 0.395 0.404 

 20 0.104 0.223 0.259 0.276 0.282 

 50 0.033 0.135 0.163 0.174 0.177 

 100 0.027 0.090 0.115 0.122 0.125 

0.5 5 0.420 0.532 0.595 0.628 0.636 

 10 0.188 0.305 0.399 0.426 0.434 

 20 0.116 0.164 0.266 0.295 0.303 

 50 0.067 0.055 0.150 0.184 0.190 

 100 0.057 0.029 0.090 0.129 0.132 
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7.  Estimation of φ and its effect on empirical coverage levels 
 
The means of the estimates of φ for both RSLP and Laplace were calculated. The results are 
presented in Table 4 for selected (μ, φ, N) combinations using RSPL. Entries in red correspond 
to empirical coverage levels for a nominal 95% level that are less than 90% in Table 1. The 
results for Laplace are similar. 
 
For φ ≥ 3 and all μ, the means of the estimates of φ were biased upward with the bias decreasing 
as N increased. For N = 100, the biases in the means were small. For φ < 3 in Table 4, the 
behavior was similar to that for φ ≥ 3 for those (μ, φ) combinations for the empirical coverage 
levels close to the nominal 95% level. For the remaining (μ, φ) combinations, the means were 
extremely large and biased upward. Samples producing very large estimates of φ would generate 
very narrow confidence intervals. 
 
The medians of the estimates of φ were also calculated (data not shown). They were biased 
upward as well, indicating that φ was overestimated in more than 50% of the samples. The bias 
increased as N increased for (μ, φ) combinations having poor empirical coverage levels. 
However, the largest observed median (96.5) occurred for μ = 0.1, φ = 0.5 and N = 100. 
 
8.  Conclusions 
 
For a beta distribution that has been parameterized in terms of its mean μ and a scale parameter 
φ, when both μ and φ are not close to the boundary of the parameter space, there are no serious 
problems using both the pseudo-likelihood and Laplace methods in GLIMMIX for small sample 
inference in the one sample problem. Inference for samples sizes as small as 10 to 15 should 
produce reasonably good results in these situations. However, when μ or φ or both are near the 
boundary difficulties arise with convergence, estimation of both parameters, and confidence 
interval coverage for μ. It is known that when a parameter is actually on the boundary of the 
parameter space, the asymptotic theory of likelihood based inference is not the same as for non-
boundary parameter values. Hence, it may not be unreasonable to expect poor performance in 
small sample inference when one or both parameters are near the parameter space boundary. 
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Table  4.  Means of estimated scale parameter (phi) using RSPL for selected (μ, φ, N) 
combinations. Trends for Laplace are similar. 
 

φ N μ = 0.1 μ = 0.2 μ = 0.3 μ = 0.4 μ = 0.5

2.0 5 46.0 6.1 4.9 4.5 4.8

 10 6.0 3.0 2.9 2.8 2.7

 20 7.0×102 2.4 2.3 2.3 2.3

 50 1.0×104 2.1 2.1 2.1 2.1

 100 6.4×103 2.1 2.1 2.1 2.0

1.5 5 1.5×1013 5.3 3.5 3.6 3.6

 10 2.2×103 2.4 2.2 2.0 2.1

 20 8.8×106 1.8 1.7 1.7 1.7

 50 9.1×106 2.1 1.6 1.6 1.6

 100 4.6×106 6.9×102 1.7 1.5 1.5

1.0 5 3.4×1014 7.0 3.4 2.7 2.1

 10 3.0×106 3.2 1.5 1.4 1.3

 20 5.9×107 1.3×103 1.2 1.2 1.1

 50 6.1×107 25.9 1.2 1.0 1.1

 100 1.9×108 28.1 1.1 1.0 1.0

0.5 5 4.2×1016 2.7×1013 9.5×105 2.7 1.7

 10 4.7×108 9.9×105 5.3×106 1.0 7.9

 20 2.3×108 2.4×107 8.1×103 1.2 0.6

 50 3.7×109 7.4×107 6.0×102 1.2 0.6

 100 1.3×1010 5.5×107 3.6×105 1.7 1.0
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