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Estimation of dose requirements for extreme levels of efficacy 
 

Mark West and Guy Hallman 
 
The objective of this paper is to explore the extent of how dose-response models may be used to 
estimate extreme levels of efficacy for controlling insect pests and possibly other uses. Probit-9 
mortality (99.9968% mortality) is a standard for treatment effectiveness in tephritid fruit fly research, 
and has been adopted by the United States Department of Agriculture for fruit flies and other pests. 
Data taken from the phytosanitary treatment (PT) literature are analyzed. These data are used to fit 
dose-response models with logit, probit and complimentary log-log links. The effectiveness of these 
models for predicting extreme levels of efficacy is compared using large (~100,000+ individuals) 
confirmatory trials that are also reported in the PT literature. We examine the role of model goodness-
of-fit as a requirement for obtaining reliable dose requirements. 
 

Mark West, Ph.D., Northern Plains Area Statistician, USDA Agricultural Research Service, 2150 Centre 
Ave., Fort Collins, Co 80526-8119. USA. Email: Mark.West@ars.usda.gov 

Guy Hallman, Ph.D., Northern Plains Area Research Entomologist, USDA Agricultural Research Service, 
1515 College Ave., Manhattan, Ks 66502. USA. Email: Guy.Hallman@ars.usda.gov 
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Introduction 

Phytosanitary regulation is important to prevent the introduction of agricultural pests such as 
tephritidfruit flies. Government agencies, trade organizations and international consortiums establish 
guidelines for controlling the spread of such pests to limit their economic impact. For example, the 
USDA Animal and Plant Health Inspection Service (APHIS) often requires a standard of probit-9 efficacy 
for the treatment of Tephritidae fruit flies, the most important group of plant pests for which 
treatments are devised. Probit-𝑥𝑥 efficacy of a treatment is such that the treatment will inflict  𝑃𝑃 ∙ 100% 
mortality on the insect population and where the value 𝑥𝑥 is based on the relationshipΦ(𝑥𝑥 − 5) = 𝑃𝑃. 
Φdenotes the standard normal cumulative distribution function. Therefore a treatment with probit-9 
efficacy will kill Φ(9 − 5) ∙ 100% = 99.9968% of the pest it is formulated to control. Probit-9 efficacy 
dates back to Baker (1939) whose rationale of using this standard was to “assure no survival of [fruit fly] 
in the product treated.” Products requiring regulation of fruit fly include mango, papaya, avocado, 
apple, zucchini and carambola. Treatments devised to control fruit fly have included fumigation, cold 
treatment, heat treatment and radiation. Because the treatments are quantitative and the efficacy 
standard is to kill a certain percentage of pests, establishing the level of treatment amounts to finding a 
dose requirement. Therefore, much of the literature on phytosanitary treatments of fruit fly involves 
dose-response studies that typically include small to moderate scale (size of experiment including 
amount of fruit and number of insects) experimental trials set up to find the required dose. These small 
scale studies are then followed by a separate and usually very large scale confirmatory experiment to 
validate the dose determined from the experimental trials.  The methodology used to find the dose is 
typically accomplished by a probit analysis. Establishing the actual level of treatment needed for such an 
extreme efficacy requirement as probit-9 poses is very challenging. If the prediction is too low, the 
confirmatory test will fail and will have to be restarted at a higher level. If the prediction is too high the 
proposed treatment will result in a waste of treatment resources and time, and may reduce the quality 
of the commodity due to overtreatment. In this paper we report data from the literature where the 
dose requirements determined from the experimental trials almost but not quite achieved probit-9 
mortality when tested in the confirmatory experiment. We did this in order to address the following 
questions: 

1. Is model goodness-of-fit critically important for estimating the required dose? 
2. How do other models compare to the probit for estimating the required dose? 
3. Can we identify experimental conditions or methodology that would cause the predicted dose 

to fail? 

The paper will be organized into following sections: 1) Methods 2) Literature Reviewed 3) Simulations 
and 4) Summary.  
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Methods 

Small Scale Experiments 

Phytosanitary Treatment (PT) studies use small-scale experiments to estimate dose requirements for 
attaining mortality at high levels. A moderate number of insects, say hundreds, are randomly divided 
into various treatment groups (including controls) and subjected to varying levels of treatment doses. 
This experimental process is often repeateda number of times so that the experiments are ‘replicated in 
time’. The number of insects in each lot subjected to a treatment dose cannot always be measured 
directly but are estimated from the untreated lots though it is unlikely their numbers will be the 
same.Lots may consist of equal numbers of fruit but their weights will vary as will the insect numbers 
undergoing treatments. Therefore numbers of insects actually killed and survived are often only 
approximate. 

Dose Estimation 

Based on literature reviewed in this study it is common practice that the dose-response curve is 
modeled with a generalized linear model (glm) using the PROBIT procedure of SAS. The approximate 
number of insects killed at each dose is assumed to be Binomially distributed and a linkto the Binomial 
proportion𝑃𝑃 is assumed to be linearly related to dosages of the treatment. The concept of the 
methodology for dose-response curve fitting relates a probability distribution for tolerances to dosages 
of the treatment(a tolerance distribution) to a nonlinear regression. More specifically, prediction for a 
proportion 𝑃𝑃 of insects that fail to survive a dose D is based on the cumulative distribution function 
(CDF) of the assumed tolerance distribution. Thus the dose-response curve is based on the CDF of the 
tolerance distribution and the link to 𝑃𝑃 is based on the inverse of its CDF. Users of SAS PROC PROBIT 
have the choice of Normal, Gompertz or Logistic tolerance distributions.The dose requirement 𝐷𝐷for 
𝑃𝑃 ∙ 100%mortality can be determinedfrom the expression𝐹𝐹−1(𝑃𝑃) = 𝑎𝑎 + 𝑏𝑏 ∙ 𝐷𝐷𝐷𝐷here 𝐹𝐹 denotes the CDF 
for the tolerance distribution and 𝐹𝐹−1 its inverse. Regression coefficients  𝑎𝑎 and 𝑏𝑏of the dose-response 
curve are relatedto the mean and scale parameters𝜇𝜇and 𝜎𝜎, respectively,  of the tolerance distribution 

with 𝑎𝑎 = −𝜇𝜇
𝜎𝜎

  and 𝑏𝑏 = 1
𝜎𝜎

 . The tolerance distributions used in this paper are listed in Table 1 with the 

corresponding dose-response curve. Included is the skew logistic model. This modelcorresponds to a 
tolerance distribution has an additional shape parameter and offers a more flexible model. We include it 
here for comparison to those offered by PROC PROBIT. The inverse function of the CDF gives the link 
function for the regression specified by the glm.  
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Model Tolerance Distribution Response-Curve 
Probit Normal 𝑃𝑃𝐷𝐷 = Φ(𝑎𝑎 + 𝑏𝑏 ∙ 𝐷𝐷) 
Complimentary Log-Log Gompertz 𝑃𝑃𝐷𝐷 = 1 − 𝑒𝑒𝑥𝑥𝑒𝑒�−𝑒𝑒𝑥𝑥𝑒𝑒(𝑎𝑎 + 𝑏𝑏 ∙ 𝐷𝐷)� 
Logistic Logistic 𝑃𝑃𝐷𝐷 = �1 + 𝑒𝑒𝑥𝑥𝑒𝑒�−(𝑎𝑎 + 𝑏𝑏 ∙ 𝐷𝐷)��

−1
 

Skew Logistic Skew Logistic 𝑃𝑃𝐷𝐷 = �1 + 𝑒𝑒𝑥𝑥𝑒𝑒�−(𝑎𝑎 + 𝑏𝑏 ∙ 𝐷𝐷)��
−𝑐𝑐

 
Table 1: Tolerance distributions and corresponding dose-response curve. 

 

The choice of which dose-responsemodel to fit to the data is not cut and dry. The Probit model is a 
popular choice but the tolerance distribution for the Probitmodel is symmetric. If the researcher 
suspects that tolerance distribution may be skewedthen an asymmetric model such as the Gompertz 
(Complementary Log-Log) or the Skew Logistic model would be a more appropriate choice. We suggest 
trying both symmetric and asymmetric models and computing a Goodness-of-Fit statistic such a 
Pearson’s Chi-Square and choose the best fitting model.Once the model is chosen and fitteda point 
estimate for dose requirement 𝐷𝐷for the desired efficacy (probit-9) is easily estimated using inverse 
regression.  This is accomplished by setting the left hand side of the dose-response equation to the 
desired proportion and solving for 𝐷𝐷. Obtaining an interval estimate for 𝐷𝐷 requires more involved 
computation. A common approach for obtaining an interval estimate for 𝐷𝐷 and used with PROC PROBIT 
is Fieller’s method. To construct a (1 − 𝛼𝛼) ∙ 100% confidence interval for 𝐷𝐷with this method, the 

expression 𝐹𝐹−1(𝑃𝑃)−𝑎𝑎−𝑏𝑏∙𝐷𝐷
�𝑉𝑉𝑎𝑎𝑉𝑉 (𝑎𝑎)+𝐷𝐷2 ∙𝑉𝑉𝑎𝑎𝑉𝑉 (𝑏𝑏)+2∙𝐷𝐷∙𝐶𝐶𝐶𝐶𝐶𝐶(𝑎𝑎 ,𝑏𝑏)

 is set equal to upper and lower  𝛼𝛼
2

th quantiles of the standard 

normal or student’s t distribution and numerical methods are used to find the endpoints of the interval. 
When the data exhibit lack of fit the covariance of the coefficients 𝑎𝑎 and 𝑏𝑏is usually scaled with an 
estimate of an overdispersion parameter and quantiles of the student’s t distribution are used for 
obtaining the endpoints. There is no guarantee a solution to the expression exists for yielding either 
endpoint.  
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Large Scale Experiments 

After thedose requirement from the small-scale studyis estimated,a large number of insects are usually 
collected in several batchesin order to test the estimated dose-requirementwith a Binomial test. The 
test involves treatingtheinsects with the dose requirement estimated from the small-scale study and the 
common decision rule is to conclude the dose effective if the dose kills all insects. The number of insects 
tested is selected to ensure at least a probit-9 efficacyat the 0.05 level of significance for no 
survivors.When no survivors are observed a one-sided (1 − 𝛼𝛼) ∙ 100% lower confidence bound on the 

true proportion 𝑃𝑃  of insects killed can be obtained using the expression 𝛼𝛼1 𝑛𝑛� . Therefore the sample size 

requirement can be obtained from the inequalities 𝛼𝛼1 𝑛𝑛� ≥ 𝑃𝑃 → 𝑛𝑛 ≥ 𝑙𝑙𝐶𝐶𝑙𝑙(𝛼𝛼) 𝑙𝑙𝐶𝐶𝑙𝑙(𝑃𝑃)⁄ .Sample sizes for 𝑦𝑦 
survivors remaining in general can be determined by solving  

� �𝑛𝑛𝑖𝑖 � ∙
𝑛𝑛

𝑖𝑖=𝑛𝑛−𝑦𝑦+1

𝑃𝑃𝑖𝑖 ∙ (1 − 𝑃𝑃)𝑛𝑛−𝑖𝑖 ≤ 𝛼𝛼 

for 𝑛𝑛.Table 2 gives a summary of sample size requirements based on a decision rule for 0, 1 or 2 
survivors observed using a Binomial test. 

  number of survivors observed 
𝑃𝑃 ∙ 100% probit 0 1 2 
99.7250 7.00 131 207 275 
99.0000 7.33 299 473 628 
99.9000 8.09 2,995 4,742 6,294 
99.9900 8.18 29,956 47,437 62,956 
99.9968 9.00 93,616 148,244 196,742 
Table 2: Sample sizes required for testing 𝑷𝑷 ∙ 𝟏𝟏𝟏𝟏𝟏𝟏% efficacy at the 0.05 level of significance with the Binomial test 

Literature Reviewed 

Our literature review included select studies aimed at finding doses of treatments to control 
fruit flies for an assortment of commodities at the probit-9 level of efficacy (Table 3.) These 
were conducted using small-scale experiments to find the dose followed by a larger scale 
experiment to test the dose. Most of these studies involved hundreds or thousands of insects 
tested at each dose to fit a dose-response curve in the small-scale experiment. However, 
Armstrong et al. (1993 and 1995) used extremely large numbers per dose (10,000 to over 
100,000) in their dose-finding experiments. Thus the term small-scale experiment may be used 
loosely in our discussions. In most cases a probit model was fit to data collected from the small-
scale experiments to estimate the dose for probit-9 mortality. In all cases the number of insects 
tested at each dose was approximated based on the controls. We reported the range of 
mortality observed across the doses tested for each study (Table 3) to suggest the potential or 
lack of it for fitting a dose-response curve. In almost all of the studies reviewed dosages were 
replicated but the exact nature as to how they were replicated was not clear. We assume that 
the replication reported was based on repeating the experiment in time. In almost all cases 
counts were aggregated over the replications for dose estimation.  
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Study Dose Tested Commodity # Tested Range of mortality  
for doses tested # Survivors Dose Confirmed 

Sharp et al. (1988) 65 min. in hot water mango 147,993 75-100% 4 N 
Gould (1990) 22 days in 5C air starfruit 69,800 65-100% 14 N 
Jessup, A. J. (1994) 14 days in 1C air avacado 100,255 54-100% 1 N 
Toba et al. (1991) 12 weeks in 0C air apple 33,231 27-100% 3 N 
Armstrong et al. (1995) 9 days in 1.1C air starfruit 140,080 97-100% 1 N 
Gould (1996) 12 days in 1.1C air starfruit 107,221 32-100% 1 N 
Corcoran et al. (1993)  30 min. in 45C air zuchinni 178,219 32-100% 1 Y 
Armstrong et al. (1993)  7 days in 1.1C air starfruit 167,303 99-100% 1 Y 
Hayes et al. (1984)  20 min. in hot water papaya 82,089 82-100% 1 N 
Jessup (1994)  14 days in 1C air avacado 100,255 12-100% 1 N 
Hallman et al. (1992)  40 g/m3 starfruit 104,303 31-100% 1 N 
Table3: Literature on phytosanitary treatments of Tephritidae studied in this paper. All used Probit modeling to obtain 
estimate for dose tested. 

Schortemeyer et al. (2011) point out the shortcomings of dose-finding studies such as reported 
above. These include:  

1) No evidence of pilot studies before the reported study.  
2) No discussion of how the number of organisms or the number of treatments, as well as 

the placement of doses, were selected.  
3) No discussion of mortality in controls and how this affects modeling.  
4) No discussion in the type of distribution selected for modeling, and how well the data 

obtained fit the model.  
5) Confidence (fiducial) intervals are often reported, but their implications are seldom 

discussed in dose recommendations.  
6) No discussion of how far a model can be meaningfully extrapolated beyond the range in 

the analyzed data set.  
 

We found these shortcomings to be applicable to the studies in our literature review and we 
add the following: 
 

7) No discussion of possible random effects of replication and their impacts on estimation. 
8) Pooling over replicates to fit a dose-response model is a common practice but 

justification for doing so is not discussed. 
 

Schortemeyer argues that the probit-9 efficacy standard for many pests such as those found in 
wood packaging materialfor such studies are often unrealistic and unachievableas the number 
of insects needed to test probit-9 mortality is prohibitive. Even so, the shortcoming listed above 
need to be understood. Our interests at the onset of this paper revolved around number 4) 
listed above. After literature review numbers 7) and 8)  were raised as they related to 4). 
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To investigate 4) we fit each of the models listed in Table 1 to the data reported by each study. 
For each study reviewed, we report:the dose tested in the large-scale experiment, percent 
mortality achieved from the large-scale experiment, the best fitting model when applied to the 
small-scale experiment data, the estimated dose requirement, and Pearson’s Goodness of Fit 
statistic and associated degrees of freedom (Table 4.) 

Study Dose tested % mortality Best fit Dose estimate Goodness of Fit (DF) 
Sharp et al. (1988) 65 min 99.9973 skew logit 44 min 0.0 (2) 
Gould (1990) 22 days 99.9921 skew logit 21 days 4.1(2) 
Jessup, A. J. (1994) 14 days 99.9990 skew logit 17 days 3.5 (3) 
Toba et al. (1991) 12 weeks 99.9940 Probit 11 weeks 3.0(4) 
Armstrong et al. (1995) 9 days 99.9993 Logistic 11 days 19.1(3) 
Gould (1996) 12 days 99.9991 Cloglog 13 days 46.1 (5) 
Corcoran et al. (1993)  30 min 99.9994 Logistic 32 min 15.2 (3) 
Armstrong et al. (1993)  7 days 99.9994 Logistic 6 days 7.0(4) 
Hayes et al. (1984)  20 min 99.9988 skew logit 16 min 8.2 (1) 
Jessup (1994)  14 days 99.9999 skew logit 17 days 3.5(3) 
Hallman et al. (1992)  40 g/m3 99.9990 Cloglog 38 g/m3 8.3 (4) 
Table 4: Best fitting models and Pearson's Chi-Square Goodness of Fit statistic reported with degrees of freedom (DF). 

 
Simulations 

Goodness of Fit 

To investigate the importance of goodness of fit on model selection we generated 1,000 Monte 
Carlo trials to simulate Binomial samples 𝑌𝑌𝐷𝐷𝑖𝑖 from each of the Probit, Complimentary Log-Log  
and Logistic models for a sequence of doses 𝐷𝐷𝑖𝑖  and for select sample size 𝑁𝑁𝐷𝐷𝑖𝑖  at each dose 
𝐷𝐷𝑖𝑖 .Programming for simulation was done using the R language.  The general form for all three 
models is given below with 𝐹𝐹−1 representing the appropriate inverse function for the CDF of 
the tolerance distribution. 

 
𝑌𝑌𝐷𝐷𝑖𝑖~𝐵𝐵𝑖𝑖𝑛𝑛𝐶𝐶𝐵𝐵𝑖𝑖𝑎𝑎𝑙𝑙�𝑁𝑁𝐷𝐷𝑖𝑖 ,𝜋𝜋𝐷𝐷𝑖𝑖� 

𝐹𝐹−1�𝜋𝜋𝐷𝐷𝑖𝑖� = 𝛼𝛼 + 𝛽𝛽 ∙ 𝐷𝐷𝑖𝑖  
 

Parameters for each model were set so that the doserequirement for probit-9 efficacy was 25. 
The sequence of doses 𝐷𝐷𝑖𝑖selected were 4 to 14 in steps of 2. Table 5 lists the parameter values 
and inverse functions for each of the models. Data generated from each of these dose-response 
curves were fitted using the glm function of R. 95% confidence intervals for the probit-9 dose 
requirement were constructed using Fieller’s method as previously described and Pearson’s 
Chi-square goodness of fit statistic was computed. Coverage of the confidence intervals was 
computed from the percentage of intervals that contained the dose requirement of 25.  The 
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percentage of Monte Carlo data sets each model fit best the data by having the lowest value of 
Pearson’s 𝜒𝜒2 was also computed. Tables 6a-6c summarize results for these simulations. 

 
Model 

 
𝐹𝐹−1�𝜋𝜋𝐷𝐷𝑖𝑖� 

Parameter values 
𝛼𝛼 𝛽𝛽 

Probit Φ−1�𝜋𝜋𝐷𝐷𝑖𝑖� − 8 3⁄  4 15⁄  

Complimentary Log-Log 𝑙𝑙𝐶𝐶𝑙𝑙 �−𝑙𝑙𝐶𝐶𝑙𝑙�1 − 𝜋𝜋𝐷𝐷𝑖𝑖�� −2 ∙ 𝑐𝑐𝑙𝑙𝐶𝐶𝑙𝑙𝑙𝑙𝐶𝐶𝑙𝑙�Φ(4)� 3⁄  𝑐𝑐𝑙𝑙𝐶𝐶𝑙𝑙𝑙𝑙𝐶𝐶𝑙𝑙�Φ(4)� 15⁄  

Logistic 𝑙𝑙𝐶𝐶𝑙𝑙�𝜋𝜋𝐷𝐷𝑖𝑖 �1− 𝜋𝜋𝐷𝐷𝑖𝑖�⁄ � −2 ∙ 𝑙𝑙𝐶𝐶𝑙𝑙𝑖𝑖𝑙𝑙�Φ(4)� 3⁄  𝑙𝑙𝐶𝐶𝑙𝑙𝑖𝑖𝑙𝑙�Φ(4)� 15⁄  
Table 5: Model parameters values for Monte Carlo simulation. 𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 is used to denote the complimentary log-log link 
function and 𝒄𝒄𝒄𝒄𝒄𝒄𝒍𝒍𝒍𝒍 the link function for the Logistic. They are given explicitly in the second column. 

Number per 
dose 

Data generated from Logistic 

 Coverage for model fit by Proportion data sets best fit by 
𝑁𝑁𝐷𝐷𝑖𝑖  logistic probit cloglog logistic Probit cloglog 

100 95.5% 7.2% 0.0% 59.3% 33.3% 7.4% 
500 96.0% 0.2% 0.0% 81.9% 18.1% 0.0% 
1000 95.6% 0.0% 0.0% 89.2% 10.8% 0.0% 
5000 95.2% 0.0% 0.0% 100.0% 0.0% 0.0% 
       
Mean dose 
requirement 25.0 20.2 16.4 

   

 
Number per 
dose 

Data generated from Probit 

 Coverage for model fit by Proportion data sets best fit by 
𝑁𝑁𝐷𝐷𝑖𝑖  logistic probit cloglog logistic Probit cloglog 

100 1.5% 94.3% 6.1% 30.4% 56.9% 12.7% 
500 0.0% 94.7% 0.0% 31.6% 67.3% 1.1% 
1000 0.0% 95.3% 0.0% 27.9% 72.1% 0.0% 
5000 0.0% 95.5% 0.0% 7.8% 92.2% 0.0% 
       
Mean dose 
requirement 33.0 25.0 18.9 
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Number per 
dose 

Data generated from Gompertz 

 Coverage for model fit by Proportion data sets best fit by 
𝑁𝑁𝐷𝐷𝑖𝑖  logistic probit cloglog logistic Probit cloglog 

100 0.0% 4.2% 95.4% 23.1% 14.1% 62.8% 
500 0.0% 0.0% 96.0% 6.8% 16.2% 77.0% 
1000 0.0% 0.0% 96.6% 2.2% 11.3% 86.5% 
5000 0.0% 0.0% 95.9% 0.0% 1.3% 98.7% 
       
Mean dose 
requirement 51.3 35.1 25.1 

   

Table 6 a-c: Simulations were generated by the distribution specified in the first row header. Fiducial intervals were 
constructed after data were fitted to each of the Logistiic, Probit and Complimentary Log-Log dose-response curves 
and the coverage of these intervals reported for each sample size. Proportion of data sets best fit by reports the 
proportion of Monte Carlo trials for which the specified dose-response curve was the best fitting model as 
determined by Pearson’s Goodness of Fit. The mean dose requirement taken over the 1,000 Monte Carlo trials for 
each model is reported for the largest sample size. 

Tables 6a-6c demonstrate model selection is critical for estimation as illustrated by the mean 
dose requirement from each model.  However choosing the model with the smallest Pearson’s 
Chi-square statistic is not sufficient. Very large sample sizes are needed for Pearson’s Chi-
square statistic to be useful for distinguishing among models.  These data suggest the number 
of samples per dose needs to be over 1,000for the correct model to have a good chance of 
being selected. Incorrect model selection almost guarantees the model fit will produce 
unreliable estimates. For example, when data are generated from a logistic model, estimates 
based on either probit or complimentary log-log models tend to be too low and the coverage 
based on these are inadequate for any sample size. These data also demonstrate the feasibility 
of extrapolating the dose requirement from test doses far below it as the coverages for the 
correct model when fitted are at or slightly above the nominal coverage of 95%. We reran the 
simulation for where the sequence of doses 𝐷𝐷𝑖𝑖were set to be 14 to 18 in steps of 2 for sample 
sizes of 500 to 5,000. We did thisto explore model selection when the dose levels correspond to 
a narrow range of mortalitiesbut simulations only included the Logistic model being the parent 
distribution with doses having an expected range of mortality between 0.8 and 0.98. We didn’t 
report coverage from these intervals because Fieller’s method failed to provide both endpoints 
for more than 10% of the trials and coverage was not really needed to demonstrate the need 
for careful dose placement. Proportion of data sets best fit by Pearson’s Goodness of Fit are 
reported for each model along with the mean estimated dose requirement. 
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Number per 
dose 

Proportion data sets best fit by 

𝑁𝑁𝐷𝐷𝑖𝑖  logistic probit Cloglog 
500 47.4% 8.6% 44.0% 
1000 55.3% 11.9% 32.8% 
5000 62.6% 21.3% 16.1% 
    
Mean dose 
requirement 25.0 22.6 21.4 

Table 6d: Results of data simulated of from Logistic model with expected probit-9 dose requirement of 25 and for data 
generated at doses 14(18)2 . 

Table 6d. demonstrates that when doses are tested in the high but narrow range of expected 
mortalities model selection becomes more difficult with estimates of the dose requirement 
remaining appreciably different although less so than for doses with a greater range of 
expected mortalities. 
 
Random Effects 
 
To investigate the impacts of random effects and pooling across replications on estimation we 
performed another similar simulation study. We considered a random-effects logistic dose-
response model for a randomized complete block design. The model was as follows: 
 

𝑌𝑌𝐷𝐷𝑖𝑖𝑖𝑖 |𝑎𝑎𝑖𝑖 , 𝑏𝑏𝑖𝑖~𝐵𝐵𝑖𝑖𝑛𝑛𝐶𝐶𝐵𝐵𝑖𝑖𝑎𝑎𝑙𝑙 �𝑁𝑁𝐷𝐷𝑖𝑖𝑖𝑖 ,𝜋𝜋𝐷𝐷𝑖𝑖𝑖𝑖 � 

𝑙𝑙𝐶𝐶𝑙𝑙𝑖𝑖𝑙𝑙 �𝜋𝜋𝐷𝐷𝑖𝑖𝑖𝑖 � = 𝛼𝛼 + 𝑎𝑎𝑖𝑖 + �𝛽𝛽 + 𝑏𝑏𝑖𝑖 � ∙ 𝐷𝐷𝑖𝑖  
𝑎𝑎𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝑎𝑎2) 
𝑏𝑏𝑖𝑖~𝑁𝑁(0,𝜎𝜎𝑏𝑏2) 
𝑖𝑖 = 1,⋯ , 𝑉𝑉 

𝑌𝑌𝐷𝐷𝒍𝒍𝒊𝒊denotes a random binomial count for dose 𝐷𝐷𝑖𝑖conditional on the jthblock effects and 𝑌𝑌𝐷𝐷𝒍𝒍𝒊𝒊  
conditionally follows a binomial distribution with parameters𝑁𝑁𝐷𝐷𝒍𝒍𝒊𝒊  and 𝜋𝜋𝐷𝐷𝒍𝒍𝒊𝒊. The𝑙𝑙𝐶𝐶𝑙𝑙𝑖𝑖𝑙𝑙is the 
logitfunction𝑙𝑙𝐶𝐶𝑙𝑙(𝑥𝑥 (1 − 𝑥𝑥)⁄ ).The random effects 𝑎𝑎𝑖𝑖  and 𝑏𝑏𝑖𝑖 for thejthblock follow normal 
distributions with 0 means and variances𝜎𝜎𝑎𝑎2 and 𝜎𝜎𝑏𝑏2respectively. Programming for simulation 
was done using the R language.  

To study effects of pooling on obtaining an interval estimate on the dose requirement we 
generated 1,000 Monte Carlo trials to simulate a small scale dose-finding study with dose-
response curve parameters 𝛼𝛼 = −4and 𝛽𝛽 = 1 4⁄ using 𝑉𝑉 = 4replications with doses𝐷𝐷𝑖𝑖 =
2(20)(2)and 𝑁𝑁𝐷𝐷𝒍𝒍𝒊𝒊 = 500for all 𝑖𝑖doses and 𝑖𝑖blocks. We set both random effects parameters 
𝜎𝜎𝑎𝑎2and𝜎𝜎𝑏𝑏2to 0 to simulate data with no random effects of replicates and computed 95% 
confidence intervals on the dose requirement using Fieller’s method as previously described.  
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With no random effects to condition on, the model is an unconditional and is known as a 
marginal model. The probit-9 dose requirement corresponding to these parameters is 57.4. For 
each Monte Carlo trial we constructed confidence intervals before and after pooling over the 
replicates. The results are reported in Table 7. 

 

 Comparison of Pooling vs. Not Pooling using 1,000 Monte Carlo trials 
when no random effects of replicates are present 
Mean Mean Lower 

Limit 
Mean Upper 
Limit 

Coverage 

Not pooled 57.39 56.04 58.84 0.951 
Pooled 57.39 56.00 58.87 0.949 
Table 7: Comparison of 95% fiducial intervals for estimating the probit-9 dose-requirement before and after pooling. 
Coverage reported is the fraction of intervals containing the true requirement of 57.4. 

Simulations summarized in Table 5 demonstrate that if no random effects of replicates are 
present then interval estimates are essentially the same with coverage adequately close to the 
target of 0.95whether the data are pooled over replicates or not . This result can be explained 
by a property of binomial random variables which is that the sum of binomial random variables 
sampled from the same distribution with parameter𝑃𝑃will itself be binomially distributed with 
parameter 𝑃𝑃. What is unexpected is the test doses of 2 to 20 were far from the probit-9 dose 
requirement of 57.4 which supports the argument that extrapolating an accurate estimate of 
the dose requirement is conceptually possible. We note that parameter values for this 
simulation were chosen arbitrarily as were the test doses and there was a bit of luck involved in 
choosing these parameter values. The simulation often failed computationally to give intervals 
when test doses of 40 to 60 (the upper quantiles of the tolerance distribution) were used. 
Thissubstantiatesthe argument that careful planning of dose placement is needed even when 
the dose requirement is known to be in a certain range. Although this topic is not explored here 
insight to planning dose response studies to ensure might be found in Freeman (1970) and Hu 
el al. (2010). 

To study effects of pooling over replicates withrandom effects on estimation we generated 
1,000 Monte Carlo trials as before but set the parameter σa

2 to 1 to emulate random effects of 
the replicates. This model can be described as a random intercepts logistic regression model 
with intercepts varying among replicates and implies the dose requirement varies among 
replicates.Modeling logistic regression models with random effects can be accomplished using 
generalized linear mixed models (GLMM) or generalized estimating equations (GEE).The choice 
of which of these to use depends on the question to be answered. GLMM are conditional 
models and provide estimates suited to answer question “What is the dose requirement for the 
typical replicate?” whereas GEE are marginal models suited to answer the question “What is 
the dose requirement for the entire population of replicates?”The latter is a GEE approach. 
Using either approach is defensible but care is needed when interpreting results. We used a 
GEE approach akin to that which would be gotten to those familiar with PROC PROBIT in SAS for 
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fitting dose-response models.The consequences of random effects on estimation of marginal 
parameters usingGEE models are described in McCulloch and Searle (2001). In fact the marginal 
distribution of the 𝑌𝑌𝐷𝐷𝑖𝑖𝑖𝑖  will not follow a Logistic distribution but can be well approximated by 

one with parameters 𝛼𝛼∗ = 𝛼𝛼 �1 + 𝜆𝜆 ∙ 𝜎𝜎𝑎𝑎2 𝑉𝑉⁄⁄ and𝛽𝛽∗ = 𝛽𝛽 �1 + 𝜆𝜆 ∙ 𝜎𝜎𝑎𝑎2 𝑉𝑉⁄⁄   where 𝜆𝜆 =
256 (75 ∙ 𝜋𝜋)⁄ . The impact that random effects have on the dose requirement is that it gets 
larger with the variance of the random effects as the parameter values 𝛼𝛼∗ and 
𝛽𝛽∗becomesattenuated with increasing values of 𝜎𝜎𝑎𝑎2. We computed the marginal expected dose 
requirement (the dose requirement needed for all replicates to comply to the probit-9 
standard) to be 62.68 based on approximation formulas given in McCulloch and Searle (page 
107) and used this value to estimate the coverage of the Fieller intervals based on this 
approximation.Results are presented in Table 8. 

 Comparison of Pooling vs. Not Pooling using 1,000 Monte Carlo trials 
when random effects of replicates are present 
Mean Mean Lower 

Limit 
Mean Upper 
Limit 

Coverage 

Not pooled 62.93 53.54 79.93 0.925 
Pooled 62.93 61.07 64.96 0.337 
Table 8: Comparison of 95% fiducial intervals for estimating the probit-9 dose-requirement before and after pooling. 
Coverage reported is the fraction of intervals containing the true requirement of 57.4. 

Whether or not data are pooled the dose requirement estimated from the fitted dose-response 
curve will be the same. However the coverage of the confidence intervals from pooled data will 
be far too low because variation among replicates is averaged out. These intervals are intended 
to provide estimates of the dose requirement that achieve a requiredlevel of mortality 𝑃𝑃 and 
are based on a mean level of mortality.Therefore these estimates will not ensure with a 
specified level of confidence that the level of mortality achieved will be 𝑃𝑃 or more for that dose. 
However, large-scale confirmatory experimentsare used to testjust that. Thus the methodology 
of the small-scale study to estimate the dose followed by a large-scale Binomial test is 
statistically flawed.We followed up on this by modifying the simulation in Table 6a to include a 
simulation for a large-scale follow-up sample to test the dose estimate for the Logistic model. 
Only 7% of the Monte Carlo trials resulted in no survivors (the requirement for 95% confidence 
the dose will have at least probit-9 mortality) when the dose estimate 𝐷𝐷was tested after 

simulating a sample from 𝐵𝐵𝑖𝑖𝑛𝑛𝐶𝐶𝐵𝐵𝑖𝑖𝑎𝑎𝑙𝑙 �𝑁𝑁 = 93,616,   𝑃𝑃 = �1 + 𝑒𝑒𝑥𝑥𝑒𝑒(−𝑎𝑎 + 𝑏𝑏 ∙ 𝐷𝐷)�
−1
�.  A 

different methodology is needed that can place a bound on the dose requirementobtained 
from a small-scale study that will have a high assurance level it can be validated.   
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Summary 

It is clear from the phytosanitaryliterature that predicting doses for extrememortalityis a 
challenge. Our literature review included select studies for controlling fruit flies on various 
commodities that nearly met the probit-9 efficacy standard(Table3) based on doses estimated 
from a Probit model. 

A primary objective of this paper was to address the question as to whether model goodness of 
fit is critically important for estimating a dose requirement. Goodness of fit for fitted models 
was not reportedin the studies we reviewed. Wecomputed Pearson’s χ2 for the pooled data 
that was reported but only two of these (Toba et al. 1991) and (Jessup 1994) fit a Probit model 
which was the standard for these studies. Another objective was to compare other models to 
the probit. For most studies reviewed ( 8 of 11) alternative models from among the Logistic, 
Skew Logistic or Complimentary Log-Log were able to fit the data with no significant lack of fit 
but we note again that this was after pooling and that only pooled data were available(Table 4.) 
Nevertheless estimates of the dose requirements for probit-9 efficacy were in most cases close 
to the doses tested and the level of mortality was close to the probit-9 level intended. 

We also simulated data from specific dose-response models and fit these data to mispecified 
models in order to explore the sensitivity of Pearson’s Chi-square to select the appropriate 
model. Our simulations reveal that rather large samples per dose (5,000 or more) are required 
in order to select the model that generated the data (Table 6a-c).Mispecifiedmodels produced 
poor estimates of the true dose requirement in our simulations as indicated by the average 
estimate and coverage of confidence intervals constructed using Fieller’s method. These 
simulations suggest that Goodness of Fit is important for dose estimation but this presumes 
real data can be expected to be generated in a similar process to what we used in simulation. If 
the underlying population sampled for a real-life dose-response study consists of mixtures of 
insects from different age classes, genetics, or species then we cannot expect models used in 
our simulations to be useful for estimating dose requirements.  

A final objective was to identify experimental conditions or methodology that would cause 
estimation of the dose required for the desired control of insects to fail. Our literature review 
revealed several common practices that are problematic to estimation including insect counts 
at test doses being estimated from controls, doses tested over an inadequate range of 
mortalities, disregarding possible random effects associated with experimental replicates and 
aggregating insect counts across these. The most problematic of practices is attempting to 
confirm a point estimate of the dose requirement obtained from the small-scale experiments 
by testing it against a large-scale sample for verification that it exceeds the level of desired 
mortality (probit-9) with a specified level of confidence, usually 95%. A point estimate obtained 
from a small-scale experiment cannot be expected to be confirmed from a large-scale 
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experiment since the point estimate is for a dose associated with a mean level of mortality. If 
the underlying tolerance distribution associated with the dose response is symmetric then we 
could expect that the dose estimate would pass the confirmatory test at the very most half the 
time. Simulations suggest that these estimates will pass the confirmatory tests with low 
probability. Methods are needed to place lower limits on the dose requirement so that a 
specified level of control can be assured, usually 95% as this is the established standard of 
phytosanitary control for commodities susceptible to infestation of fruit flies.   
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