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FROM MOORE TO PEANO TO WATSON
The Mathematical Roots of Russell’s Naturalism and Behaviorism

INTRODUCTION: SOME ISSUES REGARDING RUSSELL’S PHILOSOPHICAL

DEVELOPMENT

Russell’s philosophical development is marked by a number of key shifts

in his outlook that he vividly describes in his retrospective writings.

Among these are his “becom[ing] a Hegelian” in 1894 (1944a, 10;

1967, 63); his 1898 “revolt” against Idealism in which “Moore led the

way, but I followed closely in his footsteps” (1959, 54); his attending

the International Congress of Philosophy in Paris in August 1900 which

he calls “the most important event” in “the most important year in my

intellectual life” and at which he was impressed by the “precision” of

Peano and his students (1944a, 12); his arriving in 1905 at his theory

of descriptions, which he characterizes as his “first success” in enabling

him to resolve his paradox (1959, 79); his “discover[ing] the Theory of

Types” in 1906, after which “it only remained to write the book [Prin-

cipia Mathematica] out” (1967, 152); his beginning in 1911 his associ-

ation with Wittgenstein, whom he characterizes as “perhaps the most

perfect example I have ever known of genius as traditionally conceived,

passionate, profound, intense, and dominating” (1968, 98–9); and his

“becom[ing] interested”—“during my time in prison in 1918” and in-

fluenced, at least in part, by his study at that time of the writings of

the behavioral psychologist J. B. Watson—“in the problems connected
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with meaning, which in earlier days I had completely ignored” (1968,

194) when “I had regarded language as ‘transparent’ and had never

examined what makes its relation to the non–linguistic world” (1959,

145).

Until relatively recently (in particular, before the 1990’s with the

publication of Hylton (1990) and Griffin (1991)), the main focus of

interest in Russell’s philosophy, has been, I think it is fair to say, on

his views from his 1905 paper “On Denoting” through his 1918 lec-

tures ”The Philosophy of Logical Atomism”1—that is, on the period that

includes his acceptance of his theory of descriptions, his completing,

with Whitehead, Principia Mathematica (PM), his writing the popular

book The Problems of Philosophy (PoP), and his active engagement with

Wittgenstein that leads him to abandon his 1913 manuscript, The The-

ory of Knowledge (TK), and culminates in his 1918 lectures entitled “The

Philosophy of Logical Atomism” (PLA). Such a focus does not involve

distinguishing Russell’s early Moore–influenced post–Idealist position

from the views he accepted in the wake of the 1900 Paris Congress

or considering the interplay between these two aspects of Russell’s de-

velopment in his 1903 book, The Principles of Mathematics (PoM); nor

does it involve any consideration of his concerns with “the problems

connected with meaning” that are reflected in such post–1918 publica-

tions as “On Propositions: What They Are and How They Mean” or The

Analysis of Mind.

Further, given a focus on Russell’s writings from 1905–1918, es-

pecially on his less technical writings over that period, it is perhaps

understandable that a certain picture Russell’s philosophical outlook

emerges, one according to which he embraces a foundationalist epis-

temology along with an “Augustinian” view of language, both of which

reinforce the general view that the tasks of philosophy are sharply dis-

tinguished from those of science and both of which make central use

of the notion of “acquaintance”. For on the foundationalist epistemol-

ogy that may be found in at least some of these writings, a central task

of philosophy is to show how, or whether, the beliefs that are taken

for granted in ordinary life and science, such as our perceptual beliefs

concerning ordinary physical objects, may be justified, given that we are

acquainted with sense–data but not physical objects themselves. And on

the view of language that is presented in at least some of these writings,
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3 James Levine

the meaning of a word (in a fully analyzed sentence) is an entity cor-

responding to that word, while—in accord with his so–called “principle

of acquaintance”—understanding a sentence requires being acquainted

with the entities corresponding to the words in that sentence, and a

central task of philosophy consists in analyzing the meanings of our

sentences concerning physical objects, given that we are not acquainted

with such objects.

Moreover, against the background of this understanding of Rus-

sell’s philosophy, it is natural to regard some of the major figures in

post–World War II analytic philosophy—including, for example, the

later Wittgenstein, Quine, Austin, and Sellars—as seeking to under-

mine characteristic features of Russell’s position. This familiar view is

reflected, for example, in Richard Rorty’s 1979 book Philosophy and the

Mirror of Nature. There Rorty presents Russell, along with Husserl, as

seeking, in different ways, to establish philosophy as the foundational

discipline, which through its knowledge of “apodictic truths” (Russell’s

“logical forms”, Husserl’s “essences”) is able to assess the standing of

other disciplines. According to Rorty,

. . . the kind of philosophy which stems from Russell and

Frege is, like classical Husserlian phenomenology, simply

one more attempt to put philosophy in the position which

Kant wished it to have—that of judging other areas of cul-

ture on the basis of a special knowledge of the “founda-

tions” of these areas. (1979, 8)

And the “story” Rorty “want[s] to tell” (ibid., 168) is how such founda-

tionalist aspirations of Russell and Husserl were called into question by

their successors:

[I]n the end, heretical followers of Husserl (Sartre and Hei-

degger) and heretical followers of Russell (Sellars and Quine)

raised the same sorts of questions about the possibility of

apodictic truth which Hegel raised about Kant, (ibid., 167)

thereby undermining the view of philosophy as having a preeminent,

privileged status. More specifically, for Rorty, Russell’s mid–century suc-

cessors attacked not only his views of acquaintance and his sense-data

epistemology:

www.thebalticyearbook.org
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[D]oubts had often been expressed about Russell’s notion of

“knowledge by acquaintance” . . . . These doubts only came

to a head, however, in the early 1950s, with the appearance

of Wittgenstein’s Philosophical Investigations, Austin’s mock-

ery of “the ontology of the sensible manifold,” and Sellars’s

“Empiricism and the Philosophy of Mind”,

but also his views of meaning:

The distinction between the necessary and contingent—re-

vitalized by Russell and the Vienna Circle as the distinction

between “true by virtue of meaning” and “true by virtue

of experience”—had usually gone unchallenged, and had

formed the least common denominator of “ideal language”

and “ordinary language” analysis. However, also in the

early fifties, Quine’s “Two Dogmas of Empiricism” challenged

this distinction, and with it the standard notion (common

to Kant, Husserl, and Russell) that philosophy stood to em-

pirical science as the study of structure to the study of con-

tent. Given Quine’s doubts (buttressed by similar doubts in

Wittgenstein’s Investigations) . . . , it became difficult to ex-

plain in what sense philosophy had a separate “formal” field

of inquiry and thus how its results might have the desired

apodictic character. (Ibid., 169)

According to Rorty, these challenges to Russell’s views of acquaintance

along with his views of meaning “were challenges to the views idea of

a ‘theory of knowledge,’ and thus to philosophy itself, conceived of as a

discipline which centers around such a theory” (ibid.).

Recently, there has been a growing awareness that Russell’s post–

1918 writings call into question the sort of picture that Rorty presents

of the relation of Russell’s philosophy to the views of subsequent figures

such as the later Wittgenstein, Quine, and Sellars. For an examination

of those writings shows that by the early 1920’s Russell himself was

advocating views—including an anti-foundationalist naturalized epis-

temology, and a behaviorist–inspired account of what is involved in un-

derstanding language—that are more typically associated with philoso-

phers from later decades whom Rorty presents as dismantling Russell’s

philosophy.

Vol. 4: 200 Years of Analytical Philosophy

http://www.thebalticyearbook.org/


5 James Levine

Hence, Thomas Baldwin begins his 2003 paper “From Knowledge

by Acquaintance to Knowledge by Causation” by writing:

There are many familiar themes in Russell’s repertoire, but

his later discussions of knowledge include many insights

which have received little notice. Indeed, it is often sup-

posed that in the years after 1914, after the heroic founda-

tional phase of analytical philosophy celebrated in count-

less anthologies, Russell ceased to engage in creative phi-

losophy. . . . One thing I want to show here is that during

these years Russell was in fact developing a new concep-

tion of epistemology, linked to a new philosophy of mind,

which was so far ahead of its time that it passed by largely

unappreciated. It is only now that our that our own philos-

ophy of mind has caught up with the ‘naturalisation’ of the

mind that Russell was teaching from 1921 onwards that we

can recognise in his later writings the central themes of our

current debates. . . . (2003, 420)

And he adds later:

[Russell’s 1918] imprisonment marks his transformation from

the familiar author of Principia Mathematica to the unfamil-

iar author of The Analysis of Mind and his subsequent writ-

ings. The key change is a new determination to bring sci-

ence into philosophy: metaphysics is to be based on physics

and epistemology upon psychology, and it is this latter re-

spect that the changes are most far–reaching. (Ibid., 439)

Similarly, in his 1996 paper “Quine and Wittgenstein: The Odd Couple”,

Burton Dreben writes:

By late spring of 1918, Knowledge by Acquaintance together

with The Knowing Subject—the very core of what had been

(Analytic) Epistemology for Russell—disappear. For the first

time the nature of language per se is on centre stage, and

Russell seeks a naturalist, indeed physicalist and broadly

behaviorist account of it and of all other so-called mental

activities. (1996, 48)

www.thebalticyearbook.org
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Numerous passages support these claims of Baldwin and Dreben.2 Thus,

for example, in his 1924 paper “Logical Atomism”, Russell writes:

I began to think it probable that philosophy had erred in

adopting heroic remedies for intellectual difficulties, and

that solutions were to be found merely by greater care and

accuracy. This view I have come to hold more and more

strongly as time went on, and it has led me to doubt whether

philosophy, as a study distinct from science and possessed

of a method of its own, is anything more than an unfortu-

nate legacy from theology. (1924a, 163)

Here Russell seems to anticipate the sort of “naturalism” reflected in

Quine’s remark that “I see philosophy not as an a priori propaedeu-

tic or groundwork for science, but as continuous with science” (1969,

126) and also suggests the sentiment behind Quine’s comment that “the

student who majors in philosophy primarily for spiritual comfort is mis-

guided and probably not a very good student anyway, since intellectual

curiosity is not what moves him” (1981, 193). Further, in his 1923

paper “On Vagueness”, Russell writes:

My own belief is that most of the problems of epistemology,

in so far as they are genuine, are really problems of physics

and physiology; moreover, I believe that physiology is only a

complicated branch of physics. The habit of treating knowl-

edge as something mysterious and wonderful seems to me

unfortunate. People do not say that a barometer “knows”

when it is going to rain; but I doubt if there is any essential

difference in this respect between the barometer and the

meteorologist who observes it. (1923a, 154)

Here he seems not only to accept a “naturalized epistemology” con-

sistent with Quine’s view that “epistemology in its new [naturalized]

setting . . . is contained in natural science, as a chapter of psychol-

ogy” (1969, 83) but also—in his comment regarding barometers—to

anticipate Daniel Dennett’s discussion of the thermostat as a kind of

“intentional system” (1981, 29–33).

Likewise, Russell presents himself as seeking to develop what Dreben

characterizes as “a naturalist, indeed physicalist and broadly behaviorist

account” of language in such remarks as these:

Vol. 4: 200 Years of Analytical Philosophy
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[I am] one who regards thought as merely one among nat-

ural processes, and hopes that it may be explained one day

in terms of physics. . . . For my part, I do not regard the

problem of meaning as one requiring such special meth-

ods as are commonly called “philosophical”. I believe that

there is one method of acquiring knowledge, the method

of science; and that all specially “philosophical” methods

serve only the purpose of concealing ignorance. . . . Now

meaning is an observable property of observable entities,

and must be amenable to scientific treatment. My object

has been to endeavour to construct a theory of meaning

after the model of scientific theories, not on the lines of tra-

ditional philosophy; (1920a, 90–1)

The failure to consider language explicitly has been a cause

of much that was bad in traditional philosophy. I think my-

self that “meaning” can only be understood if we treat lan-

guage as a bodily habit, which is learnt just as we learn

football or bicycling. The only satisfactory way to treat lan-

guage, to my mind, is to treat it in this way, as Dr. Watson

does. Indeed, I should regard the theory of language as one

of the strongest points in favour of behaviorism; (1927a,

43)

We may say that a person “understands” a word when (a)

suitable circumstances make him use it, (b) the hearing of

it causes suitable behavior in him. We may call these two

active and passive understanding respectively. Dogs often

have passive understanding of some words, but not active

understanding, since they cannot use words.

It is not necessary, in order that a man should “understand”

a word, that he should “know what it means,” in the sense

of being able to say “this word means so–and–so.” Under-

standing words does not consist in knowing their dictionary

definitions, or in being able to specify the objects to which

they are appropriate. . . . Understanding language is more

like understanding cricket [in a footnote, Russell here cites

Watson]: it is a matter of habits, acquired in oneself and

rightly presumed in others. To say that a word has a mean-

www.thebalticyearbook.org
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ing is not to say that those who use the word correctly have

ever thought out what the meaning is: the use of the word

comes first, and the meaning is to be distilled out of it by

observation and analysis. Moreover, the meaning of a word

is not absolutely definite: there is always a greater or lesser

degree of vagueness. The meaning is an area, like a tar-

get: it may have a bull’s eye, but the outlying parts of the

target are still more or less within the meaning, in a gradu-

ally diminishing degree as we travel further from the bull’s

eye, and the bull’s eye itself grows smaller and smaller; but

the bull’s eye never shrinks to a point, and there is always

a doubtful region, however small, surrounding it. (1921,

197–8; see also 1919b, 290)

Thus, by the early 1920’s, Russell seems to be expressing views regard-

ing language that are more typically associated with the later Wittgen-

stein or with Quine of the 1960’s. In particular, by writing that “the use

of the word comes first, and the meaning is to be distilled out of it”, Rus-

sell seems to be anticipating Wittgenstein’s view that “we are inclined

to forget that that it is the particular use of a word only which give

the word its meaning” (1958, 69) as well as Quine’s view that “there is

nothing in linguistic meaning beyond what is to be gleaned from overt

behavior in observable circumstances” (1992, 38). Moreover, in claim-

ing that the meaning of a word we are able to “distill” out of its use

“is not absolutely definite” but rather admits of “a greater or lesser de-

gree of vagueness”, Russell appears to advocate an indeterminacy thesis

of the sort that Quine articulates when he writes, for example: “When

. . . we turn thus toward a naturalistic view of language and a behav-

ioral view of meaning, . . . [w]e give up an assurance of determinacy.”

(1969, 28)

Further, by accepting the view that understanding a word is a mat-

ter of using it in “appropriate circumstances” and responding to it in

“suitable” ways, Russell has rejected his “principle of acquaintance”.

Thus, in PoP, he held not only that understanding a sentence requires

being acquainted with “the meaning”—that is, the entity which is the

meaning—of each word in that sentence (PoP, 58, 104), but also that

“no sentence can be made up without at least one word which denotes a

universal” (ibid., 93), so that he was committed to the view no one can

Vol. 4: 200 Years of Analytical Philosophy
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understand any sentence without being acquainted with at least one

universal. In contrast, in the chapter entitled “Language” in his 1927

book Philosophy, Russell writes:

General words such as “man” or “cat” or “triangle” are said

to denote “universals”, concerning which, from the time of

Plato to the present day, philosophers have never ceased to

debate. Whether there are universals, and, if so, in what

sense, is a metaphysical question, which need not be raised

in connection with the use of language. The only point

about universals that needs to be raised at this point is that

the correct use of general words is no evidence that a man

can think about universals. It has often been supposed that,

because we can use a word like “man” correctly, we must

be capable of a corresponding “abstract” idea of man, but

this is quite a mistake. Some reactions are appropriate to

one man, some to another, but all have certain elements in

common. If the word “man” produces in us the reactions

which are common but no others, we may be said to under-

stand the word “man”. . . . Consequently there is no need

to suppose that we ever apprehend universals, although we

use general words correctly. (1927a, 53–4)

Again, the similarity with Quine’s position is striking. For like Russell in

this passage, Quine holds that although there is a genuine metaphysical

issue as to whether we should countenance universals, that issue is not

settled by our ability to understand sentences involving general terms.

Just as Russell writes here that “the correct use of general terms is no

evidence that a man can think about”—or “apprehend”—“universals”,

Quine argues twenty years later that “we can use general terms, for

example, predicates, without conceding them to be names of abstract

entities” (1948, 12).

Thus, however much the views of such figures as the later Wittgen-

stein or Quine may be regarded as directed against features of Rus-

sell’s position prior to 1918, they do not seem to be opposed, at least

straightforwardly, to his post–1918 position. On the contrary, given

the apparent similarities between Russell’s later views and those of

his supposed “heretical follows”, the question arises as to the extent

to which, far from seeking to undermine Russell’s position, the later

www.thebalticyearbook.org

From Moore to Peano to Watson 10

Wittgenstein and Quine were instead positively influenced, directly or

indirectly, by Russell’s later writings. My concern, here, however, is not

to explore that question; instead, it is to show that Russell’s post–1918

turn to an explicitly naturalistic characterization of philosophy and a

behaviorist characterization of language3 is not itself a wholly radical

break from his prior position, but rather has its source, at least in large

part, in views he accepted following the August 1900 Paris Congress

of Philosophy—something, which, if true, would help explain why, as

noted above, Russell (in 1944) calls that event, rather than his initial

break from Idealism in 1898, “the most important event” in “the most

important year in my intellectual life”.

My discussion proceeds in three main parts. First, I discuss some

views that Russell accepts in his post–Idealist pre–Peano Moorean phi-

losophy—including a foundationalist epistemology, the “Augustinian”

view of language, the “principle of acquaintance”, and a conception of

the tasks of philosophy as clearly distinguished from those of science—

views that, I have just indicated, are often associated with Russell through-

out his philosophical development. In the remaining two parts, I focus

on two different aspects of Russell’s post–Peano views of mathematics

and argue that these threaten various aspects of his overall Moorean

position. In Part 2, I discuss his coming to hold that that nineteenth–

century mathematicians, most notably Dedekind, Weierstrass, and Can-

tor, had solved all the traditional problems of the infinite and continu-

ity and argue that Russell’s later anti–foundationalism along with his

“naturalism” and his view of “the scientific method in philosophy” are

closely connected to this post–Peano development. In Part 3, I discuss

his coming to regard the cardinal numbers as “classes of similar classes”.

In particular, I argue that Russell’s defense of that view is not in accord

with his Moorean conception of analysis but rather appeals to a no-

tion of “vagueness” that threatens to undermine the “Augustinian” view

of language” and the “principle of acquaintance”; and I argue further

that it is not until he accepts his behaviorist view of meaning and un-

derstanding in his post–1918 writings that Russell can allow “vague”

language to be meaningful and capable of being understood and can

thereby make plausible his post–Peano practice of analysis.

In thus arguing that views that Russell comes to accept in the after-

math of the Paris Congress play a central role in his coming to accept

Vol. 4: 200 Years of Analytical Philosophy
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positions that become prominent post–1918, I will be presenting a dif-

ferent view of the relation between Russell’s post–Idealist pre–Peano

Moorean philosophy and his post–Peano philosophy from that which

Peter Hylton presents when he writes:

[Russell’s] fundamental doctrines were the ones that he

held before he was influenced by mathematical logic [that

he acquired as a result of the Paris Congress], and the chief

effects of that influence were to enable (or force) him to ar-

ticulate those doctrines further, to show him that they could

play a role in the solution of problems which had previously

seemed insoluble, and, especially, to enable him to defend

those doctrines. (1990, 152-3)

For I will be arguing that far from enabling him to articulate more fully

and defend the “fundamental doctrines” he came to accept immediately

after breaking with Idealism, the technical views he comes to accept af-

ter the Paris Congress call into question many of those earlier Moorean

“fundamental doctrines” and play a central role in leading him to em-

brace the naturalist and behaviorist positions of his post–1918 writings.

If this is correct, then the views of the stereotyped Russell who serves as

a target for the mid–century philosophers Rorty highlights are, in large

part the legacy of the Moorean Russell, a philosopher whom Russell

himself began to undermine as early as the latter part of 1900.

1. THE MOOREAN RUSSELL: SOME BASIC COMMITMENTS

Russell’s “Moorean” period (as I use the phrase) begins with his break

with Idealism towards the end of 1898 and ends at the Paris Congress

of August 1900. During this period, Russell wrote, among other things,

The Philosophy of Leibniz (PoL), an entire draft of PoM (which he re–

wrote after the Paris Congress), and a number of papers reflecting his

views of time, space, number, and magnitude, which reflect his gen-

eral views regarding the nature of order. My purpose here is twofold.

First, I discuss some basic features of Russell’s Moorean metaphysics,

philosophy of language, and epistemology. In particular, I highlight his

metaphysical atomism (§1.1); his acceptance of an “Augustinian view”

of language (§1.2) and the “principle of acquaintance” (§1.3), which

www.thebalticyearbook.org
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are central to his early conception of analysis; and his foundational-

ist epistemology (§1.4), which is central to his early understanding of

the distinction between philosophy and the sciences (§1.5). My second

main purpose here is to discuss, in the final section (§1.6) of this Part,

Russell’s Moorean views of time, magnitude, and number, showing, in

particular, how they exemplify the general features of his Moorean out-

look that I have introduced in the preceding sections.

The basic views in metaphysics, philosophy of language, and epis-

temology that I here attribute to the Moorean Russell are central to

the stereotyped picture of Russell throughout his philosophical devel-

opment that I have discussed above;4 indeed, as I mention below, some

of Russell’s clearest and best known formulations of at least some of

these views appear in his post–Moorean writings. My claim here, then,

is only that these views are all part of his Moorean philosophy, not that

he ceases to endorse them immediately after the Paris Congress. In

Parts 2 and 3, however, I seek to show that views he accepts after the

Paris Congress in the philosophy of mathematics threaten various ele-

ments of his Moorean philosophy, so that questions arise as to how, or

whether, he can reconcile his post–Peano views regarding mathematics

with his overall Moorean philosophy.

1.1. Metaphysical Atomism

Fundamental to Russell’s revolt against “absolute” or monistic idealism

was his acceptance of a metaphysical atomism. On the view he rejects,

the universe is an “organic unity”, which may not be coherently under-

stood as composed of parts that are simpler than the whole they consti-

tute, in which case “analysis”—the breaking down of a whole into sim-

pler parts—“is falsification” and the “conceptual” distinctions we make

in characterizing the universe do not correspond to “real divisions” of

the universe “into parts”.5 Whereas monists hold that there is a mutual

dependence between a whole and its parts, according to which what-

ever “parts” we find in a whole will be as complex as the original whole

itself, Russell holds, on the contrary, that that the being of a whole de-

pends on the being of its parts but not vice–versa, that the parts of a

whole are simpler than that whole, and that analysis is complete when

we have arrived at “simple terms”, entities which have no parts. Thus,

for example, in a passage from his pre–Peano draft of PoM that appears

Vol. 4: 200 Years of Analytical Philosophy
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in PoM itself, Russell writes:

We are sometimes told that things are organic unities, com-

posed of many parts expressing the whole and expressed in

the whole. . . . The only kind of unity to which I can attach

any precise sense—apart from the unity of the absolutely

simple—is that of a whole composed of parts. But this form

of unity cannot be what is called organic; for if the parts

express the whole or the other parts, they must be com-

plex, and therefore themselves contain parts; if the parts

have been analyzed as far as possible, they must be simple

terms, incapable of expressing anything except themselves.

(1899–1900, 160-1; PoM, 466)

For Russell, all wholes, including infinite wholes, are composed of sim-

ple “ultimate constituents”, so that to be a simple is to be “an ultimate

constituent of the universe” (1899–1900, 51-2). Unlike monistic ideal-

ists, who regard “the Absolute” as a complex but unanalyzable whole,

Russell holds that, metaphysically speaking, there is no unanalyzable

complexity in the universe and that what is metaphysically ultimate is

the simple.

1.2. The “Augustinian” View of Language and Analysis

Russell’s metaphysical atomism and his early conception of analysis are

intimately connected with his acceptance of an “Augustinian” view of

language that incorporates:

(Aug) For a word to be meaningful is for there to be a single entity

which that word stands for and which is thereby the meaning

of that word.

In the opening section of the Philosophical Investigations Wittgenstein

quotes a passage from Augustine and finds in it “the roots of the follow-

ing idea”:

Every word has a meaning. This meaning is correlated with

the word. It is the object for which the word stands. (1953,

§1)

www.thebalticyearbook.org

From Moore to Peano to Watson 14

On the view of language that Wittgenstein is characterizing, what con-

stitutes a word’s having a meaning—or being meaningful —is its stand-

ing for a single entity (“the object for which the word stands”); and

on this view, the entity that a word stands for is “the meaning” of that

word.

Russell reflects his commitment to (Aug) in PoM, where after writ-

ing:

[I]t must be admitted, I think, that every word occurring in

a sentence must have some meaning; a perfectly meaning-

less sound could not be employed in the more or less fixed

way in which language employs words [here, as elsewhere,

emphasis is in the original] (PoM, 42)

he adds five pages later:

Words all have meaning, in the simple sense that they are

symbols which stand for something other than themselves.

But a proposition, unless it happens to be linguistic, does

not itself contain words: it contains the entities indicated

by words. (Ibid., 47)

Thus, Russell makes a seamless transition from indicating that “every

word occurring in a sentence” must be meaningful—that is, “must have

some meaning”—to indicating that its thus having a meaning consists in

its standing for an entity. It is this transition that Russell rejects by the

early 1920’s when he comes to hold both that for a word to be mean-

ingful is for it to be used and responded to in appropriate ways and that

“the meaning” of a word we are able to “distill” out of its use “is not ab-

solutely definite”. By doing so, he thereby holds, as against (Aug), that

a word can be meaningful—if it is used in appropriate ways—without

its yet succeeding in standing for, or being correlated with, a single en-

tity that we are entitled to call “the meaning” of that word.

An example of Russell’s early commitment to (Aug) occurs in his

discussion of the word “and” as it occurs in statements of the form “A

and B are two”.6 In his pre–Peano draft of PoM (and again in PoM itself)

he writes:

What is meant by A and B? Does this mean anything more

then the juxtaposition of A with B? That is, does it contain
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a concept over and above that of A and that of B? Is and a

separate concept, which occurs besides A, B? (1899–1900,

17; PoM, 71)

Here, Russell raises the question as to whether in “A and B are two”

the word “and” serves to stand for an entity or whether the only words

standing for entities in such a phrase are those replacing “A” and “B”.

Initially, he presents considerations against the view that in that context

“and” serves to stand for an entity. He argues first that “and” cannot

there stand for “a relation between A and B”; for in that case “A and

B would then be a proposition”, in which case it would be a “unified

complex” and so “would be one not two”. Further, he argues that if A

and B are distinct, then they “are two, and no mediating concept seems

necessary to make them two” (ibid.). Having made these arguments,

he continues:

Thus and would seem to be meaningless. But it is difficult

to maintain this theory. To begin with, it seems rash to hold

that any word is meaningless. When we use the word and,

we do not seem to be uttering mere idle breath, but some

idea seems to correspond to the word. Again some kind of

combination seems to be implied by the fact that A and B

are two, which is not true of either separately. When we say

“A and B are yellow”, we can replace the proposition by “A

is yellow” and “B is yellow”; but this cannot be done for “A

and B are two”; on the contrary, A is one and B is one. Thus

it seems best to regard and as expressing a definite unique

kind of combination, not a relation, and not combining A

and B into a whole, which would be one. (Ibid.)

In this passage, Russell applies (Aug) twice. First, having presented

considerations against the view that “and” serves to stand for an entity,

he writes that “and would thus seem to be meaningless”, thereby indi-

cating, as (Aug) requires, that a word that fails to stand for any entity

is “meaningless”. Second, after presenting considerations against the

view that “and” is not meaningless in those phrases—since “when we

use the word and, we do not seem to be uttering mere idle breath” and

since “and” in “A and B are two” is not eliminable in the way that it

is in “A and B are yellow”—he then concludes that “it seems best to
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regard and as expressing a definite unique kind of combination”. Thus

he indicates, again as (Aug) requires, that if a word is meaningful, then

there is a “definite” entity for which it stands (in this case a “unique

kind of combination” that does not bind A and B into a whole, as would

a relation).

More generally, during his Moorean period, in his 1899 paper “The

Axioms of Geometry”, Russell writes:

Philosophically, a term is defined when we are told its mean-

ing. . . . It will be admitted that a term cannot be usefully

employed unless it means something. What it means is ei-

ther complex or simple. That is to say, the meaning is either

a compound of other meanings, or is itself one of those ul-

timate constituents out of which other meanings are built

up. In the former case, the term is philosophically defined

by enumerating its simple constituents. But when it is it-

self simple, no philosophical definition is possible. (1899a,

410)

Here Russell combines his metaphysical atomism with (Aug) to move

from writing that “a term cannot be usefully employed unless it means

something” to indicating that what it means is an entity, either complex

or simple. Likewise in Principia Ethica (PE), in discussing the meaning

of “good”, Moore writes:

[I]f it is not the case that ‘good’ denotes something simple

and indefinable, only two alternatives are possible: either it

is a complex . . . or else it means nothing at all and there is

no such subject as Ethics, (PE, 15)

thus suggesting that if a word (here “good”) is to be meaningful at all,

what it means is an entity, either simple or complex.

As these passages reflect, for both Russell and Moore, “philosophi-

cal” definition involves identifying the ultimate constituents of a com-

plex entity. Characteristically, given that his real concern is not with

words but with the entities they stand for, Russell alternates between

writing (as in the first three sentences of the passage from 1899a) of

a “term” as a linguistic item which has a meaning and writing (as in

the last two sentences of that passage) of a “term” as the non–linguistic
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correlate of a linguistic item (so that the term itself is either simple or

complex). Thus, a word may be said to be definable or indefinable de-

pending on whether what it stands for (its “meaning”) is a complex or

simple entity, while a (non–linguistic) entity may be said to be defin-

able or indefinable depending on whether or not it is itself complex or

simple.

Given this conception of meaning along with the conception of anal-

ysis as identifying the simple constituents of a complex entity as well

as his view, expressed also in “The Axioms of Geometry” that “when-

ever a term is analyzable, philosophy should undertake the analysis”

(1899a, 412), Russell is committed to a program of analysis according

to which if sentence S1 contains a word standing for a complex entity,

that word should be replaced by words “enumerating [the] the simple

constituents” of that complex entity. If we stipulate

(Persp) Sentence S is a perspicuous (or privileged) representation of

the proposition it expresses if and only if each word in S stands

for a simple (ultimate) constituent of that proposition,

then, for Russell, analysis will be complete when S1 has been trans-

formed into S2, where S2 is a perspicuous or privileged representation

of the same proposition that is represented non–perspicuously by S1.

Thus, when analysis is complete, we will have arrived at a sentence

that mirrors the original proposition expressed in that it will contain as

many words as there are ultimate constituents of that proposition.

1.3. Understanding, the Principle of Acquaintance, and Informative Anal-

ysis

In addition to holding, in accord with (Aug), that the proposition ex-

pressed by a sentence is a complex entity whose constituents are the

entities corresponding to the words in that sentence, Russell accepts

the following “principle of acquaintance”:

(PoA) Understanding a sentence requires being acquainted with each

constituent of the proposition expressed by that sentence.

Again, the best–known passages in which Russell endorses (PoA) oc-

cur in his post–Moorean writings; nevertheless, the notion of acquain-

tance (if not the word “acquaintance”) and (PoA) are central to Russell’s
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Moorean philosophy.

In the penultimate paragraph of “On Denoting”, Russell writes:

In every proposition that we can apprehend . . . , all the con-

stituents are really entities with which we have immediate

acquaintance. (1905, 427)

Likewise in his 1911 paper “Knowledge by Description and Knowledge

by Acquaintance” as well as in PoP, Russell writes:

The fundamental principal in the analysis of propositions

containing descriptions is this: Every proposition which we

can understand must be composed wholly of constituents with

which we are acquainted. (1911b, 154; PoP, 58)

Given that Russell holds that each sentence expresses a proposition,

whose constituents are the meanings of the words in that sentence, and

that understanding a sentence requires “apprehending” the proposition

it expresses, then in these passages he is committing himself to (PoA).

And in PoP Russell defends this “fundamental principle” by writing:

We must attach some meaning to the words we use, if we

are to speak significantly and not utter mere noise; and the

meaning we attach to our words must be something with

which we are acquainted. (PoP, 58)

Thus, he indicates, not only, in accord with (Aug), that the meanings of

words are entities corresponding to those words, but further, in accord

with (PoA), that understanding a sentence requires being acquainted

with “the meaning we attach to our words”. And in TK, he applies

(PoA), when he writes:

Let us take as an illustration some very simple proposition,

say “A precedes B”, where A and B are particulars. In order

to understand this proposition, it is . . . obviously necessary

that we should know what is meant by the words which

occur in it, that is to say, we must have acquaintance with A

and B and with the relation of “preceding”. (TK, 110–1)

For Russell, that is, for a word to be meaningful is, by (Aug), for that

word to stand for a single entity, which is its meaning; then, for a sen-

tence to be meaningful is for it to express a single proposition whose
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constituents are the meanings of the words in that sentence; and, by

(PoA), to understand that sentence is to apprehend the proposition it

expresses, which, in turn requires, being acquainted with each con-

stituent of that proposition, that is to say, requires being acquainted

with the meaning of each word in that sentence.

Russell’s notion of acquaintance has its source in the “act–object”

distinction that Moore emphasizes in his paper “The Refutation of Ide-

alism”,7 where he argues generally, that in every “idea we must distin-

guish two elements, (1) the ‘object,’ or that in which one differs from

another; and (2) ‘consciousness,’ or that which all have in common --

that which makes them sensations or mental facts” (1903b, 20). Fur-

ther, for Moore, in every case in which we are thus “conscious of an

object”, we thereby “know” or are “directly aware” of that object. As he

writes in discussing a sensation of blue:

A sensation is, in reality, a case of ‘knowing’ or ‘being aware

of’ or ‘experiencing’ something. . . . [T]his awareness is not

merely, as we have hitherto seen it must be, itself something

distinct and unique, utterly different from blue: it also has a

perfectly distinct and unique relation to blue . . . . This rela-

tion is just that which we mean in every case by ‘knowing’.

(Ibid., 24–5)

And since, for Moore, the “object” of “awareness” is not (in general) a

mental item, then to be aware of an entity is to stand in the relation of

“knowing” to an entity that is not (in general)“in the mind”. Hence:

There is, therefore, no question of how we are to “get out-

side the circle of our own ideas and sensations.” Merely to

have a sensation is already to be outside that circle. It is to

know something which is as truly and really not a part of

my experience, as anything which I can ever know. (Ibid.,

27)

Further, for Moore, “sensation and thought” are “both forms of con-

sciousness or, to use a term that seems to be more in fashion just now,

they are both ways of experiencing” (ibid., 7), so that “the nature of

that peculiar relation which I have called ‘awareness of anything’ . . .

is involved equally in the analysis of every experience—from the mer-

est sensation to the most developed perception or reflexion” (ibid., 29).
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For Moore, to have an “idea” of an entity—whether by sensation or by

thought—is to be “aware of” or to “know” that entity, an entity which

is not (in general) a mental item.

In PoP, Russell introduces the term “acquaintance” in Chapter IV

(“Idealism”), where, like Moore in “The Refutation of Idealism”, he uses

the act–object distinction to argue against Berkeley’s view that “esse is

percipi”. First, he introduces the act–object distinction by discussing an

ambiguity in the notion of an “idea”:

Taking the word ‘idea’ in Berkeley’s sense, there are two

quite distinct things to be considered whenever an idea is

before the mind. There is on the one hand the thing of

which we are aware—say the colour of my table—and on

the other hand the actual awareness itself, the mental act

of apprehending the thing. The mental act is undoubtedly

mental, but is there any reason to suppose that the thing ap-

prehended is in any sense mental? . . . Berkeley’s view, that

obviously the colour must be in the mind, seems to depend

for its plausibility upon confusing the thing apprehended

with the act of apprehension. (PoP, 41–2)

Then, in the following paragraph, he writes:

This question of the distinction between act and object in

our apprehending of things is vitally important, since our

whole power of acquiring knowledge is bound up with it.

The faculty of being acquainted with things other than it-

self is the main characteristic of a mind. Acquaintance with

objects essentially consists of a relation between the mind

and something other than the mind; it is this that consti-

tutes the mind’s power of knowing things. (Ibid., 42)

Thus, like Moore, Russell indicates that the object of a mental act is (in

general) an extra–mental entity which the mind, in virtue of that mental

act, “knows”, or, in the terminology, he adopts here, is “acquainted”

with.

While “The Refutation of Idealism” was published in 1904 and PoP

in 1912, it is clear that Russell assumes this view of the act–object dis-

tinction throughout his Moorean period. Thus, for example, in PoL,

Russell writes:
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With Locke’s definition, that an idea is the object of thought,

we may agree; but we must not seek to evade the conse-

quence that an idea is not something in the mind, (PoL,

166)

thereby indicating that insofar as an “idea is the object of thought”, then

it is not (in general) “in the mind”. Further, in the course of criticizing

Lotze’s view of space, in a paper he composed prior to the Paris Congress

(and delivered there), Russell writes:

The being which belongs to the contents of our presenta-

tions is a subject upon which there exists everywhere the

greatest confusion. Lotze described it as the fact of being

intuited by us. . . . Lotze presumably regards the mind as

creative in some sense; what it intuits is supposed to acquire

a kind of existence which it would not have otherwise. . . .

But the whole theory rests, if I am not mistaken, upon the

neglect of the fundamental distinction between an idea and

its object. Having neglected the notion of being, people

have supposed that what does not exist is nothing. Seeing

that numbers, relations, and many other entities do not ex-

ist outside the mind, they have supposed that the thoughts

in which they think of these entities actually create their

own objects. Every one (except for philosophers) can see

the difference between a tree and my idea of a tree, but

few people see the difference between the number 2 and

my idea of this number. And yet the distinction is as neces-

sary in one case as in the other. I do not think the number

2, but I think of the number 2. For if it is supposed that I

think the number 2 itself, then 2 is one of my thoughts and

as a result this 2 differs from the 2 which is someone else’s

thought. Hence it cannot be said that there is a number 2,

of which various people think there will be as many 2’s as

there are minds. . . . The objects of thought possess being,

whether they are thought of or not; and it is because they

are that we can think of them. Their being is not a result,

but a precondition, of the fact that we think of them. But

as regards the existence of an object of thought, nothing

can be inferred from the fact of its being thought of, since
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the object certainly does not exist in the very thought which

thinks of it. Hence, finally, no special kind of being belongs

to the objects of presentation as such. (1901b, 254; see also

PoL, 165-6, 1901c, 277–8, PoM 450–1)

Here again, Russell is concerned to emphasize that the “object” of an

“idea”—whether it be a physical object such as a tree, which exists in

space and time, or an abstract entity, such as the number 2 or a rela-

tion, which, for Russell, has “being” but not existence—is (in general)

an extra–mental entity whose “being” does not depend on “its being

thought of”. However, by discussing the act–object distinction in the

context of criticizing Lotze’s views of “intuition” or of the “objects” (or

“contents”) of “presentation”, he is also indicating, like Moore, that the

“object” of an “idea” is not only (in general) extra–mental but is also an

entity that we thereby “know”, or (in his later terminology) are thereby

“acquainted” with. According to Russell, Lotze holds that since an “ob-

ject of presentation”, or what we “intuit”, is not extra–mental, then “in-

tuition” or “presentation” can never give us knowledge of extra–mental

reality, but gives us, at best, something whose existence is acquired by

our act of “intuition”; in contrast, for Russell, since what we “intuit”—or

what is an “object” of our ideas—is (in general) extra–mental, then in

“intuiting” an extra–mental entity or having such an entity as the object

of one of our ideas, we thereby know extra–mental reality.8 Thus, for

Russell, in “thinking of” the number 2, we thereby know or “intuit” or

are acquainted with, the number 2 itself; in Moore’s words, we thereby

“get outside the circle of our ideas”.

Not only does the Moorean Russell accept the act–object distinction

that underlies the notion he comes to call “acquaintance”; he also ap-

plies that notion to our apprehension of propositions so as to indicate

that he accepts (PoA). Thus, in the course of criticizing Bradley’s theory

of judgment, in a paper he presented in May 1900 Russell writes:

It is commonly held that every proposition ultimately as-

cribes a predicate to a subject, the subject being something

real while the predicate is something merely ideal or men-

tal. Thus Mr. Bradley holds that every proposition ascribes

a predicate to Reality, that all predicates are ideas, while

Reality is not an idea. This doctrine appears to me vicious

in both parts. On the one hand, everything that can occur in
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a proposition must be something more than a mere idea—it

must be the object of an idea, i.e. an entity to which an

idea is related: to this extent all terms in propositions are

like Mr. Bradley’s Reality. On the other hand, whatever

can form part of a judgment which we make must be the

object of one of our ideas, even if it be Mr. Bradley’s Real-

ity. Thus Reality becomes assimilated to other terms. Every

term is both an entity in itself, and an object to a possible

idea. But the idea and its object are as distinct in the case

of so–called adjectives and relations as they are in the case

of Reality. (1900b, 229)

Here Russell is arguing that those who fail to recognize the ambiguity

in “idea”—and who thus fail to distinguish mental act from non–mental

object of a mental act—tend not only to treat some non–mental entities

as mental but also to regard non–mental entities as inaccessible to us.

Thus, he regards the view that “all predicates are ideas, while Reality

is not an idea” as “vicious in both parts”. For Russell, to hold that “all

predicates are ideas”, or are “merely ideal or mental”, is to fail to recog-

nize that predicates (properties) are non–mental “objects” of our ideas;

and to hold that “Reality is not an idea” and so inaccessible to us is to

fail to recognize that non–mental “objects” can be objects of our ideas

and so can be known by us. For Russell, that is, the failure to recognize

that what is “present” or “before” the mind need not be “in” the mind

leads both to the view that since a predicate is “before” the mind when

we make a judgment, then it is therefore “in” the mind as well as to the

view that since “Reality” is not “in” the mind, then we cannot have it

“’before” the mind when we make a judgment.

Hence, in writing here that “everything that can occur in a proposi-

tion must be something more than a mere idea—it must be the object of

an idea”, Russell is emphasizing here9 that the constituents of a propo-

sition are not in general mental items but are rather the non–mental

objects of our “ideas”. And in writing further that “on the other hand,

whatever can form part of a judgment which we make must be the ob-

ject of one of our ideas, even if it be Mr. Bradley’s Reality”, Russell

is indicating that when we make a judgment and thereby apprehend

a proposition, each constituent of that proposition being an “object of

one of our ideas” is an entity which we are “directly aware” of. In his

www.thebalticyearbook.org

From Moore to Peano to Watson 24

later terminology, he is indicating—as he does in the passages I have

cited above from his later writings—that apprehending a proposition re-

quires being acquainted with each of its constituents, so that, assuming

that he holds that understanding a sentence requires apprehending the

proposition it expresses, he is thereby committing himself to (PoA).10

Consistent with (PoA), Russell indicates in his Moorean period that

while understanding a defined term requires understanding the indefin-

able terms in terms of which the original term is ultimately defined, un-

derstanding an indefinable term requires “intuitively apprehending”—

or, in his later terminology, being acquainted with—the meaning of that

indefinable term. Thus, for example, in “The Axioms of Geometry”, he

writes:

There has at all times been a wide–spread notion that a

term cannot be understood unless it is defined. This means:

You cannot know what A means, except in terms of B, nor

what B means except in terms of C. To this process there is

evidently no end, and no one can ever know what anything

means. Unless, then, some terms can be understood with-

out a definition, no term can be understood by the help of

a definition. All these points are so obvious that I should be

ashamed to mention them, but for the fact that mathemati-

cians persistently ignore them, (1899a, 411)

and adds shortly thereafter:

[T]he meaning of the fundamental terms cannot be given,

but can only be suggested. If the suggestion does not call

up the right idea in the reader, there is nothing to be done.

(Ibid., 412)

Likewise, in his earlier 1898 manuscript “An Analysis of Mathematical

Reasoning”, Russell writes:

It is the habit of mathematicians to begin with definitions

. . . and to assume that definitions, in so far as they are

relevant, are always possible. It is, however, sufficiently ev-

ident that some conceptions, at least, must be indefinable.

For a conception can only be defined in terms of other con-

ceptions, and this process, if it is not to be a vicious circle,
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must end somewhere. In order that it may be possible to use

a conception thus left undefined, the conception must carry

an unanalyzable and intuitively apprehended meaning. In-

tuitive apprehension is necessary to the student, since he is

otherwise unable to understand what is meant. . . . All that

can be said is, that whoever is destitute of this apprehen-

sion cannot successfully study the subject in hand, and that

any attempt to give him, by means of formal definitions, the

conceptions in which he is lacking, is a fundamental error

in Logic. (1898, 163)

In these passages, Russell indicates, in accord with (PoA), that our un-

derstanding of indefinable terms is a necessary condition for under-

standing any definable term and further that our understanding of an

indefinable term is simply a matter of having an “idea” of, or “intu-

itively apprehending”, the simple entity that is the meaning of that term.

Moore expresses the same view in Principia Ethica when he writes:

My point is that ‘good’ is a simple notion, just as ‘yellow’ is

a simple notion; that just as you cannot, by any manner of

means, explain to any one who does not already know it,

what yellow is, so you cannot explain what good is. Defi-

nitions of the kind that I was asking for, definitions which

describe the real nature of the object or notion denoted by

a word . . . are only possible when the object or notion in

question is something complex. . . . [W]hen you have enu-

merated them all [all the simple parts of something com-

plex], when you have reduced [the complex item to its]

simplest terms, then you can no longer define those terms.

They are simply something which you think of or perceive,

and to any one who cannot think of or perceive them, you

can never, by any definition make their nature known. (PE,

7)

And Russell continues to hold this view in 1913, when he writes: “[E]very

series of definitions . . . must have a beginning, and therefore there

must be undefined terms . . . . The undefined terms are understood

by means of acquaintance.” (TK, 158) On the view expressed in all

these passages, and in accord with (PoA), while understanding an unde-
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fined term requires being acquainted with he simple entity designated

by that term, understanding a defined term requires being acquainted

with the complex entity it designates; for understanding the defined

term requires understanding the undefined terms used in its definition,

and hence requires being acquainted with the simples corresponding to

those undefined terms.

Accepting (PoA) requires denying that analysis can be “illuminat-

ing” in the sense of revealing any constituents of a proposition with

which one was not already acquainted in apprehending that proposition

prior to analysis. For, by (PoA), understanding a sentence—regardless

of whether or not it is a perspicuous representation—requires being ac-

quainted with the constituents of the proposition expressed by that sen-

tence. Hence, by (PoA), even if S1 is a non–perspicuous representation

of the same proposition that S2 expresses perspicuously, one who under-

stands S1 is acquainted with exactly the same simple entities that are

designated by the words in the perspicuous representation S2. While

the analysis can make explicit the entities with which one is acquainted

in understanding a non–perspicuous representation in that it will con-

tain a separate word for each ultimate constituent of the proposition

expressed, it cannot reveal any entities with which one was not already

acquainted in understanding a non–perspicuous representation of that

proposition.

Thus, if in understanding sentences S1 and S2 one has different en-

tities “before the mind”, then applying (PoA) requires one to conclude

that those sentences express different propositions. And in Principia

Ethica, Moore, in effect, so applies (PoA) when he writes:

Every one does in fact understand the question ‘Is this good?’

When he thinks of it, his state of mind is different from

what it would be, were he asked ‘Is this pleasant, or de-

sired, or approved?’ It is has distinct meaning for him . . . .

Whenever he thinks of ‘intrinsic value,’ or ‘intrinsic worth,’

or says that a thing ‘ought to exist,’ he has before his mind

the unique object —the unique property of things—which I

mean by ‘good’. Everybody is constantly aware of this no-

tion. . . . (PE, 16–17)

Here, he argues, in accord with (PoA), that since when we under-

stand the questions “Is this good?” and “Is this pleasant?” (or “Is this
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desired?” or “Is this approved?”), we have different entities “before

the mind”, then these sentences express different propositions. In his

1909 paper “Pragmatism”, Russell argues similarly against pragmatist

accounts of “the meaning of truth”. Thus, after writing generally:

When we ask ‘What does such and such a word mean?’

what we want to know is ‘What is in the mind of a person

using the word?’

he adds in the following paragraph:

When we say that a belief is true, the thought we wish to

convey is not the same thought as when we say that the

belief furthers our purposes; thus ‘true’ does not mean ‘fur-

thering our purposes’. . . . Thus pragmatism does not an-

swer the question: What is in our minds when we judge

that a certain belief is true? (1909, 274)

For Russell, since what is “present” to our minds,11 when we under-

stand “That belief is true” and “That belief furthers our purposes”, is

not the same, then, in accord with (PoA), these sentences express dif-

ferent propositions.

In these passages, Moore and Russell are, in effect, applying (PoA),

against proposed analyses of central concepts and against claims that

given sentences express the same proposition; and it may seem that ac-

cepting (PoA) precludes one from ever defending any philosophically

interesting analyses. For such an analysis would require one to recog-

nize a case in which sentence S2 provides a perspicuous representation

of the same proposition that is expressed non–perspicuously by a sen-

tence S1; but if to be “philosophically interesting”, an analysis would

have to reveal something which was not “present to the mind” prior to

the analysis, then any philosophically interesting analysis would con-

flict with (PoA). In fact, however, I argue below (§1.6), that for the

Moorean Russell, there are philosophically significant analyses that re-

quire us to distinguish perspicuous from non–perspicuous representa-

tions of the same propositions but that are not in conflict with (PoA),

and so do not reveal anything that someone who understands the non–

perspicuous representation does not already recognize. In contrast, as I

argue in Part 3, the post–Peano Russell defends analyses in the philoso-

phy of mathematics—perhaps, most notably the analyses involved in his
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definitions of the cardinal numbers—that he never presents as simply

reflecting what is “present to our minds” in understanding the relevant

words prior to those analyses. Hence, these post–Peano analyses con-

flict with (PoA) and raise a problem for Russell that I argue he does not

resolve until his post–1918 writings in which he adopts a behaviorist

account of what is involved in understanding language.

1.4. Epistemological Foundationalism

Besides holding that that all definition depends ultimately on indefin-

able terms whose meaning can be known only by “intuitive apprehen-

sion” or acquaintance, the Moorean Russell also accepts a foundation-

alist epistemology according to which all proof or justification depends

ultimately on “indemonstrable” propositions—namely, “axioms” or “ul-

timate premisses”—whose truth is “self–evident” or “intuitively appre-

hended”. In fact, both after and during his Moorean period, Russell

indicates that just as we avoid vicious regress in definition by recogniz-

ing indefinable terms whose meaning we know by acquaintance, so too

we avoid vicious regress of justification by recognizing “self–evident”

propositions, propositions whose truth cannot be justified by any other

propositions taken to be true.

Thus, in his 1913 manuscript Theory of Knowledge, in a passage part

of which I have quoted above, Russell writes:

The vulgar imagine that, in a science, every term ought to

be defined and every proposition ought to be proved. But

since human capacity is finite, what is known of a science

cannot contain more than a finite number of definitions and

propositions. It follows that every series of definitions and

propositions must have a beginning, and therefore there

must be undefined terms and unproved propositions. The

undefined terms are understood by means of acquaintance.

The unproved propositions are known by means of self–

evidence. (TK, 158)

And as early as the “Introduction” to his 1898 manuscript “An Analysis

of Mathematical Reasoning”—also in a passage part of which I quoted

in the previous section—Russell writes:
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It is the purpose of the present work to discover those con-

ceptions, and those judgments, which are necessarily pre-

supposed in pure mathematics. It is the habit of mathe-

maticians . . . to assume that definitions, in so far as they

are relevant, are always possible. It is, however, sufficiently

evident that some conceptions, at least, must be indefin-

able. . . . But besides the fundamental conceptions, we

must have fundamental judgments, or axioms, which form

the rules of inference—or, in a certain formal sense, the

major premisses—of arguments which use the fundamen-

tal concepts. . . . In a science which can be exhibited as

deductive, it seems evident that some such judgments are

necessary; and indeed the necessity of axioms has been

recognized more freely than that for indefinable concep-

tions. Such fundamental judgments, or axioms, will be

found wherever we have two or more fundamental concep-

tions. Their truth must, for a successful study, be intuitively

apprehended; but it must not be supposed that their truth

depends upon such apprehension. On the contrary, if they

are truly fundamental, no reason whatever can be given for

their truth. (1898, 163)

Thus, the twofold task that Russell sets for himself here is, first, to

identify the “indefinable” terms of mathematics—that is, “those concep-

tions . . . which are necessarily presupposed in pure mathematics”—and

the unprovable propositions of mathematics—that is, the “fundamental

judgments” or “axioms” that “are necessarily presupposed in pure math-

ematics” but are such that “no reason whatever can be given for their

truth”. For Russell, just as there can be no definitions at all unless some

terms admit no definition in simpler terms, so too there can be no jus-

tification or proof of any proposition unless some propositions are ac-

cepted as true without any proof or justification. And for Russell, just as

understanding an indefinable term is independent of our understanding

any other term and is instead a matter of “intuitively apprehending” the

meaning of that term, so too recognizing the truth of an “fundamental”

proposition or “axiom” is independent of our knowledge of any other

truth and is instead a matter of “intuitively apprehending” the truth of

that proposition.
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Russell labels as “self–evident” a “fundamental” proposition which

cannot be justified by any other proposition and whose truth can only be

“intuitively apprehended”, since the only “evidence” for that proposition

is that not any other proposition, but only that proposition itself. Thus,

in PoL, he writes of “ultimate premisses” as propositions which “have

no evidence except self–evidence” (166). And Moore writes in Principia

Ethica:

The expression ‘self–evident’ means properly that the propo-

sition so called is evident or true, by itself alone; that it is

not an inference from some proposition other than itself.

. . . [W]hen any proposition is self–evident, . . . there are

no reasons which prove its truth. (PE, 143–4)

For Moore, as for Russell, where a proposition cannot be justified by

any other proposition, then “no reason can be given for its truth”. For

on their view, to justify a proposition or to prove that it is true is to

cite another proposition we believe from which the truth of the original

proposition in question follows. Hence, to say that a proposition is

“self–evident” is not to say that there is any “evidence” on the basis of

which we infer that that proposition is true; rather, it is to say that we

recognize the truth of that proposition without any ratiocination in an

act of immediate insight.

1.5. The Distinction between Philosophy and Science and the Method of

Philosophy

Not only does the Moorean Russell hold that there must be indefinable

terms and unprovable propositions; he also holds that the characteristic

philosophical activity consists of “intuitively apprehending” the mean-

ing of indefinable terms—or, given his non–linguistic notion of “term”,

“intuiting indefinables”—and “intuitively apprehending” the truth of in-

demonstrable propositions.

Thus, as I have just indicated, the two tasks he sets for himself in

his 1898 manuscript “An Analysis of Mathematical Reasoning” are to

“discover” the indefinable “conceptions” and indemonstrable “axioms”

of mathematics. More generally, in his book on Leibniz, he writes:

[T]he business of philosophy is just the discovery of those

simple notions, and those primitive axioms, upon which any
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calculus or science must be based. ...[A]n emphasis on re-

sults rather than premisses . . . is radically opposed to the

true philosophic method. . . . [T]he problems of philoso-

phy should be anterior to deduction. An idea which can be

defined, or a proposition which can be proved, is of only

subordinate philosophical interest. The emphasis should be

laid on the indefinable and indemonstrable, and here no

method is available save intuition. (PoL, 170-1)

And in PoM, he expresses the same sort of view when he writes:

The distinction of philosophy and mathematics is broadly

one of point of view: mathematics is constructive and de-

ductive, philosophy is critical, and in a certain impersonal

sense controversial. Wherever we have deductive reason-

ing, we have mathematics; but the principles of deduc-

tion, the recognition of indefinable entities, and the distin-

guishing between such entities, are the business of philos-

ophy. Philosophy is, in fact, mainly a question of insight

and perception. . . . A certain body of indefinable entities

and indemonstrable propositions must form the starting-

point for any mathematical reasoning; and it is this starting-

point that concerns the philosopher. When the philoso-

pher’s work has been perfectly accomplished, its results can

be wholly embodied in premisses from which deduction

may proceed. .... All depends, in the end, upon immedi-

ate perception; and philosophical argument, strictly speak-

ing, consists mainly of an endeavour to cause the reader

to perceive what has been perceived by the author. The

argument, in short, is not of the nature of proof, but of ex-

hortation. (PoM, 129-30)

On the conception of philosophy Russell expresses in these passages,

philosophy is clearly distinguished from science and is a discipline that

essentially involves neither argument nor co–operation with others.

First of all, given his foundationalist view of definition and justifica-

tion, Russell is in a position to distinguish sharply the “constructive and

deductive” tasks of the mathematician and scientist from the “critical”

concerns of the philosopher. For Russell, the mathematician or scientist
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is concerned with deducing truths that have not previously been rec-

ognized, a task that may be facilitated by defining, or “constructing”,

concepts that have not been previously been defined; in contrast, the

philosopher’s concern is with the “starting–points” for any definition

or deduction. Thus, for Russell, the scientist and philosopher proceed

in opposite directions in the chains of definition and deduction: the

scientist moves forward to deduce more truths and construct more def-

initions; the philosopher moves backward to identify the “indefinable”

and the “indemonstrable” which makes scientific practice possible.

Further, since, for Russell, the indefinable and indemonstrable can

be recognized only by “intuition” or “immediate perception” (or, in his

later terminology, “acquaintance”)—and hence not by any inference—

the philosopher’s concerns lie precisely in those areas where it is not

possible to provide reasons for one’s position and hence where no ar-

gument is possible. Thus, for Russell, the proper method of philosophy

does not essentially involve argument or reason–giving; instead, it in-

volves “intuition” or “immediate perception”. And since it is ultimately

up to each individual to intuit what he or she intuits, philosophy be-

comes “in a certain impersonal sense controversial”. For if you fail to

intuit what I have intuited, there is no rationally compelling argument

by which I can convince you that what I have intuited is really there;

the most I can try to do is to “cause” you “to perceive” what I have

“perceived”, so that what is involved here is not rational argument but

rather “exhortation”. If my “exhortation” fails, we are left—“in a cer-

tain impersonal sense”—with a dispute that cannot be not rationally

adjudicated.

Accordingly, in Principia Ethica, in which he holds not only that

“good” is indefinable but also that propositions as to what is good in

itself are indemonstrable, Moore emphasizes that he does not regard

himself as providing arguments for his view as to which propositions of

the form “X is good in itself” are true. As he writes:

[F]or answers to the . . . question [What is good in itself?],

no relevant evidence whatever can be adduced: from no

other truth, except themselves alone, can it be inferred that

they are either true or false. We can guard against error

only by taking care, that, when we try to answer a question

of this kind, we have before our minds that question only,
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and not some other or others. . . . (PE, viii)

For Moore, to determine whether a proposition of the form “X is good”

is true, all I can do is to try to make sure that I have that proposition

alone and not any other “before my mind”. But once that proposition is

“before my mind”, I will either “intuit” that it is true or I will not; and

if I fail to “intuit” the truth of such a proposition that Moore “intuits” as

true, there are, Moore recognizes, no reasons for his view and against

mine and hence no arguments that either of us can produce that will

provide a good reason for a change in view of the other.

While this conception of philosophy might seem to hold out little

hope for ending philosophical conflict or for definitively addressing is-

sues of ultimate metaphysics, both Russell (during this period) and

Moore are confident that, despite incorporating the view that philos-

ophy concerns areas where there can be no reasons for one’s position,

their conception of philosophy and philosophical method is, in fact, ca-

pable, of producing not only agreement but also results regarding the

ultimate constituents of the universe. For on their view, there is no in–

principle impediment to our accessing those ultimate constituents—no

Kantian conditions “in us” that prevent our knowing the world as it is

“in itself”. Moreover, on their view, “intuitively apprehending” the ulti-

mate constituents of the universe involves no more, and no less, than

attending to “what we mean” or “what is present to the mind” when we

understand the sentences we utter. Accordingly, for Russell (during this

period) and Moore, what stands in the way of philosophical progress is

not the inability of some philosophers to understand the correct but sub-

tle arguments of other philosophers but rather the subtle but incorrect

arguments of some philosophers that have prevented philosophers gen-

erally from simply attending to the meanings of our words, meanings

that we are all aware of—or are acquainted with—when we understand

our ordinary discourse. Precisely because philosophy concerns areas

where the proper method is “intuition”, not rational argument, philoso-

phy has been led astray by arguments that have prevented philosophers

from attending to what is “before our minds”.

Thus, in Principia Ethica, Moore claims that if we practice the “method

of absolute isolation” and are careful to isolate propositions of the form

“X is good in itself” from all other propositions, then “the question we

have to answer”—namely, “What things have intrinsic value and in what
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degrees?”—“is far less difficult than the controversies of Ethics might

have led us to expect” (PE, 188). For Moore, since we are all “con-

stantly aware of” the “unique object . . . which I mean by ‘good”’, if

we all practice the “method of absolute isolation”, we will agree as to

which things are good in themselves and to what degree. Thus, for

Moore: “[O]nce the meaning of the question is clearly understood, the

answer to it, in its main outlines, appears to be so obvious, that it runs

the risk of seeming to be a platitude.” (Ibid.) For Moore, what stands in

the way of agreement on fundamental issues of ethics is not the appre-

ciation of subtle argument, but rather the inability focus solely on the

question at issue.

Likewise, for the Moorean Russell, bad arguments against the real-

ity of abstract entities—including numbers, relations, and properties—

have prevented philosophers from recognizing what we will all recog-

nize if we simply attend to what we think, including, for example, that

just as a tree is different from our idea of a tree, so too the number 2

is different from our idea of the number 2. Like Moore, who holds that

since “every one does in fact understand the question ‘Is this good?”’,

we are all “constantly aware of” what “I mean by ‘good”’, Russell holds

that when we think of the number 2, we are all aware of the same

object. For Russell as for Moore, if we simply attend to what we are

aware of, we will readily acknowledge abstract entities, such as “intrin-

sic value” or the number 2, notwithstanding philosophers’ arguments to

the contrary.

1.6. The Moorean Russell on Time, Magnitude, and Number

During his Moorean period, one of Russell’s main concerns is the na-

ture of order. He distinguishes generally between absolute and relative

theories of order and applies that distinction to theories of time, magni-

tude, and number, as well as space (which, is more complicated since it

involves more than one dimension), colors, and pitches of sounds. The

way he addresses this topic exemplifies a number of central features of

his philosophy during this period that I have emphasized above.

In “Is Position in Time Absolute or Relative?”, a paper he presented

in May 1900, Russell introduces the distinction between absolute and

relative theories of time as follows:

Vol. 4: 200 Years of Analytical Philosophy

http://www.thebalticyearbook.org/


35 James Levine

Does an event occur at a time, or does it merely occur be-

fore certain events, simultaneously with others, and after

a third set? The relational theory of time holds the latter

view: it holds, that is to say, that events acquire position

in the time–series solely by their mutual relations, and not

by relations to moments at which they occur. The absolute

theory, on the contrary, holds that events occur at times,

that times are before or after each other, and that events

are simultaneous or successive according as they occur at

the same or different times. (1900b, 222)

As Russell presents them, the relational and absolute theories of time

countenance different indefinables. On the relational theory, the only

indefinable terms to be related are events, so that “times do not really

exist” (1901b, 242). While “we can say, if we wish” that a given mo-

ment is “constituted” by the “whole” of simultaneously occurring events

(ibid., 243; see also 1900b, 226–7), in doing so we are treating times as

definable and so not among the ultimate constituents of the universe.

Further, on this theory, given any two events e1 and e2, one of three

cases will obtain: either e1 is before e2, or e1 is after e2, or e1 is simul-

taneous with e2. So in addition to events, the relative theory of time

recognizes three primitive relations: the asymmetric transitive relations

of before and after, and the symmetric, transitive relation of simultane-

ity.

On the absolute theory, in contrast, there are both events and abso-

lute moments among the ultimate constituents of the universe. Here,

moments have an “intrinsic order” to one another, while events acquire

a temporal order only “by correlation” with the “independent” or “self-

sufficient” series of moments in absolute time (see 1901a, 291). Be-

tween any two moments, m1 and m2, only two cases are possible: ei-

ther m1 is before m2, or m1 is after m2. For since moments are temporal

positions, distinct moments are distinct temporal positions, in which

case, no two moments can be simultaneous. In addition to the relations

of before and after, now understood as relations between moments not

events, the absolute theory of time recognizes a further (many–one) re-

lation of occurring at which relates each event to the moment at which

it occurs.

For Russell, one way to focus the difference between the two the-
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ories is to consider the analysis of the proposition expressed by an in-

stance of

(Time1) Event α is simultaneous with event β .

In accord with (Aug), Russell holds that that the expression “is simulta-

neous with” has as its meaning an entity—a relation, namely simultane-

ity; however, the philosophical issue for Russell is whether that relation

is an indefinable, an ultimate constituent of the universe, or whether it

is definable. On the relative theory of time, that relation is indefinable,

so that an instance of (Time1), expresses a proposition that has three

ultimate constituents—namely, the events in question and simultaneity.

In contrast, on the absolute theory, simultaneity is to be analyzed in

terms of occurring at the same moment, so that the full analysis of a

proposition expressed by an instance of (Time1) is given by the corre-

sponding instance of

(Time2) There is a moment t such that α occurs at t and β occurs at t.

As Russell writes, on the absolute theory

“A is simultaneous with B” requires analysis into “A and B

are both at one time”. (1899–1900, 147)

Hence, to accept the absolute theory of time is to hold that while cor-

responding instances of (Time1) and (Time2) express the same propo-

sition, the instance of (Time2), but not (Time1), is a perspicuous repre-

sentation of that proposition.

Likewise, for Russell, the central issue distinguishing the relative

from the absolute theory of magnitude is whether, when two quanti-

ties are equal in magnitude, there is some further indefinable entity—a

magnitude—that is common to the two quantities. On the relative the-

ory of magnitude, there is no such indefinable magnitude and the (tran-

sitive, symmetrical) relation of equality in magnitude is an indefinable

relation between quantities, so that an instance of

(Mag1) Quantity α is equal in magnitude to quantity β

expresses a proposition that has three ultimate constituents—the quan-

tities α and β and the indefinable relation of equality in magnitude. In

contrast, on the absolute theory of magnitude, the relation of equality

of magnitude is definable and an instance of
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(Mag2) There is a magnitude m such that α has m and β has m

is the privileged representation of the proposition expressed by the

corresponding instance of (Mag1). As Russell writes in his pre–Peano

1899–1900 draft of PoM:

The kernel of the difference between the present [relative]

theory and the former [absolute theory] is, that now equal-

ity is taken as indefinable, whereas formerly each magni-

tude was indefinable. . . . The present theory is simpler

than the former, since it does not require so many indefin-

ables. Equal, greater and less are now all the apparatus

of ultimate notions, whereas formerly every possible mag-

nitude formed part of this apparatus. It might perhaps be

thought, by those who regard definition as subject to con-

venience, that the present theory is not incompatible with

the former. This would, however, be a grave philosophical

error. Every concept is necessarily either simple or complex,

and it is not in our power to alter its nature in this respect.

If it is complex, it should be analyzed and defined; if sim-

ple, it should be used in defining other terms, without itself

receiving a definition. Thus equality either may be analyzed

into sameness of magnitude, or it may not be so analyzed.

. . . It does not lie with us to choose what terms are to be

indefinable; on the contrary, it is the business of philoso-

phy to discover these terms. We have to decide whether

the indefinable term is the relation of equality, or a com-

mon property of equal quantities. If we choose the former

alternative, we shall have to deny a common property; for

if there were any common property, this could be used to

define equality. (1899–1900, 57–8)

Thus, in accord with his overall Moorean philosophy, Russell here presents

the choice between these theories as the sort of issue that is “the busi-

ness of philosophy” to address. In deciding which of these theories

is correct, we are not concerned with matters of convenience or with

arriving at a theory which has the fewest indefinables; rather, we are

attempting to determine what are among the indefinable, ultimate con-

stituents of the universe. Are there, in addition to quantities, indefin-
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able magnitudes? Or, are there no such magnitudes, but instead an

indefinable symmetric transitive relation of equality in magnitude?

Again, in distinguishing the relative from absolute theory of number,

Russell indicates that whereas

[T]he relational theory would hold that there is never a

number of terms at all, but there are merely the relations of

equal, greater, and less among collections, [whereas on the

absolute theory] equality . . . consists in possession of the

same number. (1900b, 225)

Thus, on the relative theory of number, there are no indefinable num-

bers in addition to “collections”, so that the proposition expressed by an

instance of

(Num1) Class α is equal in number with class β

has as among its constituents an indefinable relation of being equal in

number. In contrast, on the absolute theory of number, there are inde-

finable numbers but no indefinable relation of being equal in number, so

that an instance of

(Num2) There is a number n such that α possesses n and β possesses

n.

is the privileged representation of the proposition expressed by the cor-

responding instance of (Num1).

More generally, for Russell, deciding between relative and absolute

theories of order requires considering instances of

(Ab1) E(α, β),

where E is a symmetrical transitive relation (such as simultaneity, equal-

ity in magnitude, or equality in number), and

(Ab2) (∃x)(R(α, x) & R(β , x)),

where R is an appropriate many–one relation (such as occurring at, hav-

ing, or possessing). To accept a relative theory of order is to hold that

the relevant transitive, symmetrical relation is indefinable so that the

relevant instances of (Ab1) express propositions that contain that rela-

tion as an ultimate constituent. In contrast, to accept the correspond-

ing absolute theory of order is to hold that that symmetrical transitive
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relation is definable, and that the relevant instances of (Ab2) are privi-

leged representations of the propositions expressed non–perspicuously

by corresponding instances of (Ab1).

During his Moorean period and even in his draft of PoM immedi-

ately following the Paris Congress, Russell accepts absolute theories of

order. Moreover, in accord with his Moorean conception of the proper

method of philosophy, as well with (PoA), Russell indicates that we are

in a position to settle the issue by immediate “inspection” alone. Thus,

in his pre–Peano draft of PoM, Russell defends the absolute theory of

magnitude by writing: “[W]hen we consider what we mean when we

say that two quantities are equal, it seems preposterous to maintain that

they have no common property not shared by unequal quantities” (58;

see also PoM 164). In accord with (PoA), that is, Russell claims that if

we simply consider “what we mean” when we utter a sentence of the

form (Mag1), we will recognize that the proposition expressed does not

have an indefinable relation of equality in magnitude as an ultimate con-

stituent but rather that that proposition is perspicuously represented by

the corresponding instance of (Mag2). Thus while Russell is not taking

himself to reveal anything that someone who understands a sentence

of the form (Mag1) does not already recognize, he is taking himself to

be making a philosophically significant point, which establishes the ab-

solute theory of magnitude, according to which there are indefinable

magnitudes among the ultimate constituents of the universe. In accord

with his overall Moorean outlook, Russell is indicating that questions of

ultimate metaphysics can be established by immediate “inspection” and

by a conception of analysis that is in accord with (PoA).

Likewise, in defending the absolute theory of time, the Moorean

Russell writes: “A direct consideration of the question . . . makes it very

difficult to hold that simultaneous events have absolutely nothing in

common beyond the common qualities of all events” (1900b, 227); and

in defending the absolute theory of number, he writes that numerical

“equality [between classes] plainly consists in possession of the same

number” (ibid., 225; see also 1899–1900, 146).12 More generally, he

writes: “[F]or my part I consider it self–evident that all symmetrical

transitive relations are analyzable” (1901c, 262); and in his post–Peano

draft of PoM he incorporates what he thus regards as “self–evident” into

an “axiom” according to which the full analysis of an instance of (Ab1)
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is given by the corresponding instance of (Ab2):

[M]y axiom of abstraction, which precisely stated, is as fol-

lows: “Every transitive symmetrical relation, of which there

is at least one instance, is analyzable into joint possession of

a new relation to a new term, the new relation being such

that no term can have this relation to more than one term,

but that its converse does not have this property.” (See PoM,

220, as correlated with Byrd, 1996–7, 165–6)

In these passages, Russell is indicating that the metaphysics of time and

number, and more generally of order, can be settled by appeal to what

is obvious by “direct consideration” of what we mean by sentences of

the form (Ab1), or by a “self–evident axiom” regarding the analysis of

propositions expressed by sentences of that form. And for the Moorean

Russell, this appeal to the obvious or “self–evident”, rather than argu-

ment, does not reflect a weakness of his position, but is rather the cor-

rect methodology when it comes to settling the fundamental matters

that are “the business of philosophy”.

Moreover, in defending absolute theories of order, Russell indicates,

in accord with his general Moorean outlook, that what has prevented

philosophers from recognizing what should be obvious to all of us by

“direct inspection” are widely accepted philosophical theories, in par-

ticular a “scholastic logic”, which takes the subject–predicate form as

fundamental and thereby fails to recognize relations. Thus, he con-

cludes his May 1900 defense of the absolute theory of time by writing:

On the usual subject–predicate doctrine, it is impossible

to admit such a relation as that of an event to the time

at which it occurs. In this relation, both terms exist, and

neither is a mere predicate of the other. But if we once

admit, as I hold that we must, that relations are not es-

sentially reducible to the subject–predicate form, such an

objection vanishes. If we hold to the objection, we must

also deny before and after even among events, since these

relations, as we have seen, are not reducible to the pred-

icates. Thus it seems that, at bottom, the denial of real-

ity to everything that appears real to commons sense—a

denial increasingly characteristic of idealistic systems since
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Descartes—is made in the interests of a scholastic logic, not

re–examined in its fundamentals by any modern writer. . . .

[It is in the theory of space and time especially that the

traditional logic has wrought havoc, and it is time that con-

tradictions should cease to be regarded as commending a

theory, or that admission of the obvious should be held to

condemn a philosopher.] . . . Hence the grounds for re-

jecting a commons sense theory of time, which rest upon a

dogmatically assumed scholastic logic, appear wholly inad-

equate. . . . (1900b, 232–3; the bracketed sentence occurs

in a manuscript draft of the paper, see CP3, 783)

For Russell, if relations are not recognized—in particular, if non–sym-

metrical relations, including that of occurring at, which is needed for

the absolute theory of time, or relations of before and after, which are

needed for either the absolute or relative theories, are not recognized—

then no theory of order, absolute or relative, is coherent, and one is

faced with holding that all order is infected with “contradiction”.13 How-

ever, once relations are admitted, then there is nothing standing in the

way of accepting the “commonsense “ or “obvious” theory of time, the

theory that admits what “appears real to common sense”. For the

Moorean Russell, appealing to what is “self–evident”, or to what is

obvious by “inspection”, or to the (PoA), which simply takes into ac-

count “what we mean” by the sentences we utter, can be philosophi-

cally significant because it stands in contrast to accepting “dogmatically

assumed” philosophical theories that have prevented us from acknowl-

edging what we all, in fact, “immediately perceive” regarding the ulti-

mate constituents of reality.14

Moore himself also accepts views of propositions expressed by sen-

tences of the form (Ab1) that are characteristic of the Moorean Russell.

Thus, in his 1901 paper “Identity”, Moore denies that “exact similarity

[is] an unanalysable relation” and instead is concerned “to define the

relation of exact similarity between two things as involving a relation

to a third thing” (131), where “this third thing is the Platonic idea, or,

as we may now call it, the universal” (132), claiming that this is what

“is meant by exact similarity” (ibid.). Thus, Moore holds that the propo-

sition expressed by a sentence of the form

(Sim1) α is exactly similar to β
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does not contain the transitive, symmetric relation of exact similarity as

an ultimate constituent (an unanalysable relation) and holds as well,

in accord with Russell’s “axiom of abstraction”, that the corresponding

sentence of the form

(Sim2) (∃x)(R(α, x) & R(β , x)),

where R is the appropriate relation, provides a privileged representation

of the proposition thus expressed.

Further, as late as 1911, in lectures that were later published as

Some Main Problems of Philosophy, Moore accepts the Moorean Russell’s

“absolute” theory of number, which, as I discuss in Part 3 below, Russell

himself had already rejected by the publication of PoM in 1903. In

particular, in discussing whether there are any universals of what he

calls his “third kind”—universals that are neither relations nor relational

properties—Moore writes generally:

It may be held . . . that when we say that two things re-

semble one another, what we mean by this is always merely

that they have some property in common. It may be held in

short, that resemblance always consists in the possession of

some common property—is merely another name for such

possession. (1953, 358)

Thus, Moore is considering the view, which would follow from Russell’s

“axiom of abstraction”, that a sentence of the form “α resembles β (in

a given respect)” expresses a proposition which is perspicuously repre-

sented by the corresponding sentence of the form “There is a property

P, α possess P and β possesses P”. And while Moore does not, here in

1911, embrace this analysis in all cases, he does accept it for the case

of number:

[T]here is a . . . type of cases [sic], in which it seems to

me plainer that a universal of my third kind is involved,

in which it seems to me that we can perhaps distinguish

this universal—hold it before our minds, and be sure that

it is there. . . . Consider, for instance, the group formed of

all collections which are collections of two things and no

more—which are pairs or couples. Every pair or couple of

things, no matter what the things may be, obviously has
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some property which belongs to all other pairs or couples

and to nothing else—the property which we express by say-

ing that each of them is a pair or couple. . . . The property

in question does seem to consist in the fact that the num-

ber two belongs to every such collection and only to such

a collection; and the number two itself does seem to be a

universal of my third kind: something which is neither a

relation nor a property which consists in the having of a

relation to something or other. And it seems to me that in

this case we can perhaps distinguish the universal in ques-

tion: that we can hold the number two before our minds,

and see what it is, and that it is, in almost the same way as

we can do this with any particular sense–datum that we are

directly perceiving. (Ibid., 366)

And he adds shortly thereafter that “the resemblance between the pairs

does merely consist in the possession of a common property”, that “it

is obvious that exactly the same argument applies to each of the other

whole numbers”, and that “each particular whole number, therefore,

does seem to be a universal of my third kind” (ibid., 368). Thus, in

these remarks, Moore embraces the “absolute” theory of number, ac-

cording to which the proposition expressed by an instance of (Num1)

is represented perspicuously by the corresponding instance of (Num2).

Moreover, he indicates here, as does the Moorean Russell, and in ac-

cord with (PoA), that considerations as to what is “before our minds”

when we understand the relevant sentences suffice for establishing that

theory of number.

Consider finally here the following passage from Husserl’s Logical

Investigations:

[W]e find . . . that whenever things are ‘alike’, an identity

in the strict and true sense is also present. We cannot pred-

icate exact likeness of things, without stating the respect

in which they are thus alike. Each exact likeness relates

to a Species, under which the objects compared are sub-

sumed. . . . It would of course appear as a total inversion of

the true state of things, were one to try to define identity,

even in the sensory realm, as being essentially a limiting

case of ‘alikeness’. Identity is wholly indefinable, whereas
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‘alikeness’ is definable: ‘alikeness’ is the relation of objects

falling under one and the same Species. If one is not al-

lowed to speak of the identity of the Species, of the respect

in which there is ‘alikeness’, talk of ‘alikeness’ loses its whole

basis. (1900–1, Investigation II, Chapter 1, §3, 242)

Thus, like the early Russell and Moore, Husserl holds that “exact like-

ness” in a certain respect is “definable” as “the relation of objects falling

under one and the same Species”, so that an instance of (Sim1), stating

of two things that they are exactly alike in a certain respect, expresses

a proposition whose full analysis is given by the corresponding instance

of (Sim2), stating of those things that they “fall under one and the same

Species”. Further, for Husserl, as for the early Russell and Moore, ac-

cepting this view follows from applying some such principle as (PoA);

for like the early Russell and Moore, Husserl indicates that anyone who

understands an instance of (Sim1) will take it as obvious that what is

thus meant is fully expressed in the corresponding instance of (Sim2).

2. RUSSELL POST–PEANO I: THE TRANSFINITE, EPISTEMOLOGY, AND

THE RELATION OF PHILOSOPHY TO SCIENCE

Besides characterizing his attending the Paris Congress of August 1900

as the “the most important event” in “the most important year in my in-

tellectual life”, Russell writes (in his Autobiography) that “intellectually,

the month of September 1900 was the highest point in my life” (1967,

145). Describing that month, he writes:

The time was one of intellectual intoxication. My sensa-

tions resembled those one has after climbing a mountain

in a mist, when, on reaching the summit, the mist suddenly

clears, and the country becomes visible for forty miles in ev-

ery direction. For years I had been endeavouring to analyse

the fundamental notions of mathematics, such as order and

cardinal numbers. Suddenly, in the space of a few weeks,

I discovered what appeared to me to be definitive answers

to the problems which had baffled me for years. And in

the course of discovering these answers, I was introducing

a new mathematical technique, by which regions formerly
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abandoned to the vaguenesses of philosophers were con-

quered for the precision of exact formulae. (Ibid.)

In October 1900, Russell drafted “The Logic of Relations”, which was

published in Peano’s journal Rivista di Matematica in 1901; in Novem-

ber through December 1900 he wrote final drafts of Parts III–VI of PoM

(Parts III–V in November, Part VI in December); and in January 1901,

he wrote the popular essay “Recent Work in the Philosophy of Mathe-

matics”, which he later reprinted under the title “Mathematics and the

Metaphysicians”.

There are numerous issues regarding exactly how Russell’s views

changed in the wake of his attending the Paris Congress in August 1900

and exactly when, following the Congress, Russell came to accept var-

ious views that he incorporated in PoM.15 Here, I make three general

points. First, it is clear that during the period of “intellectual intoxica-

tion” immediately following the Paris Congress, Russell came to hold—

what, as I discuss below, he had formerly denied—that mathematicians

such as Dedekind, Weierstrass, and, especially Cantor, had solved all

the traditional problems of infinity and continuity. Russell incorporates

Cantorian views of transfinite cardinals and ordinals as well as Can-

tor’s account of continuity in “The Logic of Relations”, and the work of

Dedekind, Weierstrass, and Cantor is central to the argument of Part V

of PoM as well as “Recent Work in the Philosophy of Mathematics”.

Second, it was not during this initial period following the Paris Con-

gress that Russell came to accept the so–called “Frege–Russell” defini-

tions of cardinal numbers, according to which the cardinal number of a

given class α is the class of classes equinumerous with α, and the car-

dinal number n is the class of n–membered classes. While this view of

cardinal numbers appears in the published version of “The Logic of Re-

lations”, it does not appear in the October 1900 draft of the paper, nor

does it appear in the draft of PoM that Russell composed in November–

December 1900; instead, Russell appears to have introduced these defi-

nitions sometime between February and June 1901, when he made the

final corrections to “The Logic of Relations”.16 Moreover, as I discuss

in §3.1 below, as late as May 1902, Russell indicates that while such

definitions of cardinal numbers are “formally” acceptable, they are not

“philosophically” adequate; and it is only in the final copyediting of

PoM, sometime after June 1902 that Russell embraces these definitions,
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“philosophically” as well as “formally”. Regarding these definitions as

a philosophically adequate account of the cardinal numbers is a major

event in Russell’s development; for, in doing so, he is not only rejecting

his Moorean absolute theory of number, but also, more generally, has

the means to reject all his Moorean absolute theories of order, including

his earlier theories of time and magnitude.

Third, it was not until May 1901 that Russell first discovered a ver-

sion of the paradox that bears his name, and there is a question as to

when Russell came to regard it as presenting a deep and fundamental

problem. Russell himself writes in his Autobiography that “at first I sup-

posed that I should be able to overcome the contradiction quite easily,

and that probably there was some trivial error in the reasoning” and

that “throughout the latter half of 1901 I supposed the solution would

be easy, but by the end of that time I had concluded it was a big job”

(1967, 147). Some have argued that it was not until he presented the

“contradiction” to Frege in June 1902 and came to see how devastating

it was to Frege that Russell came to recognize the full importance of his

“contradiction”.17

In what follows, my primary concern is with the first two of these

three post–Peano developments.18 In particular, in this Part, after dis-

cussing (in §2.1) some aspects of how Russell’s views of Cantor, Dedekind,

and Weierstrass change immediately after the Paris Congress, I argue

that his post–Peano acceptance of their work conflicts with a number

of features of his overall Moorean philosophy—including its epistemo-

logical foundationalism (§2.2), its characterization of “the business of

philosophy” (§2.3), and its view of the relation between philosophy and

science (§2.4)—and thereby provides the model for his later “scientific

conception of philosophy” (§2.5). In Part 3, I argue that Russell’s accep-

tance of the so–called “Frege–Russell” definitions of cardinal numbers

is not only incompatible with his earlier absolute theory of number, but

is also, opposed to his Moorean conception of analysis and relies on a

notion of “vagueness” that threatens to undermine (Aug) and (PoA), so

that he cannot present a plausible account of analysis that enables him

to regard these definitions of numbers (along with definitions of other

mathematical terms he accepts after the Paris Congress) as legitimate

until he rejects those Moorean views of meaning and understanding

and accepts instead his later behaviorist account of understanding.
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2.1. Russell on Cantor, Dedekind and Weierstrass Pre– and Post–Peano

Prior to the Paris Congress, Russell was aware of the work of Cantor,

Dedekind, and Weierstrass, but did not regard it as philosophically ac-

ceptable. First of all, during his Moorean period, Russell rejects Cantor’s

theory of transfinite numbers. Thus in his pre–Peano draft of PoM, Rus-

sell begins his chapter entitled “Transfinite Numbers” by writing:

The mathematical theory of infinity may almost be said to

begin with Cantor. The infinitesimal calculus, though it em-

ploys infinity, contrives to smuggle it out of the results, and

deals with it as briefly as possible. . . . Cantor has aban-

doned this cowardly policy, and has brought the skeleton

out of its cupboard. He has been emboldened in this course

by denying that it is a skeleton: In this however, we shall

find reason to disagree. . . . I cannot persuade myself that

his theory solves any of the philosophical difficulties of in-

finity, or renders the antinomy of infinite number one whit

less formidable. (1899–1900, 119)

In particular, Russell holds that while there are infinite classes and in-

finite series, unavoidable antinomies result if one holds that there are

transfinite numbers—cardinal or ordinal—that may be assigned to such

classes and series.

Russell’s central argument against recognizing transfinite numbers,

to which he alludes in the above passage, is “the antinomy of infinite

number”, which he presents in an 1899 manuscript as follows:

Number in connection with whole and part, quantity, and or-

der. The application of these ideas leads to (a) all numbers

(b) the greatest number (c) the last number. Observe that

(b) is improper: it means the number applying to the great-

est collection. All three are commonly called infinite num-

ber, and imply an antinomy, since their being can be both

proved and disproved. (a) the most fundamental: There

are many numbers, therefore there is a number of num-

bers. If this be N, N + 1 is also a number, therefore there

is no number of numbers. (CP2, 265; see also 1899–1900,

123–5; 1900b, 231)
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This argument19 has the form of the paradox of the largest cardinal:

given that every class has a cardinal number of elements, it would seem

that there should be a greatest cardinal number, “the number applying

to the greatest collection” (which Russell here seems to assume would

be the same as “the number of numbers”); however, given that for every

number, there is a greater number (a view which Russell here generates

by the assumption that given any number N, N+1 will be greater than

N20), there can be no greatest number. And to avoid this contradiction,

Russell rejects the assumption that “a given collection of many terms

must contain some definite number of terms”, apparently taking that

assumption as less obvious than that for any number N, there is a num-

ber N + 1 greater than N. In particular, since Russell agrees that “all

finite numbers is a legitimate concept” and that there is no finite num-

ber of all finite numbers, he holds that while there are infinite classes,

such as the class of all finite numbers, such classes have no number of

terms (see 1899–1900, 124–5).

In denying transfinite numbers while countenancing infinite classes,

Russell is developing a view he finds in Leibniz. Thus, in PoL, Russell

writes that Leibniz accepted “the principle . . . that infinite aggregates

have no number” and adds that this “principle is perhaps one of the best

ways of escaping from the antinomy of infinite number” (117, fn; see

also 1900b, 231 and 1946, 784). Further, in writing that “Leibniz de-

nied infinite number, and supported his denial by very solid arguments”

(PoL, 109), Russell cites the following passage from Leibniz:

[T]he number of all numbers implies a contradiction, which

I show thus: To any number there is a corresponding num-

ber equal to its double. Therefore the number of all num-

bers is not greater than the number of even numbers, i.e.

the whole is not greater than its part. (Ibid., 244)

Here, Leibniz is, in effect, pointing out that a contradiction arises if

one assumes both that sets whose members can be placed in a one–one

correspondence with each other (such as the set of natural numbers

and the set of even numbers) have the same cardinal number and that

a proper subset of a given set must have fewer members than that given

set, here alluding to the Euclidean axiom that the part is less than the

whole. Leibniz avoids this contradiction by holding that while these

principles apply to aggregates that may be assigned a cardinal number,

Vol. 4: 200 Years of Analytical Philosophy

http://www.thebalticyearbook.org/


49 James Levine

infinite aggregates have no cardinal number; and, prior to the Paris

Congress, Russell accepts Leibniz’s argument here and his conclusion.

Further, in his pre–Peano draft of PoM, Russell also rejects Dedekind’s

and Cantor’s accounts of irrational numbers as well as Cantor’s account

of continuity. According to Russell, Dedekind assumes an “axiom” from

which it follows that for every convergent sequence of rational num-

bers,21 there is a number that is the limit of that sequence; however,

for Russell, there is no such axiom that is “possessed of self–evidence”

(1899–1900, 115), in which case Dedekind has provided no good rea-

son for countenancing irrational numbers as the limits of certain con-

verging sequences of rational numbers.22 According to Russell, Cantor

bases his account of irrational numbers as well as his account of conti-

nuity on his account of transfinite ordinals. Since, for Cantor, for any

converging infinite sequence of rational numbers, there will always be

the ωth term of that sequence (where ω is Cantor’s first transfinite or-

dinal), which will then be the limit of that sequence. And since the

structure of the series of real numbers is the basis for Cantor’s account

of continuity, Russell holds that without his theory of transfinite ordi-

nals, Cantor has provided no good reason either for holding that there

are irrational numbers or for characterizing continuity in terms of the

structure of the real numbers. As Russell writes:

The admission of irrationals, and of continuity in Cantor’s

sense, would seem to depend wholly upon the admission of

the completed infinite, i.e. of Cantor’s transfinite numbers.

If there be a limit [to the series whose nth term is An], it is

Aω; if Aω is not admissible, there is no limit.. . . If this con-

clusion be valid, it is not irrationals, but transfinite integers,

that introduce a new idea; and this idea is properly that of

the completed or definite infinite. (1899–1900, 115)

Thus, since he rejects Cantor’s theory of transfinite ordinals, the pre–

Peano Russell also rejects Cantor’s theory of the irrationals and of con-

tinuity.

While Russell thus rejects “the arithmetical theory of irrationals”—

the view that irrationals are genuine numbers on a par with the whole

numbers and rationals—he goes on to develop a “quantitative” account

of the irrationals (ibid., 138) that depends on the view that some quan-

tities are infinitely divisible. In rejecting transfinite numbers, Russell
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holds of such quantities that they do not have a “numerically measure-

able” number of parts, so that the “magnitude of divisibility” associated

with such a quantity is “incommensurable” with the “magnitude of di-

visibility” associated with a quantity that is finitely divisible; however,

by recognizing “incommensurable” magnitudes of divisibility, Russell

holds that irrational numbers may then be “interpreted” (ibid.) as ra-

tios of such incommensurable magnitudes, ratios which “can only be ex-

pressed as limits” (ibid., 137), an approach which, as Russell indicates

(ibid., 138), goes back to Definition V of Book V of Euclid’s Elements.

Russell was aware pre–Peano of the view of “Weierstrass and his fol-

lowers” that “all pure mathematics should be regarded as dealing exclu-

sively with numbers” so that “the reference to quantity [in pure math-

ematics] has, in the past thirty years, been wholly eliminated” (ibid.,

54); hence, he acknowledges in his pre–Peano draft of PoM that his

“quantitative” account of irrationals “places an awkward obstacle in the

way of the complete arithmetization of mathematics” (ibid., 138) and

“may appear unduly conservative, and may seem to do scant justice to

the modern theory of number” (ibid., 140). However, as he continues:

It [this quantitative account of irrationals] seems, however,

to be forced upon us by the difficulties we found in Chap-

ter V [Transfinite Numbers]. These difficulties are not new,

but are merely old puzzles worded to suit transfinite num-

bers. I am unaware of any answer to them, and until such

an answer is found, the rejection of infinite number seems

unavoidable. Since, nevertheless, infinity is in some sense

forced upon us, it is preferable to give independence to

the quantitative infinite, and allow this to apply to wholes

which are not amenable to number. (Ibid., 140)

For the pre–Peano Russell, it is by “giv[ing] infinity a quantitative mean-

ing” (ibid., 137)—in particular by allowing that there are infinitely

divisible quantities but no infinite numbers—that he can provide an

“interpretation” of the irrationals without actually countenancing irra-

tional numbers.

By Russell’s post–Peano draft of PoM, all this has changed. First, he

now embraces Cantorian set theory. Thus, while he begins his chap-

ter entitled “Transfinite Cardinals”, as he had begun his earlier draft

of “Transfinite Numbers”—by writing that “Cantor has abandoned” the
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“cowardly policy” of “contriv[ing] to hide [infinity] away” and “has

brought the skeleton of the cupboard”—he continues by writing:

Indeed, like many other skeletons, it was wholly dependent

on its cupboard, and vanished in the light of day. Speaking

without metaphor, Cantor has established a new branch of

Mathematics, in which, by mere correctness of deduction,

it is shown that the supposed contradictions of infinity all

depend upon extending, to the infinite, results which, while

they can be proved concerning finite numbers, are in no

sense necessarily true of all numbers. (PoM, 30423)

And since Russell had not yet discovered his paradox, he is fully confi-

dent in his post–Peano 1900 draft of PoM that Cantor’s theory provides

the means to avoid all “the supposed contradictions of infinity”.

Further, while he still rejects the way in which Dedekind and Cantor

introduce the irrational numbers (and also now criticizes Weierstrass

in this regard)—arguing, as he had earlier, that on their theories it “is

evidently a sheer assumption” (PoM, 281) that for any convergent se-

ries of rational numbers there is a number which is the limit of that

series and that any proposed “axiom of continuity” that would guaran-

tee the existence of such a limit has “no vestige of self–evidence” (ibid.,

280)—he now (ibid., 271) defines real numbers, rational and irrational,

as classes of rational numbers (that he calls “segments”) that are nei-

ther null nor co–extensive with the rational numbers but which have

no greatest member—that is, which are such that for any x which is in

segment S, there is a y in S such that x<y—and which are such that

if y is in S then so is every x<y (ibid., 270).24 He then argues that

“the usual properties of real numbers”—such as that there are more re-

als than rationals—“belong to segments of rationals” (ibid., 274). Given

this definition (to which he was led by reading a paper from Peano—see

PoM, 274–5), Russell no longer needs to appeal to his apparently retro-

grade “quantitative” account of the irrationals; on the contrary, he now

regards himself as fulfilling the project of arithmetizing mathematics

more fully than do Dedekind, Cantor, or Weierstrass themselves. Thus

in defending his definition of real numbers as “segments of rationals”,

Russell writes:

[T]here is no logical ground for distinguishing segments of
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rational numbers from real numbers. If they are to be dis-

tinguished, it must be in virtue of some immediate intuition,

or of some wholly new axiom, such as, that all series of ra-

tionals must have a limit. But this would be fatal to the uni-

form development of Arithmetic and Analysis from the five

premisses which Peano has found sufficient, and would be

wholly contrary to the spirit of those who have invented the

arithmetical theory of irrationals. My theory [In PoM, “The

above theory”}, on the contrary, requires no new axiom, for

if there are rationals, there must be segments of rationals;

and it removes what seems, mathematically, a wholly un-

necessary complication, since, if segments will do all that

is required of irrationals, it seems superfluous to introduce

a new parallel series with precisely the same mathematical

properties. I conclude, then, that an irrational actually is a

segment of rationals which does not have a limit. . . . (PoM,

286, as collated with Byrd, 1994, 76)

For Russell, that is, while Dedekind, Cantor, and Weierstrass move from

rationals to irrationals only by assuming some such “axiom” that every

convergent series of rationals has a limit, he has arrived at the irra-

tionals from the rationals without such an axiom, instead assuming only

(what those others also accept) that where there are rationals, there are

also classes (and hence segments) of rationals. And in that case, Rus-

sell’s account, is truer “to the spirit of those who have invented the

arithmetical theory of irrationals” than are the accounts of Dedekind,

Cantor, or Weierstrass themselves.

Moreover, since he now accepts a purely “arithmetical” theory of the

real numbers, he can accept an account of continuity that appeals to no

“quantitative” considerations. In particular, he now holds that Cantor

produces a purely “ordinal” definition of continuity, and, since he now

regards the real numbers, construed as segments of rationals, as fully

“arithmetical”, he claims also that “instances fulfilling the definition [of

continuity] may be found in Arithmetic” (PoM, 303). Whereas he previ-

ously held that Cantor could not define continuity in his sense without

illegitimately assuming the existence of limits of certain series and de-

nied that any “arithmetical” structure is continuous in Cantor’s sense,

he now regards Cantor’s definition as legitimate and the real numbers
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as an arithmetical series that meets Cantor’s definition.

Accordingly, whereas Russell concluded Part V (“Continuity and In-

finity”) of his pre–Peano draft of PoM by writing:

[L]et us sum up the discussions of Part V [“Infinity and Con-

tinuity”]. . . . We . . . examined the arithmetical theory of

irrationals: we saw that these must be already known to ex-

ist, if they are to be determined by series of rational num-

bers. Their existence, we found could only be proved be

means of some axiom of continuity, or by transfinite num-

bers. Dedekind’s suggested axiom was found to be unsat-

isfactory, and we were left to examine transfinite numbers.

As a preliminary, Cantor’s definition of continuity was dis-

cussed. . . . It was found that continuity, in Cantor’s sense,

depends also upon transfinite numbers. . . . But when we

came to these, we found that all the old difficulties as to the

number of numbers remained. We found that Cantor’s infi-

nite is as ambiguous and as little definite as the older kinds,

and cannot disprove the proposition that every number is

finite, (1899–1900, 140)

he concludes his post–Peano November 1900 draft of the same Part by

writing:

To sum up the discussions of this Part: We saw, to begin

with, that irrationals are to be defined as those segments of

rationals which have no limit, and that in this way analy-

sis is able to dispense with any special axiom of continuity.

We saw that it is possible to define the kind of continuity,

which belongs to real numbers, in a purely ordinal manner

[in PoM, “to define, in a purely ordinal manner, the kind of

continuity which belongs to real numbers”], and that con-

tinuity so defined is not self–contradictory. Finally we ad-

dressed the philosophical questions concerning continuity

and infinity. . . . [W]e found that all the usual arguments,

both as to infinity and as to continuity, are fallacious, and

that no definite contradiction can be proved concerning ei-

ther. (PoM, 368, as collated with Byrd, 1994, 86)25
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It would be hard to overstate the importance for Russell of his coming

to embrace the work of Cantor, Dedekind, and Weierstrass; and in his

(influential26) essay “Recent Work on the Principles of Mathematics”,

which incorporates many of the central points of Part V of PoM, Russell

dramatically characterizes their achievements. Thus, for example, he

writes:

Zeno was concerned . . . with three problems. . . . These

are the problems of the infinitesimal, the infinite, and con-

tinuity. To state clearly the difficulties involved, was to

accomplish perhaps the hardest part of the philosopher’s

task. This was done by Zeno. From him to our own day,

the finest intellects of each generation in turn attacked the

problems, but achieved, broadly speaking, nothing. In our

own time, however, three men—Weierstrass, Dedekind, and

Cantor—have not merely advanced these three problems,

but have completely solved them. The solutions, for those

acquainted with mathematics, are so clear as to leave no

longer the slightest doubt or difficulty. This achievement is

probably the greatest of which our age has to boast; and I

know of no age (except perhaps the golden age of Greece)

which has a more convincing proof to offer of the transcen-

dent genius of its great men. Of the three problems, that

of the infinitesimal was solved by Weierstrass; the solution

of the other two was begun by Dedekind, and definitively

accomplished by Cantor. (1901d, 370)

In the remainder of this Part, I focus on how accepting the work of

Cantor, Dedekind, and Weierstrass undermines central aspects of Rus-

sell’s Moorean philosophy, including his foundationalist epistemology,

his characterization of the method of philosophy, and his view of the

relation of philosophy to science.

2.2. The Infinite and the Self–Evident

Given that he held prior to the Paris Congress that countenancing trans-

finite numbers leads to “hopeless contradictions”, it is not surprising

that in order for Russell to accept Cantor’s theory of the transfinite he

had to reject some principles he previously regarded as “self–evident”.
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And in explaining how one might come to deny an apparently “self–

evident” principle, Russell presents views opposed to his earlier foun-

dationalist epistemology.

Thus, in “Recent Work in the Principles of Mathematics”, in dis-

cussing “the importance of symbolism”, Russell emphasizes its role in

enabling us prove “self–evident” propositions:

The fact is that symbolism is useful because it makes things

difficult. . . . What we wish to know is what can be de-

duced from what. Now, in the beginnings, everything is

self–evident; and it is very hard to see whether one self–

evident proposition follows from another or not. Obvious-

ness is always the enemy of correctness. Hence we invent

some new and difficult symbolism, in which nothing seems

obvious. Then we set up certain rules for operating on the

symbols, and the whole thing becomes mechanical. In this

way we find out what must be taken as premiss and what

can be demonstrated or defined. For instance, the whole

of Arithmetic and Algebra has been shown to require three

indefinable notions and five indemonstrable propositions.

But without a symbolism it would have been very hard to

find this out. It is so obvious that two and two are four, that

we can hardly make ourselves sufficiently skeptical to doubt

whether it can be proved. And the same holds in other cases

where self–evident things are to be proved. (1901d, 367–8)

Then, in explaining why one would seek to prove self–evident proposi-

tions, Russell adds:

[T]he proof of self–evident propositions may seem, to the

uninitiated, a somewhat frivolous occupation. . . . But . . .

since people have tried to prove obvious propositions, they

have found that many of them are false. Self–evidence is of-

ten a mere will-o’-the-wisp, which is sure to lead us astray

if we take it as our guide. For instance, nothing is plainer

than that a whole always has more terms than a part, or

that a number is increased by adding one to it. But these

propositions are now known to be usually false. Most num-

bers are infinite, and if a number is infinite you may add
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ones to it as long as you like without disturbing it in the

least. (Ibid., 368)

Here, Russell alludes to two “self–evident” propositions that were cen-

tral to arguments he previously endorsed against admitting transfinite

numbers: the proposition that “a whole always has more terms than a

part”, used in the Leibnizian argument that a contradiction results from

attempting to assign transfinite numbers to both the whole numbers

and the even numbers; and the proposition that “a number is increased

by adding one to it” which was central to Russell’s “antinomy of in-

finite number”. Thus, in claiming here that both “these propositions

are now known to be usually false” (since the first does not apply to

infinite classes and the second does not apply to transfinite cardinal

numbers), Russell is admitting, in effect, that in accepting Cantorian

set theory, he is rejecting propositions that he had previously taken to

be “self–evident”. And hence in claiming that “self–evidence is often a

mere will-o’-the-wisp, which is sure to lead us astray if we take it as our

guide”, Russell is also admitting, in effect, that he himself is one who

had been thus led astray.

Moreover, in these passages, Russell not only criticizes relying on

“self–evidence”; he also presents a method for assessing propositions we

take to be “self–evident”—namely, that we should seek to prove them.

In particular, he claims that we should avail of a symbolism which is

useful just to the extent that it “makes things difficult”, thereby making

things seem less “obvious”, which, in turn, enables us to seek proofs of

what we take to be “self–evident”. All this is opposed to his Moorean

epistemology, according to which it is incoherent to attempt to prove

“self–evident” propositions since they just are propositions that admit

of no proof from any other proposition. Further, on his Moorean view,

there is no sense that “self–evidence” may lead us astray; rather, it is

that philosophical theory has led us astray, while “self–evidence”—or,

more generally, “immediate perception” or “intuition”—enables us to

break the hold of such theory and re–establish contact with reality as

it is “in itself”. In contrast, Russell’s post–Peano project of attempting

to prove what he had previously taken to be “indemonstrable” “self–

evident” truths by means of a symbolism “in which nothing seems ob-

vious”, is designed to avoid the pernicious effects, not of theory, but of

“self–evidence”.27
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In his post–Peano draft of PoM, Russell makes more clear how this

can be so. In particular, in discussing the “axiom”, central to Leibniz’s

argument against transfinite numbers that “the whole cannot be similar

to [that is, have the same number of parts as] the part”(PoM, 359–60),

Russell writes:

[I]t is an axiom doubtless very agreeable to common–sense.

But there is no evidence for the axiom except supposed self–

evidence, and its admission leads to perfectly precise con-

tradictions [such as the one Leibniz presents]. The axiom is

not only useless, but positively destructive, in mathematics,

and against its rejection there is nothing to be set except

prejudice. It his one of the chief merits of proofs that they

instill a certain scepticism as to the result proved. As soon

as it was found that the similarity of whole and part could

be proved to be impossible for every finite whole, it became

not unplausible to suppose that for infinite wholes, where

the impossibility could not be proved, there was in fact no

such impossibility. (Ibid., 366)

For Russell, once we cease to take it as an unprovable truth that “the

part is less than the whole” and actually prove it in the case of finite

“wholes”, the question arises as to whether it also holds in the case of

“infinite wholes”; and once we recognize that we cannot prove it in that

case also, we will be less inclined to regard it as a “self–evident” truth

that applies in all cases, and will instead be in a position to question

whether it holds in the case of “infinite wholes”.28 That the “axiom”

remains unprovable in the case of “infinite wholes” is no longer an oc-

casion for attempting simply to “intuit” whether or not it is true in that

case as well, but rather enables us to set aside the apparently “self–

evident” as mere “prejudice” and reap the benefits of Cantor’s theory.

In particular, we will be able to hold that two classes have the same

number of elements if and only if their members can be placed in a

one–to–one correspondence with each other; to define an infinite class

as those whose members can be put in a one–to–one correspondence

with the members of one of its proper subsets;29 and to then avoid

Leibniz’s argument against infinite numbers by denying that the “ax-

iom” that “the part is less than the whole” applies for infinite classes.

As Russell writes: “This property [a ‘collection’ has when ‘it contains as
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parts other collections which have just as many terms as it has’], which

was formerly thought to be a contradiction, is now transformed into a

harmless definition of infinity.” (1901d, 373)

More generally, in acknowledging that accepting Cantorian set the-

ory requires rejecting some propositions that we take to be “self–evident”,

Russell admits that “on the subject of infinity it is impossible to avoid

conclusions which at first sight appear paradoxical” (ibid., 376). Here,

as elsewhere,30 Russell regards what is “paradoxical” as what is, broadly

speaking, counter–intuitive, not, more narrowly, as a contradiction that

may be derived from seemingly obvious premises (so that in PoM, he

refer to what has come to be called “Russell’s paradox” as “the contra-

diction”, not a “paradox”). His argument in favor of Cantorian set the-

ory is not—as his earlier foundationalist epistemology would seem to

require—that however “paradoxical” its conclusions may appear, they

are deducible from “self–evident” axioms by means of “self–evident” in-

ferences. Rather, it is that however “paradoxical” its conclusions may

appear, there are also “paradoxes” involved in rejecting Cantor’s theory,

and that the overall benefits of accepting the theory make it worthwhile

to accept its “paradoxical” aspects.

In particular, he argues that if we accept the “axiom”, opposed to

Cantorian set theory, that “the part is less than the whole”, we are left

with no way to respond to Zeno’s argument that Achilles can never

catch the tortoise. For, since Achilles and the tortoise are both moving,

they each occupy different places at different times, in which case, they

occupy the same number of places over any given time–period; but if

Achilles is to overtake the tortoise, then the tortoise’s path will be only

part of Achilles’, in which case Achilles will be able to catch the tortoise

only if the part (the tortoise’s path) has just as many points as the whole

(Achilles’ path). Hence, for Russell, we are faced with a choice between

accepting the “self–evident” proposition that “the part is less than the

whole” and having no reply to Zeno’s paradox, or having a reply to Zeno

while rejecting that “self–evident” proposition, thus embracing what he

calls in the following passage “the paradox of Cantor”:

The possibility that the whole and part may have the same

number of terms is, it must be confessed, shocking to common–

sense. Zeno’s Achilles ingeniously shows that the opposite

view also has shocking consequences; for if whole and part
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cannot be correlated term for term, it does strictly follow

that, if two material points travel along the same path, the

one following the other, the one which is behind can never

catch up. . . . Commonsense, therefore, is in a very sorry

plight; it must choose between the paradox of Zeno and the

paradox of Cantor [that the whole and part may have the

same number of terms]. I do not propose to help it, since

I consider that, in the face of proofs, it ought to commit

suicide in despair. (PoM, 358)

Russell, that is, does not argue that Cantorian set theory really rests on

“self–evident axioms”, after all; instead, he wants to convince us both

that it is not inconsistent, that the consequences of rejecting it are even

more “paradoxical” than are those of accepting it, and that accepting it

enables us to solve all the traditional problems of infinity and continuity.

His argument is not one based on a foundationalist epistemology but is

rather a matter of weighing up the costs and benefits of accepting one

or the other of two competing theories. Whereas the Moorean Russell

presents himself as accepting “self evident” “common sense” views that

only philosophers reject, the post–Peano Russell holds that, at least in

the area of the infinite, there is no view agreeable to “common sense”,

so that whatever view we come to accept will not be decided by what is

“self evident” to “common sense” but will rather be mediated by theory.

Of course, once he comes to regard his and other set–theoretic “con-

tradictions” as raising fundamental difficulties and before he arrives at

what he takes to be an adequate response to those contradictions, Rus-

sell cannot be so confident that Cantorian set theory really is consistent

or, hence, that it has succeeded in solving all the traditional problems of

infinity. What is more relevant to my concerns here, however, is that by

resolving to continue, in spite of the contradictions, to attempt to arrive

at a set theory which can deliver the benefits of Cantorian theory with-

out any contradictions, Russell becomes even more pronounced in pro-

viding anti–foundationalist, “coherentist” justifications for his eventual

position. Thus, in his 1907 paper “The Regressive Method of Discover-

ing the Premises of Mathematics”, in discussing how to proceed in the

face of “the contradictions”, Russell indicates that the goal is to arrive at

premises which “get the desired consequences without the admixture of

demonstrable falsehood” (1907, 279). For Russell, “even where there is
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the highest degree of obviousness, we cannot assume we are infallible”

and premises become “more nearly certain” if they are part of “a com-

plicated deductive system, many parts of which are obvious” (ibid.), so

that “although intrinsic obviousness is the basis of every science, it is

never, in a fairly advanced science, the whole of our reason for believ-

ing any one proposition of the science” (ibid.).31 And this is in sharp

contrast to the Moorean epistemology, according to which with regard

to an “ultimate premise”, no reason can be given for its truth, and we

accept it only by considering it in “absolute isolation” from every other

proposition and “immediately perceiving” its truth.

While some have noted that Russell’s post–paradox justification of

logical axioms is incompatible with the sort of epistemological founda-

tionalism often associated with him,32 my point here is that even before

Russell was aware of his paradox, his initial post–Peano defense of Can-

tor’s theory was already incompatible with his foundationalist Moorean

epistemology. And this tension between his general philosophical com-

mitment to epistemological foundationalism, which he holds is needed

to avoid the sort of holistic “coherence” views he associates with ab-

solute idealism, and the anti–foundationalist epistemology he actually

uses to defend mathematical and logical theories that he regards as be-

ing of the first importance is reflected throughout his later writings.

Thus, for example, in PoP, he seems, on the one hand, to present a

classical foundationalist epistemology that is in accord with his Moorean

position when he distinguishes “immediate knowledge of truths”—which

“may be called intuitive knowledge” and where “the truth so known

may be called self–evident truths”—from “derivative knowledge of truths

[which] consists of everything that we can deduce from self–evident

truths by the use of self–evident principles of deduction” (PoP, 109).

On the other hand, he acknowledges that in some cases—as in deduc-

ing “two and two are four” from “the general principles of logic”—“the

propositions deduced are often just as self–evident as those that were

assumed without proof” (ibid., 112), and he adds further that “self–

evidence has degrees” (ibid., 117), so that “all our knowledge of truths

is infected with some degree of doubt, and a theory which ignored this

fact would be plainly wrong” (ibid., 135). Further, he allows himself to

appeal to coherentist considerations with regard to “instinctive”, if not

“intuitive”, beliefs when he writes:
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All knowledge, we find, must be built upon our instinctive

beliefs, and if these are rejected, nothing is left. . . . Philoso-

phy . . . should take care to show that, in the form in which

they are finally set forth, our instinctive beliefs do not clash,

but form a harmonious system. There can never be any rea-

son for rejecting one instinctive belief except that it clashes

with others; thus, if they are found to harmonize, the whole

system becomes worthy of acceptance. (ibid., 25)

While the foundationalist rhetoric is a legacy of the general philosoph-

ical commitments of his original Moorean break with Idealism, the ac-

knowledgment that no proposition is so “self–evident” that in appre-

hending it we have an infallible guarantee of truth and the increasing

use of coherentist rhetoric begins, I have argued, with his post–Peano

acceptance of particular mathematical and logical theories—in the first

instance, Cantor’s theory of the transfinite.33

2.3. Definition, Proof, and “the Business of Philosophy”

Not only does Russell’s post–Peano practice conflict with his pre–Peano

foundationalism; it also conflicts, more generally, with his Moorean

view that “the business of philosophy” is to “discover” the “indefinable

and the indemonstrable”, where “intuition” is the only method avail-

able, so that “an idea which can be defined, or a proposition which can

be proved, is of only subordinate philosophical interest”. In contrast,

in his in his post–Peano discussion of the real numbers, continuity, and

infinity, Russell emphasizes throughout what is definable and provable,

not what is “indefinable” and “indemonstrable”.

As I have discussed, both before and after the Paris Congress, Rus-

sell rejects Dedekind’s and Cantor’s accounts of irrational numbers for

the reason that he lacks any “intuition” of such numbers and holds that

any “axiom” on the basis of which one could deduce the existence of

irrational numbers from a sequence of rational numbers lacks “self–

evidence”. What is new to Russell’s position after the Paris Congress is

that he now defines real numbers as “segments” of rationals, so that he

can prove (without any “axiom of continuity”) that there are real num-

bers and that the sequence of reals has the structure obeying Cantor’s

definition of continuity; and, for Russell, this result is of fundamental
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importance for the philosophy of space and time. For he argues that

Cantor’s definition of continuity is sufficient for accounting for the con-

tinuity of space and time, and thus for justifying the view—consistent

with Russell’s metaphysical atomism—that space and time have ulti-

mate, simple constituents—namely, points and moments.34

Thus, in introducing Cantor’s definitions of continuity, Russell writes:

The notion of continuity has been treated by philosophers,

as a rule, as though it were incapable of analysis. They have

said many things about it, including the Hegelian dictum

that everything discrete is also continuous and vice versâ.

. . . But as to what they meant by continuity and discrete-

ness, they preserved a discreet and continuous silence; only

one thing was evident, that whatever they did mean could

not be relevant to mathematics, or to the philosophy of

space and time. (PoM, 287)

Then, in the following paragraph, Russell introduces the mathematical

treatment of continuity, by writing that before Cantor “it would have

been generally thought sufficient” to “call a series continuous if it had a

term between any two”35 and then adding:

Nevertheless there was reason to surmise, before the time

of Cantor, that a higher order of continuity is possible. For,

ever since the discovery of incommensurable in Geometry—

a discovery of which the proof is set forth [in PoM, “a dis-

covery of which is the proof set forth”] in the tenth Book

of Euclid—it was probable that space had continuity of a

higher order than that of the rational numbers, which . . .

consists in having a term before any two. . . . But that other

kind of continuity, which was seen to belong to space, was

treated, as Cantor remarks, as a kind of religious dogma,

and was exempted from that conceptual analysis which is

requisite to its comprehension. Indeed it was often held to

show, especially by philosophers, that any subject–matter

possessing it was not validly analyzable into elements. Can-

tor has shown that this view is mistaken, by a precise defi-

nition of the kind of continuity which must belong to space.

This definition, if it is to be explanatory of space, must, as
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he rightly urges, by effected without any appeal to space.

We find, accordingly, in his final definition, only ordinal no-

tions of a general kind, which can be fully exemplified in

Arithmetic. (Ibid., 287–8, as collated with Byrd, 1994, 76)

For Russell, then, Hegel and his followers as well as previous mathe-

maticians treated “the kind of continuity which must belong to space” as

unanalyzable—that is to say, indefinable—and not amenable to mathe-

matical treatment. And, for Russell, Cantor’s achievement lies in his for-

mulating a definition of continuity, which although it is “effected with-

out any appeal to space” characterizes “the kind of continuity which

must belong to space”, at least insofar as space has the structure which

leads to “incommensurables” in geometry.36

Further, as Russell suggests in the passage I have just quoted, while

those who took continuity to be unanalyzable also typically denied that

what is continuous can be composed of elements. As Russell writes later

chapter of Part V of PoM:

It has always been held to be an open question whether the

continuum is composed of elements; and even when it has

been allowed to contain elements, it has been often held

[in PoM, “alleged”] to be not composed of these. . . . But all

these views are only possible in regard to such continua as

those of space and time. The arithmetical continuum is an

object created [in PoM, “selected”] by definition, consisting

of elements in virtue of that definition, and known to be

embodied in at least one instance, namely the segments of

rational numbers. I shall maintain in Part VI that spaces

afford other instances of the arithmetical continuum. The

chief reason for the elaborate and paradoxical theories of

space and time and their continuity, which have been con-

structed by philosophers, has been the supposed contradic-

tions in a continuum composed of elements. The thesis of

the present chapter is, that Cantor’s continuum is free from

contradictions. This thesis, as is evident, must be firmly

established, before we can allow the possibility that spatio–

temporal continuity may be of Cantor’s kind. (Ibid., 347, as

collated with Byrd, 1994, 82)
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Here again, Russell emphasizes that what is philosophically important

in Cantor’s work is what he has defined and proved. By defining a

purely ordinal notion of continuity that is provably exemplified by the

“segments of rational numbers” (that is, the reals as defined by Rus-

sell), Cantor shows that what is continuous may be composed of ele-

ments (since the segments of rationals are the elements of a continuous

series); and insofar as the main motivation for denying that space and

time may be composed of elements has been that the very idea of “con-

tinuum composed of elements” is contradictory, then Cantor has under-

mined the main objection to the view that space and time are continua

composed of elements.

Just as Russell emphasizes the philosophical importance of Cantor’s

definition of continuity, so too he emphasizes the importance of Cantor’s

(and Dedekind’s) definitions of infinity. As he writes in “Recent Work

on the Principles of Mathematics”:

[T]hough people had talked glibly about infinity ever since

the beginnings of Greek thought, nobody had ever thought

of asking, What is infinity? If any philosopher had been

asked for a definition of infinity, he might have produced

some unintelligible rigmarole, but he would certainly not

have been able to give a definition that had any meaning

at all. Twenty years ago, roughly speaking, Dedekind and

Cantor asked this question, and, what is more remarkable,

they answered it. The found, that is to say, a perfectly pre-

cise definition of an infinite number or an infinite collection

of things. This was the first and perhaps the greatest step.

(1901d, 372)

Again, in contrast to his pre–Peano characterization of “the business

of philosophy”, Russell here presents the pre–eminent philosophical

achievement as one of definition. Moreover, as I have discussed in the

previous section, for Russell, this definition was made possible only by

through attempting to prove what was previously regarded as an “in-

demonstrable” and “self–evident” “axiom”—namely, that “the whole is

greater than the part”. And as I discuss in Part 3 below, in coming even-

tually to accept the so–called “Frege–Russell” definitions of the cardinal

numbers, Russell goes further in defining what he previously took to

be indefinable and proving what he previously took to be axiomatic,
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thereby presenting the tasks of definition and proof as not merely of

“subordinate philosophical interest” but as fundamental to the philo-

sophical enterprise as he now conceives it.

2.4. Philosophy and Science

Given his pre–Peano foundationalism, Russell clearly demarcates the

tasks of philosophy and of science. Since the task of the philosopher

is to work “backwards” from beliefs already accepted to the “ultimate

premises” we have for our current beliefs, while the task of science is

to work “forward” to justify new beliefs on the basis of our current

beliefs, then nothing the scientist does is relevant to the philosophical

task of identifying the “ultimate premises” for any belief, ordinary or

scientific.37

However, since accepting the work of Cantor, Dedekind, and Weier-

strass threatens this foundationalist view of justification, it also under-

mines Russell’s Moorean demarcation between philosophy and science.

For Russell, it is precisely because Cantor’s mathematical theory upsets

what appears “self–evident” that it enables us to rid ourselves of “prej-

udices” that have stood in the way of solving the traditional problems

of infinity and continuity. Hence, after he embraces the work of Cantor,

Dedekind, and Weierstrass, Russell holds that philosophers will have to

become aware of mathematical theories, if they want to solve these fun-

damental and longstanding philosophical problems. Thus, for example,

in “Recent Work on the Principles of Mathematics”, Russell writes:

It was formerly supposed that infinite numbers, and the

mathematical infinite generally, were self–contradictory. But

as it was obvious that there were infinities—for example,

the number of numbers—the contradictions of infinity seemed

unavoidable, and philosophy seemed to have wondered into

a “cul–de–sac”. This difficulty led to Kant’s antinomies, and

hence, more or less indirectly, to much of Hegel’s dialectic

method. Almost all current philosophy is upset by the fact

(of which very few philosophers are as yet aware) that all

the ancient and respectable contradictions in the notion of

the infinite have been once for all disposed of. (1901d, 372)

And similarly in his post–Peano draft of PoM, he writes:
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Of all the philosophers who have inveighed against infinite

number, I doubt whether there is one who has known the

difference between finite and infinite numbers, (PoM, 192)

whereupon he goes on to present Cantor’s account. And, again, in a

passage I have quoted in the previous section, Russell writes:

The chief reason for the elaborate and paradoxical theories

of space and time and their continuity, which have been

constructed by philosophers, has been the supposed contra-

dictions in a continuum composed of elements. The thesis

of the present chapter is, that Cantor’s continuum is free

from contradictions. (Ibid., 347)

For Russell, that is, Cantor’s definitions of infinity and continuity are not

merely of mathematical interest; they show that there is nothing incon-

sistent in those notions and thereby undermine what Russell regards as

one the main reasons philosophers have given for supposing that reality

is very different from “appearance”. For Russell, just as Zeno’s para-

doxes gave support to Parmenides’ monism, so too Kant’s antinomies

support his view that we can never know reality “as it is in itself”, and

Hegel’s dialectic, based on generating contradictions, supports his “ab-

solute idealism”. But for Russell, since all these paths to monism and/or

idealism, depend on the view that the notions of infinity and continuity

lead to unavoidable contradictions, they are all invalidated by Cantor’s

theory of the transfinite. And this is a theme to which Russell returns

throughout his writings.38

Thus, in PoP, Russell writes generally:

Most of the great ambitious attempts of metaphysicians have

proceeded by the attempt to prove that such and such ap-

parent features of the actual world were self–contradictory,

and therefore could not be real. (PoP, 145)

As an example, he mentions that while “space and time appear to be in-

finite in extent and infinitely divisible, . . . philosophers have advanced

arguments tending to show that there could be no infinite collections

of things”, so that “a contradiction emerged between the apparent na-

ture of space and time and the supposed impossibility of infinite collec-

tions” (ibid., 146). And after claiming that following Kant “very many
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philosophers have believed that space and time are mere appearance,

not characteristic of the world as it really is”, he writes:

Now, however, owing to the labours of the mathematicians,

notably Georg Cantor, it has appeared that the impossibility

of infinite collections was a mistake. They are not in fact

self–contradictory, but only contradictory of certain rather

obstinate mental prejudices. Hence the reasons for regard-

ing space and time as unreal have become inoperative, and

one of the great sources of metaphysical constructions is

dried up. (Ibid., 147)

In his writings immediately following the Paris Congress, Russell

was attempting to convince philosophers of the philosophical impor-

tance of the mathematical work of Cantor and others; by the 1920’s, he

was disdainful of philosophers who had failed to pay attention to such

work. Thus, for example, in his 1924 essay “Philosophy in the Twentieth

Century”, he again presents Zeno, Kant, and Hegel as “manufacturing

contradictions which were designed to show that mathematicians had

not arrived at real metaphysical truth, and that the philosophers were

to supply a better brand” and claims that these sorts of arguments were

“destroyed” by the work of nineteenth–century mathematicians, includ-

ing Cantor, who “invented a theory of continuity and of infinity which

did away with all the old paradoxes upon which philosophers had bat-

tened”. However, for Russell, while “all these results were obtained by

ordinary mathematical methods, and were as indubitable as the mul-

tiplication table[,] philosophers met the situation by not reading the

authors concerned” (1924b, 461–2). Likewise, in 1920, he writes:

Logic has made, during the last sixty years, greater ad-

vances than in the whole previous history of mankind. These

advances have all been made by men whose training was

predominantly scientific or mathematical, and have been

opposed or ignored by orthodox philosophers. . . . [O]fficial

academic philosophy, now as at the time of the Renaissance,

is engaged in the endeavour to keep alive an antiquated

technique, and to ignore the new knowledge which is ren-

dering old problems trivial. Philosophy is associated tra-

ditionally with two studies with which it has no essential
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affinity, namely theology and Greek. If it is to become vital

to our universities, it must come to be associated instead

with science. But it would be almost as difficult to effect

such a change as to carry it through the Social Revolution.

(1920b, 405–6)

And in a 1923 review of C. D. Broad’s book Scientific Thought, Russell

writes:

[Broad] proceeds on the assumption that the business of

philosophy is to clear up the fundamental ideas and beliefs

of the special sciences. . . . It cannot be denied that there is

an important study which has these functions, but whether

it should be called “philosophy” may be doubted. Cantor

in the last generation showed us what to mean by “infinity”

and “continuity”; Einstein in our own time has shown that

a physical law must be expressible in tensor form. These

were philosophical results according to Mr. Broad’s defini-

tion, but Cantor and Einstein were not philosophers. The

philosophers, in both cases, have done all that lay in their

power to prevent the spread of new clear ideas—by falla-

cious refutation in the first case and fallacious interpreta-

tion in the second. On a behaviorist basis, philosophy is to

be defined as what a philosopher does. This is not (except

in a few cases like Mr. Broad’s) what Mr. Broad calls phi-

losophy, which has been left mainly to mathematicians and

physicists. I should myself, on behaviorist grounds, define

“philosophy” as “the invention of fallacies to conceal or ig-

norance”; but that would compel me to deny Mr. Broad as

a philosopher. (1923b, 260–1)

All these passages reflect the sort of naturalism—opposed to Russell’s

Moorean conception of philosophy—which is characteristic of Russell’s

writings in the 1920’s, a naturalism according to which the most cur-

rent theories in mathematics and science may be relevant for address-

ing philosophical problems.39 However, in all these passages, Russell

alludes to his view, which he first came to accept immediately follow-

ing the Paris Congress, that the work of mathematicians, most notably

Cantor, has direct philosophical bearing. Russell’s “naturalism”, while
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pronounced in his post–1918 publications, begins in the final months of

1900.

By 1946, in A History of Western Philosophy, in discussing “the phi-

losophy of logical analysis”, Russell writes: “The origin of this philos-

ophy is the achievements of mathematicians who set to work to purge

their subject of fallacies and slipshod reasoning.” (783) And he then

goes on to mention Weierstrass, “who showed how to establish the cal-

culus without infinitesimals, and thus at least made it logically secure”

(ibid.) and Cantor, “who developed the theory of continuity and infinite

number. . . , thereby taking into the realm of exact logic a whole region

formerly given over to mysticism and confusion” (ibid., 783–4). Thus,

by this point, Russell associates “the philosophy of logical analysis” only

with views that he himself came to acquire after the Paris Congress;

he does not mention here any views he accepted during his Moorean

period that actually led him to break with Idealism.

2.5. The Scientific Method in Philosophy

In addition to coming to hold that the results of mathematical and sci-

entific work should be relevant to philosophers, Russell also comes to

emphasize that philosophers should emulate the methods of science

and mathematics. Thus, for example, Russell concludes his 1914 Her-

bert Spencer Lecture, entitled “On Scientific Method in Philosophy”, by

stating:

The adoption of scientific method in philosophy, if I am

not mistaken, compels us to abandon the hope of solving

many of the more ambitious and humanly interesting prob-

lems of traditional philosophy. Some of these it relegates,

though with little expectation of a successful solution, to

special sciences, others it shows to be such as our capaci-

ties are essentially incapable of solving. But there remains

a large number of the recognized problems of philosophy

in regard to which the method advocated gives all those

advantages of division into distinct questions, of tentative,

partial and progressive advance, and of appeal to principles

with which, independently of temperament, all competent

students must agree. The failure of philosophy hitherto has
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been due in the main to haste and ambition: patience and

modesty, here as in other sciences, will open the road to

solid and durable progress. (1914b, 72–3)

While “the scientific method in philosophy” which Russell presents in

this paragraph is meant to be opposed to “heroic” system–building in

the tradition of Hegel, it is also fundamentally different from his early

Moorean conception of philosophy. Here he presents philosophy as a

cooperative enterprise, admitting of “tentative, partial, and progres-

sive advance” and of “appeal to principles with which, independently

of temperament, all competent students must agree”; in contrast, for

the Moorean Russell, philosophy as concerned with matters that are so

fundamental—the “indefinable” and the “indemonstrable”—that with

regard to them no rational argument is possible and each individual

philosopher can rely only on his or her own “intuition” or “immedi-

ate perception”. For the Moorean Russell, philosophy is not character-

ized by “tentative, partial, and progressive advance” but rather by acts

of immediate insight into the ultimate constituents of reality. Nor for

the Moorean Russell, is there any concern as such with finding “prin-

ciples with which, independently of temperament, all competent stu-

dents must agree”; rather, the Moorean philosopher acknowledges that

because philosophy is fundamentally a matter of “intuition”, not ar-

gument, philosophy is “in a certain impersonal sense controversial”,

since there is no guarantee that “all competent students” will “intuit”

the same “indefinables” and “indemonstrables”.40

In his Herbert Spencer Lecture, Russell does not cite Cantor’s ap-

proach to the traditional problems of infinity and continuity as exempli-

fying “the scientific method in philosophy”;41 however, in other places

he does. Thus, in the same year as he gave the Herbert Spencer Lecture,

he gave lectures at Harvard published under the title Our Knowledge of

the World as a Field for Scientific Method in Philosophy (OKEW), in which

he devotes three of the eight lectures to continuity and infinity. In par-

ticular, Russell begins Lecture VII (“The Positive Theory of Infinity”) by

writing that “the positive theory of infinity” is “among the triumphs of

scientific method in philosophy”, and so is “especially suitable for il-

lustrating the logical–analytic character of that method” (OKEW, 185).

And inin the final parin the in the final paragraph of the book, he writes:

[T]o the large and still growing body of men engaged in

Vol. 4: 200 Years of Analytical Philosophy

http://www.thebalticyearbook.org/


71 James Levine

the pursuit of science—men who hitherto, not without jus-

tification, have turned aside from philosophy with a cer-

tain contempt—the new method, successful already in such

time–honoured problems as number, infinity, continuity, space

and time, should make an appeal which the older methods

have wholly failed to make. (Ibid., 242)

For Russell, to adopt the “scientific method in philosophy” is to apply to

all areas of philosophy the same style of thinking that he holds enabled

Cantor to solve the traditional problems of infinity and continuity.

Similarly, three years earlier, Russell concludes his lecture “Analytic

Realism” by claiming:

We know now that all the past difficulties in the notions of

the infinite and the continuum disappear when the methods

of Weierstrass and Cantor are used. Curiously enough, how-

ever the kinds of paradoxes already known to the Greeks,

and named Insolubilia, and which were believed to be noth-

ing but trivial amusements, have abruptly surfaced in math-

ematical logic. . . . Since then the enemies of novelty have

contented themselves in saying that it would be better to

think about something else, whereas mathematicians did

not, in general, possess the knowledge of philosophy and

logic to solve such problems. However, I believe I have

solved this difficulty by recognizing the existence of a hier-

archy of different logical types. I will not attempt to explain

the theory of types. Suffice it to say that it is contrary to the

philosophical spirit as well as the scientific spirit to divert a

train of thought in a certain field because the solutions to its

problems are not immediately forthcoming. I, for one, do

not believe that there are any “antinomies”. Contradictions

are not mistakes, and to solve them requires only patience

and analytic ingenuity. Heroic solutions have been abused

in philosophy, detailed work has been neglected, and there

has been too little patience. . . . The true method, in phi-

losophy as in science, should be inductive, meticulous, re-

spectful of detail, and should reject the belief that it is the

duty of each philosopher to solve all problems by himself.

It is this method which has inspired analytic realism, and it
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is the only method, if I am not mistaken, with which phi-

losophy will succeed in obtaining results as solid as those

obtained in science. (1911a, 138–9)

Here Russell presents the work of Weierstrass and Cantor on infinity

and continuity and his own ensuing work on the paradoxes as exem-

plars of what he would later describe as “the scientific method in phi-

losophy”. For Russell, the long process that led from the introduction of

the calculus by Newton and Leibniz to the theories of Weierstrass and

Cantor that he regards as underpinning the calculus, and, on a smaller

scale, the process, the led from his own discovery of the “contradic-

tion” to his favored solution in PM, should be the model for philosophy.

In both cases, the method used was neither theorizing in the style of

Idealist philosophers that has its conclusion that there are inevitable

“antinomies” in these areas of thought nor the Moorean method, which

relies on “intuition” of the “indefinable” and “indemonstrable”. Rather,

what characterizes them are “patience”, “detailed work”, “analytical

ingenuity”—where the focus is on definition and proof—and an “induc-

tive” willingness to accept “axioms”, not on the basis of “self–evidence”,

but rather by weighing up their various costs and benefits.

Above, in the Introduction, I quoted a passage from Russell’s 1924

essay “Logical Atomism” in which he writes:

I began to think it probable that philosophy had erred in

adopting heroic remedies for intellectual difficulties, and

that solutions were to be found merely by greater care and

accuracy. This view I have come to hold more and more

strongly as time went on, and it has led me to doubt whether

philosophy, as a study distinct from science and possessed

of a method of its own, is anything more than an unfortu-

nate legacy from theology. (1924a, 163)

In the first sentence, Russell alludes to his conception of “the scientific

method in philosophy”; in the second, he makes the “naturalist” sugges-

tion denying that philosophy is “distinct from science” in either content

or method. And in the context in which this passage appears, Russell

presents his acceptance of these views of philosophy as a post–Peano

development.
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For in that essay, after he mentions that he broke from idealism

“about 1898 . . . largely as a result of arguments with G. E. Moore” and

discusses his (pre–Peano) work on Leibniz, Russell continues that he

. . . returned to the problem which had originally led me to

philosophy, namely the foundations of mathematics, apply-

ing to it a new logic derived largely from Peano and Frege,

which proved (at least, so I believe) far more fruitful than

that of traditional philosophy.

I found that many of the stock philosophical arguments

about mathematics (derived in the main from Kant) had

been rendered invalid by the progress of mathematics in

the meanwhile. Non–Euclidean geometry had undermined

the argument of the transcendental aesthetic. Weierstrass

had shown that the differential and integral calculus do not

require the conception of the infinitesimal, and that, there-

fore, all that had been said by philosophers on such sub-

jects as the continuity of space and time and motion must

be regarded as sheer error. Cantor freed the conception

of infinite number from contradiction, and thus disposed

of Kant’s antinomies as well as many of Hegel’s. Finally,

Frege showed in detail how arithmetic can be deduced from

pure logic. . . . As all these results were obtained, not by any

heroic method, but by patient detailed reasoning. I began

to think it probable that philosophy had erred in adopting

heroic remedies. . . . (Ibid., 162–3)

Thus Russell locates the source not only of his view of “the scientific

method in philosophy”, which becomes prominent in his writings only

by 1914, but also of his more thoroughgoing naturalism, which becomes

prominent only in the 1920’s, in his post–Peano work in “the founda-

tions of mathematics”. And here Russell’s retrospective account seems

accurate; for, as I have discussed, in the months immediately following

the Paris Congress, Russell presents the work of Cantor, Dedekind, and

Weierstrass as upsetting his earlier views of the role of “self–evidence”

in philosophy, as solving the traditional philosophical problems of the

infinity and continuity, and as doing so by employing mathematical,

rather than characteristically philosophical, techniques. It is not that
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the logical techniques Russell gained in the aftermath of the Paris Con-

gress simply enabled him to articulate and defend “fundamental doc-

trines” he accepted in his early post–Idealist Moorean period; rather,

the post–Peano Russell’s engagement with the work of mathematicians

undermines his earlier foundationalism and, with it, his earlier views of

the method of philosophy and of the relation of philosophy to science.

3. RUSSELL POST–PEANO II: DEFINING THE CARDINAL NUMBERS,

ANALYSIS, VAGUENESS, AND BEHAVIORISM

As I discussed in §1.6, during his Moorean period, Russell advocates an

“absolute” theory of number, according to which each cardinal number

is indefinable; in contrast, by PoM, Russell regards each cardinal num-

ber as definable. In particular, he accepts the following definition of the

cardinal number of class α:

(Numdf) The cardinal number of α =df {ω: ω is similar to α},

where two classes are similar, or equal in number, if and only if the

members of the first class can be put into a one–to–one correspondence

with the members of the second.42 As Russell writes, “we decide to

identify the number of a class with the whole class of classes similar to

the given class” (PoM, 305; see also 115). Further, he defines 0 as the

cardinal number of the null–class, that is, the class of classes similar to

the null–class (and hence as the class whose only member is the null

class); 1 as the class of all classes with a single member; and accepts

definitions from which it follows that the cardinal number n is the class

of all classes with n members (ibid., 128). More generally, he defines

cardinal number, so that “a number is the class of all classes similar to

any one of themselves” (ibid.).

In PoM, Russell presents these definitions as central to the logicism

he defends in that work—that is, to the view that “all Mathematics is

Symbolic Logic” (ibid., 5), a claim that, for Russell, requires that “all

pure mathematics deals exclusively with concepts definable in terms

of a very small number of fundamental logical concepts” (ibid., “Pref-

ace”, first paragraph). The Moorean Russell is thus not a logicist; for

the Moorean Russell regards each cardinal number as an indefinable of

arithmetic and hence not as definable in terms of “logical concepts”. In

contrast, it is incumbent on Russell in PoM to establish that the theory
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of cardinal numbers involves no non–logical indefinables; and hence if

he can show that the notions he uses in the definitions in his theory

of the cardinal integers—including, for example, the notions of class

and of similarity that are involved in (Numdf)—are themselves either

indefinables of logic (as Russell in PoM takes class to be) or are them-

selves definable in purely logical terms (as he takes similarity to be),

then he will be “confirmed . . . in the opinion that Arithmetic contains

no indefinables . . . beyond those of general logic” (ibid., 152).

My concern here, however, is not with the relation between his def-

initions of cardinal numbers and his logicism, or, more generally, with

the logicism he defends in PoM;43 rather, it is with the conception of

analysis that would enable Russell to regard those definitions as philo-

sophically adequate. In particular, after discussing (in §3.1) how Rus-

sell’s PoM account of cardinal number is not only fundamentally op-

posed to his earlier “absolute” theory of number, but also, more gen-

erally, provides him with the means to undermine his other Moorean

absolute theories of order, I argue (in §3.2) that Russell’s defense of this

PoM definitions of cardinal numbers is not only incompatible with his

Moorean conception of analysis, but also appeals to a notion of “vague-

ness” which, if combined with (Aug) and (PoA), leads to the implausible

conclusion that, as they are ordinarily used prior to analysis, numerical

expressions are meaningless and cannot be understood; and I argue fur-

ther (in §3.3) it only after he adopts his behaviorist account of meaning

and understanding in his post–1918 publications that Russell is in a po-

sition to reject (Aug) and (PoA), thereby enabling him accept that no-

tion of “vagueness” along with his post–Peano view of analysis without

also accepting that extreme and implausible conclusion.

3.1. From the “Axiom of Abstraction” to the “Principle which Dispenses

with Abstraction”

In advocating “absolute” theories of time, magnitude, and number, the

Moorean Russell holds that in each case, there is an “independent”

or “self–sufficient” series of “intrinsically ordered” absolute positions—

moments, magnitudes, or numbers—against which other entities—events,

quantities, or classes—are ordered by “correlation”. In each case, a sen-

tence of the form

www.thebalticyearbook.org

From Moore to Peano to Watson 76

(Ab1) E(α,β),

where “E” is replaced by an expression for a symmetrical transitive

relation—“is simultaneous with”, “is equal in magnitude with”, or “is

equal in number with”, respectively—expresses a proposition whose

perspicuous representation is given by a corresponding sentence of the

form

(Ab2) (∃x)(R(α, x) & R(β , x)),

where “R” is replaced by an expression for the appropriate many–one

relation—namely, “occurs at”, or “has”, or “possesses”. For the Moorean

Russell, there are no such indefinable symmetrical transitive relations—

no such relations among the ultimate constituents of the universe; in-

stead, to say of two entities that they stand in such a symmetrical tran-

sitive relation to each other is to say that they are each borne by the

same many–one relation to the same indefinable “absolute position”.

In the draft of Parts III–VI of PoM that he composed in the immedi-

ate aftermath of the Paris Congress, Russell continued to accept all these

views. Thus, in his November, 1900 draft of Part III, as in his pre–Peano

draft of PoM, he distinguishes relative and absolute theories of magni-

tude, and defends the absolute theory, claiming not only that “a direct

inspection of what we mean when we say that two terms are equal or

unequal” in magnitude will support the absolute theory, and also that

while the relative theory of magnitude “is complicated and paradoxi-

cal”, “both the complication and the paradox . . . are entirely absent

in the absolute theory” (PoM, 164), thus suggesting, as he had before,

that (PoA) along with “common sense”(which is opposed to “paradox”

in the sense Russell here uses that term) supports the absolute theory

of magnitude. More generally, he writes:

The decision between the absolute and relative theories [of

magnitude] can be made at once by appealing to a certain

general principle, of very wide application, which I pro-

pose to call the axiom [in PoM, “principle”] of Abstraction.

(Ibid., 166, as collated with Byrd, 1996–7, 160)

As I have mentioned above, what Russell here calls the “axiom of ab-

straction” is the view that an instance of (Ab1) expresses a proposi-

tion that is perspicuously represented by the corresponding instance of
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(Ab2). For Russell, this “axiom” is “merely a careful statement of a very

common assumption”, namely that symmetric transitive relations “are

always constituted by possession of a common property”(ibid.). Fur-

ther, in Part IV (“Order”), Russell uses the “axiom of abstraction” to

argue that there are no series in which—as on the relative theories of

magnitude and time—“position is merely relative” (ibid. 220–1, as col-

lated with Byrd, 165–6). For holding that “position is merely relative”

requires countenancing primitive symmetric transitive relations—such

as being equal in magnitude or simultaneity—which are ruled out by

the “axiom of abstraction”. Russell comments that this point is “central

to the whole philosophy of space and time”; and he uses it to defend

absolute theories of time and space.

Likewise, in his November 1900 draft of Part V of PoM, Russell

writes:

In fact number is a primitive idea, and it is a primitive

proposition that every collection has a number. It is there-

fore philosophically correct that a specification of number

should not be by formal definition. (Byrd, 1994, 77–8)

And he adds shortly thereafter:

[P]hilosophically we must remark that the relation of sim-

ilarity is complex, and presupposes the cardinal integers,

which are therefore not, in the philosophical sense of the

word defined by means of similarity. The cardinal inte-

gers, finite and transfinite alike, are logically independent

of classes, which have to them the same kind of relation as

quantities have to magnitudes. (Ibid., 78)

Here, Russell indicates that just as he accepts the “absolute” theory of

magnitude—according to which magnitudes are indefinables, indepen-

dent of quantities, which must be invoked to define the relation of

equality in magnitude between quantities—so too he accepts the “ab-

solute” theory of number— according to which cardinal numbers are

indefinables, independent of classes, which must be invoked to define

the relation of similarity between classes.

Further, even after introducing (Numdf) in his paper “The Logic of

Relations” (sometime in the spring of 1901), Russell continues to hold
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that “philosophically”, if not “formally”, numbers are indefinable. Thus,

in his final draft of Part II of PoM written, it seems, in May 1902, Russell

writes that “for formal purposes, numbers may be taken to be classes of

similar classes”, but then provides an argument intended to show that

Numbers, it would seem, are . . . philosophically, not for-

mally indefinable. . . . [T]hese indefinable entities are dif-

ferent from the classes of classes which it is convenient to

call numbers in mathematics. (Byrd, 1987, 69)

And it is only during his copyediting of page proofs, sometime after

June 1902, that Russell changes this passage to read:

Numbers are classes of classes, namely of all classes similar

to a given class. . . . [N]o philosophical argument could

overthrow the mathematical theory of cardinal numbers set

forth [above]. (PoM, 136)

Hence, as late as May 1902, Russell distinguishes each cardinal number

from the class of similar classes he identifies it with in PoM as published.

In finally coming to hold that it is philosophically acceptable to re-

gard cardinal numbers as classes of similar classes, Russell has rejected

the “absolute” theory of number. No longer are numbers ultimate con-

stituents of the universe constituting a domain separate from classes;

now they simply are classes of similar classes. No longer are numbers

regarded as indefinable entities in terms of which the relation of simi-

larity (or being equal in number) between classes is defined; now, that

relation of similarity is used to define number. No longer is the propo-

sition expressed by an instance of

(Num1) Class α is similar to class β ,

perspicuously represented by the corresponding instance of

(Num2) There is a number n such that α possesses n and β possesses

n.

For, given (Numdf), to say of two classes that they possess the same car-

dinal number is really to say that the class of classes similar to the first is

identical to the class of classes similar to the second, so that an instance

of (Num2) is not a perspicuous representation of the proposition it ex-

presses, but rather expresses a proposition that is more44 perspicuously

represented by the corresponding instance of

Vol. 4: 200 Years of Analytical Philosophy

http://www.thebalticyearbook.org/


79 James Levine

(Num3) {ω: ω is similar to α} = {ω: ω is similar to β}.

Further, on Russell’s view in PoM, to say of two classes that they are sim-

ilar is not to invoke the notion of cardinal number, either as indefinables

or as classes of similar classes but is rather to say that there is a one–to–

one correspondence between the members of those classes; and in that

case, an instance of (Num1) expresses a distinct proposition from that

expressed by corresponding instances of (Num2) and (Num3). Thus,

Russell has gone from holding that corresponding instances of (Num1)

and (Num2) express the same proposition—where the latter, but not the

former, do so perspicuously—while corresponding instances of (Num3)

express distinct propositions (since indefinable numbers are different

from classes of similar classes) to holding that corresponding instances

of (Num2) and (Num3) express the same proposition—where the latter,

but not the former, do so perspicuously—while corresponding instances

of (Num1) express distinct propositions.

Moreover, in PoM, Russell recognizes that he can introduce defini-

tions similar to (Numdf) that will likewise undermine other “absolute”

theories of order. In particular, in the course of defending his definitions

of cardinal numbers, Russell writes:

Wherever Mathematics derives a common property from

a reflexive, symmetrical, and transitive relation, all math-

ematical purposes of the supposed common property are

completely served when it is replaced by the class of terms

having the given relation to a given term; and this is pre-

cisely the case presented by cardinal numbers. (Ibid., 116)

Here, Russell indicates that whenever one holds—as his former “axiom

of abstraction” requires—that a symmetric transitive relation indicates

the possession of a “common property”, one may “replace” the “sup-

posed common property” by “the class of terms have the given [sym-

metric transitive45] relation to a given term”. As Russell indicates this is

exactly the procedure he follows in introducing (Numdf): instead of re-

garding the cardinal number of a given class α as an indefinable “prop-

erty” common to α and any class similar to α, regard it as the class of

“terms”—here, classes—having the given relation—here, similarity—to

the given term—here, class α. In the case of magnitudes, this would

amount to accepting
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(Magdf) The magnitude of quantity q = {x: x is equal in magnitude

to q},

so that the magnitude of a given quantity q is regarded, not as an inde-

finable “property” common to q and any quantity equal in magnitude to

q, but rather as the class of quantities equal in magnitude to q; and Rus-

sell introduces this view of magnitude in a footnote he adds to Part III

of PoM in the final changes he makes proofreading the typescript (see

PoM, 167, as collated with Byrd, 1996–7, 161; see also 1924a, 165).

With regard to time, this would amount to accepting

(Timedf) The moment at which event e occurs= {x: x is simultaneous

with e},

so that the moment at which even e occurs is regarded, not at an inde-

finable at which e and any event simultaneous with e occurs, but rather

as the class of events simultaneous with e, a view of the sort he comes

to develop in Our Knowledge of the External World.46

More generally, Russell is indicating in this passage from PoM that,

instead of holding—as his earlier “axiom of abstraction” requires—that

an instance of (Ab1) expresses a proposition that is perspicuously rep-

resented by the corresponding instance of (Ab2), we can introduce, in

place of the “supposed common property” quantified over in the in-

stance of (Ab2), the following definition:

(Abdf) f(α) =df {x: E(x , α)},

where the relevant function f is related to the relevant many–one rela-

tion R in the corresponding instance of (Ab2) so that f(α)= x if and only

if R(α, x). Given such a definition, an instance of (Ab2) is no longer a

perspicuous representation of the proposition it expresses; instead, that

proposition is perspicuously represented by the corresponding instance

of

(Ab3) {x: E(x, α)} = {x: E(x, β)},

while the corresponding instance of (Ab1) expresses a distinct proposi-

tion.47

From a philosophical point of view, the introduction of definitions

of the form (Abdf) eliminates certain indefinables—namely, indefinable

“absolute positions” of the sort that he had previously taken numbers,
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magnitudes, and moments to be. And it is this point that Russell empha-

sizes when he discusses what he now calls “the principle of abstraction”.

As he writes in Our Knowledge of the External World:

The principle, which might equally well be called “the prin-

ciple which dispenses with abstraction,” . . . is one which

clears away incredible accumulations of metaphysical lum-

ber. . . . When a group of objects have that kind of similarity

which we are inclined to attribute to possession of a com-

mon quality, the principle in question shows that member-

ship of the group will serve all the purposes of the supposed

common quality, and that therefore, unless some common

quality is actually known, the group or class of similar ob-

jects may be used to replace the common quality. (OKEW,

42)

Here, in language similar to that from the passage from PoM I have

quoted above, Russell indicates that because adopting definitions of the

form (Abdf) enables one to avoid assuming that whenever entities bear

to each other a symmetric transitive relation, there is a further inde-

finable entity—a “common quality”—that is common to the original

entities in question, adopting such definitions “clears away incredible

accumulations of metaphysical lumber”.48 What he does not mention is

that he himself was one who admitted the sort of “metaphysical lum-

ber” that he is now “dispensing with”, and that in accepting definitions

of the form (Abdf), he is, in effect, rejecting absolute theories of order

that had been central to his Moorean philosophy.

From a technical point of view, the introduction of the definitions

of the form (Abdf) enables Russell to prove what he had previously

taken to be axiomatic—namely, that if an instance (Ab1) is true, then

so is the corresponding instance of (Ab2). Since he previously held

that it is “self–evident” that the corresponding instance of (Ab2) ex-

presses, perspicuously, the same proposition that the instance of (Ab1)

expresses non–perspicuously, he previously took it to be “self–evident”

that if the instance of (Ab1) is true, then so is the instance of (Ab2).

However, since it is provable (given naïve set theory) that if an instance

of (Ab1) is true, then so is the corresponding instance of (Ab3),49 and

since, given the definition of the form (Abdf), the instance of (Ab3)

expresses (PErspicuously) the same proposition that is expressed (non–

www.thebalticyearbook.org

From Moore to Peano to Watson 82

perspicuously) by the corresponding instance of (Ab2), then, for Rus-

sell, it is now provable that if the instance of (Ab1) is true, then so is

the instance of (Ab2).

The technical advantages of definitions of the form (Abdf) that he

introduces in the final stages of completing PoM are thus similar to the

technical advantages of the definitions of the irrational numbers that

he had introduced earlier, in his November 1900 draft of PoM. By defin-

ing irrationals as “segments” of rationals, Russell can avoid regarding

irrationals as indefinables whose existence is to be guaranteed by an

“axiom of continuity” of the sort he attributes to Dedekind and can

also prove—what, for one who accepts such an “axiom of continuity”

is unprovable—that for each convergent series50 of rational numbers

there is a real number that is the limit of that series. Similarly, ac-

cepting definitions of the form (Abdf) avoids having to regard cardinal

numbers, magnitudes, and moments as indefinables whose existence

is to be guaranteed by the “axiom of abstraction” and enables him to

prove propositions he previously took to be unprovable.

There is, however, a central difference, for Russell, between the defi-

nitions of irrational numbers he accepts shortly after the Paris Congress,

and the definitions of the form (Abdf) he accepts some time after that.

Before accepting those definitions of the irrational numbers, Russell did

not hold that there are any such numbers and rejected any “axiom” that

would guarantee their existence; in contrast, before accepting defini-

tions of the form (Abdf), he held that there are indefinable “absolute

positions” of the sort that those definitions enable us to avoid assum-

ing, and he accepted the “axiom of abstraction” that would guarantee

the existence of such “absolute positions”. Moreover, for the Moorean

Russell, accepting such indefinable “absolute positions” is in accord with

the Moorean conception of analysis, for he had claimed that mere “in-

spection” of “what we mean” when we make claims of the form (Ab1)

supports the view that there are such “absolute positions”. As I ar-

gue now, the post–Peano Russell does not likewise attempt to recon-

cile his introduction of definitions of the form (Abdf) with his Moorean

conception of analysis; and this raises a problem as to what concep-

tion of analysis—and more generally what conception of meaning and

understanding—will support his introduction of such definitions.
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3.2. (Numdf), Analysis, and Vagueness

The Moorean Russell took his defense of the absolute theory of number

to be in accord with (PoA); for he held that it is obvious that “what

we mean” or what is “present to our minds” when we understand, for

example, a sentence of the form (Num1) is a proposition whose per-

spicuous representation is given by the corresponding sentence of the

form (Num2). However, when he rejects the absolute theory of number

and accepts (Numdf), he does not likewise present his new account as

being in accord with (PoA). That is, it is not that he continues to hold

that analyzing propositions expressed by sentences containing numeri-

cal expressions is a matter of articulating what is “present to our minds”

when we understand such sentences, but changes his view as to what

is, in fact, thus “present to our minds”; rather, he has changed his view

as to what is required of a philosophically adequate analysis. And in

doing so, he presents views of numerical expressions that threaten to

undermine not only (PoA) but also (Aug).

Thus, in PoM, after introducing (Numdf), Russell writes:

To regard a number as a class of classes must appear, at

first sight, a wholly indefensible paradox. Thus Peano (F,

1901, §32) remarks that “we cannot identify the number

of [a class] A with the class of classes in question [i.e. the

class of classes similar to A], for these objects have different

properties.” He does not tell us what these properties are,

and for my part I am unable to discover them.51 Probably it

appeared to him immediately evident that a number is not

a class of classes. (PoM, 115)

Here—and in keeping with his early terminology according to which

what is “paradoxical” is not necessarily contradictory but is rather, more

generally, counter–intuitive—Russell acknowledges that his new account

of numbers is far from obvious by direct “inspection”; on the contrary,

he concedes that someone might find it “immediately evident that a

number is not a class of classes”. Earlier, in defending absolute theo-

ries of order, he claimed that they obviously reflect ‘what we mean” by

sentences of the form (Ab1) and are in accord with “common sense”,

while it would be “preposterous” and “paradoxical” to accept relative

theories of order. Now, he defends a relative theory of number, even
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though he readily concedes that it “must appear, at first sight, a wholly

indefensible paradox”.

Further, Russell adds shortly thereafter:

Mathematically, a number is nothing but a class of similar

classes: this definition allows the deduction of all the usual

properties of numbers. . . . But philosophically we may ad-

mit that every collection of similar classes has some com-

mon predicate applicable to no entities except the classes

in question, and if we can find, by inspection, that there is a

certain class of such common predicates, of which one and

only one applies to each collection of similar classes, then

we may, if we see fit, call this particular class of predicates

the class of numbers. For my part, I do not know whether

there is such a class of predicates, and I do know that, if

there be such a class, it is wholly irrelevant to Mathemat-

ics.. . . For the future, therefore, I shall adhere to the above

definition, since it is at once precise and adequate to all

mathematical uses. (Ibid., 116)

Here, Russell is, in effect, comparing his new view of cardinal numbers

as classes of similar classes with his earlier view of the cardinals as in-

definable “predicates”52 common to similar classes. He does not claim

that his new view reflects more accurately than his old view “what we

mean” when we make claims involving cardinal number. He does not

even deny that there are indefinable “predicates” of classes of the sort

that, on his earlier absolute theory of numbers, are the cardinal num-

bers. Instead, he claims that whether or not there are such indefinable

“predicates”, regarding cardinal numbers as classes of similar classes

“allows the deduction of all the usual properties of numbers”, in which

case there is no need to address the issue as to whether there are inde-

finables of the sort that he previously took numbers to be.

Moreover, by writing that his definition of cardinal numbers “is at

once precise and adequate to all mathematical uses”, Russell is suggest-

ing that our ordinary use of numerical expressions is not likewise “pre-

cise”. Indeed, in his “Preface” to PoM, Russell appeals to a distinction

between “vagueness” and “precision” to justify many of his definitions

in that work. In particular, shortly after writing:
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Many words will be found, in the course of discussion, to

be defined in senses apparently departing widely from com-

mon usage. Such departures, I must ask the reader to be-

lieve, are never wanton, but have been made with great

reluctance, (PoM, Preface, third–to–last paragraph)

he defends the apparent “departures from common usage” in the case

of his definitions of mathematical terms by writing:

As regards mathematical terms, the necessity for establish-

ing the existence–theorem in each case—i.e. the proof that

there are entities of the kind in question—has led to many

definitions which appear widely different from the notions

usually attached to the terms in question. Instances of this

are the definitions of cardinal, ordinal and complex num-

bers. In the two former of these, and in many other cases,

the definition as a class, derived from the principle of ab-

straction, is mainly recommended by the fact that it leaves

no doubt as to the existence–theorem. But in many in-

stances of such apparent departure from usage, it may be

doubted whether more has been done than to give preci-

sion to a notion which had hitherto been more or less vague.

(Ibid.)

Here Russell not only emphasizes that definitions “derived from the

principle of abstraction” enable one to prove and thereby “leave[] no

doubt”—what he would otherwise have take as unprovable and as as-

certained only by “intuition”—“that there are entities of the kind in

question”; he also indicates that while such definitions “appear widely

different from the notions usually attached to the terms in question”,

they “give precision to . . . notion[s] which had hitherto been more or

less vague”.

By indicating that our ordinary notion of cardinal number is “more

or less vague”, Russell is indicating that, as we ordinarily use it, a nu-

merical expression does not yet succeed in standing for any one entity

that is correctly regarded as “the meaning” of that expression; and in

that case, we have leeway as to which entity to assign to that expres-

sion. Thus, for Russell, if there are indefinables of the sort he previously

took the cardinal numbers to be as well as classes of similar classes, then
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assigning either sort of entity as the reference of numerical expressions

will be “adequate to all mathematical uses” of those expressions. And

the reason Russell chooses to he chooses to identify cardinal numbers

with classes of similar classes rather than indefinable properties com-

mon to similar classes is not because he positively denies that there

are such indefinables, but rather because he is more sure that there are

classes of similar classes. For Russell whether or not there are such inde-

finables, there are at least classes of similar classes, and that is enough

to insure that the mathematical statements we take to be true are, in

fact, true. But on this view, analysis is no longer a matter of recognizing

“the meaning” an expression has—the entity it stands for—in virtue of

its being meaningful at all, “the meaning” with which we must be ac-

quainted in order to understand a sentence containing that expression;

rather, it is a matter of assigning, to an expression that was previously

vague, a precise meaning that insures that the sentences containing that

expression have the truth–values we take them as having.

In thus describing our ordinary use of numerical expressions as

“vague”, Russell not only presents a view of analysis that is different

from his earlier Moorean conception; he is also putting pressure on his

official commitment to (Aug) and (PoA). For if a numerical expression,

as we ordinarily use it, does not yet succeed in standing for any one en-

tity that is correctly regarded as “the meaning” of that expression then,

by the standards of (Aug) and (PoA), that expression, as we ordinarily

use it, is not yet meaningful and cannot occur in a sentence that we

understand. For if there is no one entity that is “the meaning” of an

expression, as it is ordinarily used, then, by (Aug), that expression, as

so used, is not yet meaningful. Likewise, if there is no one entity that is

“the meaning” of a given numerical expression, as it is ordinarily used,

then, there is no entity that is “the meaning” of that expression, as so

used, for us to be acquainted with, in which case, by (PoA), no sentence

containing that expression, as so used, can be understood. By the stan-

dards of (Aug) and (PoA), that is, in “giv[ing] precision to” what “had

hitherto been more or less vague”, Russell is thereby giving meaning

to what was previously meaningless, and making understandable what

previously could not be understood; and this would have the extreme

and implausible conclusion that in their ordinary, pre–analytic usage,

numerical expressions are meaningless and cannot be understood. And
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while Russell does not draw this conclusion, he consistently accepts

presents a view of analysis and employs a notion of vagueness that,

when combined with (Aug) and (PoA), leads to that conclusion.

Thus, in Principia Mathematica, Volume II, in defending (Numdf),

Whitehead and Russell write:

The chief merits of this definition are (1) that the formal

properties which we expect numbers to have result from it;

(2) that unless we adopt this definition or some more com-

plicated and practically equivalent definition, it is necessary

to regard the cardinal number of a class as an indefinable.

Hence the above definition avoids a useless indefinable with

its attendant primitive propositions, (PM, Vol. II, 4)

while in the “Preface” to Volume I, they write:

[W]hen what is defined is (as often occurs) something al-

ready familiar, such as cardinal or ordinal numbers, the def-

inition contains an analysis of a common idea, and may

therefore express a notable advance. . . . In such cases, a

definition is a “making definite”: it gives definiteness to an

idea which had previously been more or less vague. (PM,

Vol. I, 12)

Previously, Russell held, in accord with (Aug), that the expression “2”,

for example, had as its meaning a unique entity, simple or complex, and

that that it is “the business of philosophy” to ascertain what that entity

is. To paraphrase his pre–Peano comments regarding the decision be-

tween that absolute and relative theories of magnitude, “it does not lie

with us to choose” whether what that expression means is definable or

indefinable; “on the contrary, it is the business of philosophy to dis-

cover” what it means. Here, however, Russell and Whitehead present

us with a choice as to whether to take numbers to be indefinables, or

definable as classes of similar classes, or definable in “some more com-

plicated and practically equivalent definition”;53 and they defend their

choice, not on the grounds that it reflects what numerical expressions,

as ordinarily used, actually mean, nor, as (PoA) requires, that it reflects

what is “present to the mind” when we understand sentences contain-

ing numerical expressions, but rather that it enables us to deduce “the
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formal properties which we expect numbers to have”. Compatible with

the view that our ordinary notion of cardinal number is “vague”, they

regard their task not as that of ascertaining “the meaning” of a numeri-

cal expression, as it is ordinarily used, but rather as assigning a precise

meaning to such an expression that sustains the claims we wish to make

regarding numbers.

Similarly, in Our Knowledge of the External World, after introducing

(Numdf), Russell writes:

This definition . . . yields the usual arithmetical properties

of numbers. It is applicable equally to finite and infinite

numbers, and it does not require the admission of some

new and mysterious set of metaphysical entities. (OKEW,

204)

He then writes in the following paragraph:

The above definition is sure to produce, at first sight, a feel-

ing of oddity, which is liable to cause a certain dissatisfac-

tion. It defines the number 2, for instance, as the class of

all couples, and the number 3 as the class of all triads. This

does not seem to be what we have hitherto been meaning

when we spoke of 2 and 3, though it would be difficult to

say what we had been meaning. (Ibid.)

And he adds one page later:

[T]he real desideratum about such a definition as that of

number is not that it should represent as nearly as possible

the ideas of those who have not gone through the analysis

required in order to reach a definition, but that it should

give us objects having the requisite properties. Numbers,

in fact, must satisfy the formulae of arithmetic; any in-

dubitable set of objects fulfilling this requirement may be

called numbers. So far, the simplest set known to fulfill

this requirement is the set introduced by the above defini-

tion. In comparison with this merit, the question whether

the objects to which the definition applies are like or unlike

the vague ideas of numbers entertained by those who can-

not give a definition, is one of very little importance. (Ibid.,

205)
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Likewise, in Introduction to Mathematical Philosophy, he writes:

We naturally think that the class of couples (for example)

is something different from the number 2. But there is no

doubt about the class of couples: it is indubitable and not

difficult to define, whereas the number 2 in any other sense,

is a metaphysical entity about which we can never feel sure

that it exists or that we have tracked it down. It is therefore

more prudent to content ourselves with the class of cou-

ples, which we are sure of, than to hunt for a problematical

number 2 which must always remain elusive. (IMP, 18)

Again, Russell is clear that in identifying cardinal numbers with classes

of similar classes, he is not claiming that this captures what we take our-

selves to mean by our ordinary statements involving numerical terms;

rather, he acknowledges that this account “is sure to produce, at first

sight, a feeling of oddity”, for what 2 and 3 are on this account “does

not seem to be what we have hitherto been meaning when we spoke

of 2 and 3” and grants, in accord with his earlier view of the cardinal

numbers, that we would “naturally” distinguish a cardinal number from

a class of similar classes. Again, he does not deny that there are inde-

finable entities, distinct from classes of similar classes, of the sort he

previously took the cardinal numbers to be; rather, he claims only that

we “can never feel sure” that there are such “metaphysical entities”,

so that is “more prudent” to identify the cardinal numbers with classes

of similar classes (which are “indubitable”) than with such (“problem-

atic”) indefinables. What matters is that we find objects that “satisfy

the formulae of arithmetic”, and since we can be more sure that there

are classes of similar classes than that there are those indefinables, it is

“safer” to accept his account of the cardinal numbers. 54

Again, Russell indicates that there is no fact of the matter as to “what

we had been meaning” in our ordinary use of arithmetical expressions,

and that what we entertain when we ordinarily talk of numbers are

only “vague ideas”. And thus he indicates that the task of analysis is

not, as on his Moorean view, a matter of identifying the entity that is

“the meaning” a mathematical expression has in its ordinary use, be-

fore we undertake the analysis—“the meaning”, which by (Aug), such

an expression has, in its ordinary use, in order to be meaningful, and

which, by (PoA), we must be acquainted with, or have “present to the
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mind”, in order to understand a sentence containing that expression,

as it is ordinarily used—but is rather, as he indicates in PoM, to find

a definition that “is at once precise and adequate to all mathematical

uses”.

Given that Russell’s defense of his PoM definitions of cardinal num-

bers is thus opposed to his earlier Moorean conception of analysis, it is

not surprising that Moore himself would object to Russell’s definitions.

Accordingly, in an unpublished review of PoM, written apparently some

time in 1905–6, Moore writes:

But [Russell’s] definition in logical terms of number ‘one’

is by no means simple: it is as follows: The number ‘one’

is the class whose members are all those classes, of which

each is such has it has a member x , such that the propo-

sition “y is a member of the class in question and y differs

from x” is always false, whatever y may be. This is the def-

inition in logical terms of the number ‘one’. And whether,

whenever we say that we have but one penny in our pocket,

this definition is a correct analysis of the property which we

mean to attribute to our penny, it is, Mr. Russell admits,

permissible to doubt. It is not plain that what we think to

be true of the penny, when we think it is but one, is no less

than that it is a member of the class of [one-membered]

classes . . . : it is not plain that this is a correct analysis of

what we think. That it is equivalent to what we think, in

the sense that anything whatever which has the property

which we mean by ‘one’ is also a member of this class of

classes, and that anything whatever which is a member of

this class of classes also has the property which we mean by

‘one’, there is, indeed, no doubt whatever. But Mr. Russell

admits the possibility that it is only equivalent—that, possi-

bly, all the members of this class of classes have in common

some other property, beside the fact that they belong to this

class—some other property, which belongs to all of them

and only to them, and which may be what we generally

mean when we speak of the number ‘one’. Mr. Russell,

indeed boldly asserts his doubt whether there is any such

other property; and there is much to be said for his view.
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But what I wish now to point out is the consequences which

follow from the mere possibility that there is such another

concept, meant by ‘one’. . . . When Mr. Russell asserts that

1 + 1 = 2 can be deduced from logical principles, his as-

sertion only applies to the proposition in which the concept

dealt with is ‘the class of classes, of which each etc. etc’; it is

only this proposition which he shows to be deducible from

logical principles. If it be true that there is also another

concept denoted by the word ‘one’, then the proposition

that 1 + 1 =2, understood as asserting a universal connec-

tion between this other concept and some others, cannot be

deduced from logical principles alone. . . . Unless, there-

fore, it can be shown that the concepts dealt with in those

propositions, which can be deduced from logical principles,

are the very ones which occur in the proposition 1 + 1 =2,

as ordinarily understood, then it must be admitted either

that the proposition 1 + 1 = 2, as ordinarily understood, is

not a proposition of pure mathematics or that Mr. Russell’s

[logicism] does not . . . apply to all propositions of pure

mathematics. (G.E. Moore, 1905–6?, 8–10)

Here, Moore is assuming what I have called the “Moorean conception of

analysis” to criticize Russell’s PoM definition of the number one. Thus

he questions whether Russell’s “definition is a correct analysis of the

property which we mean to attribute to our penny” when “we say that

we have but one penny in our pocket”, whether it is “a correct analysis

of what we think” when we make such a claim or of “what we gener-

ally mean when we speak of the number ‘one”’. Similarly, he questions

whether it provides a correct account of the “concepts” which “occur

in the proposition 1 + 1 = 2 as ordinarily understood”. And insofar

as he suggests that it is implausible to suppose that Russell’s definition

of the number one—a definition “which is by no means simple”—could

be “what we think” or “generally mean when we speak of the number

‘one”’, then Moore is suggesting, in accord with (PoA), that, if when

we make a statement about the number one and what Russell defines

the number one to be is not then “before our minds”, then Russell’s

definition cannot be correct.55

Further, Moore takes Russell’s agnosticism as to whether there are,
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in addition to classes of similar classes, indefinable properties of the

sort Russell previously took numbers to be (and Moore himself, in his

1911 lectures I have quoted above, takes numbers to be) as raising

a problem for Russell’s logicism. For, given Moore’s view, in accord

with (Aug), that there is a single entity, which is “the meaning” of the

expression “one”, as it is ordinarily used, which that expression con-

tributes to propositions such as “1 + 1 = 2 as ordinarily understood”,

then, if what it contributes to that proposition is not the “concept” de-

termined by Russell’s definition but rather the indefinable property of

one–membered classes which Russell had previously taken the number

one to be, then Russell’s logicism is threatened. For, if the proposition

“1 + 1 = 2 as ordinarily understood” contains as constituents indefin-

able numbers, then it does not consist wholly of constituents definable

in purely logical terms, in which case if the proposition “1 + 1 = 2 as

ordinarily understood” is a proposition of pure mathematics, then Rus-

sell’s logicism is false. For Moore, as for the pre–Peano Russell, we are

not free to introduce definitions as a matter of “convenience”; they have

to be answerable to what our words “as ordinarily understood” actually

mean. Hence, for Moore, Russell is not free to introduce his definitions

of cardinal numbers simply because they facilitate his logicism; if in

fact, they do not correspond to “what we generally mean” when we use

numerical expressions, then so much the worse for his logicism.

Likewise, given his concern with providing a “phenomenologically”

correct analysis of “what we mean” when we make various claims, it

is also not surprising that Husserl would reject any analysis that substi-

tutes classes determined by definitions of the form (Abdf) for properties.

Accordingly, in his Logical Investigations, Husserl criticizes such an anal-

ysis, when he writes:

‘What we mean’ is surely our sense, and can one say even

for an instant that the sense of the proposition ‘This tone is

faint’ is the same as the sense of the proposition ‘This tone

belongs to a group (of whatever sort) of similars’?.. . . Nat-

urally the utterances ‘A tone is faint’ and ‘A tone belongs to

the sum total of objects alike in their faintness’ are seman-

tically equivalent, but equivalence is not identity. (1900–1,

Investigation II, Appendix, 303–4)

Here, in accord with some such principle as (PoA), Husserl indicates
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that since the proposition we entertain when we say “This tone is faint”

does not seem to be the same proposition we entertain when we say

“This tone belongs to the sum total of objects alike in their faintness”,

then the proposition expressed by—or “what we mean” when we utter—

each of these sentences is not the same (even if they are “equivalent”).

Even before he defined cardinal numbers as classes of similar classes,

Russell had already introduced definitions that reflect a non–Moorean

conception of analysis.

Thus, as I have discussed above, Russell’s November 1900 defense

of his definition of real numbers as segments of rationals is similar in

structure to his later defense of (Numdf). In each case, he defends a

class–theoretic definition against another account —in the case of real

numbers, the accounts of Dedekind, Cantor, and Weierstrass; in the

case of cardinal numbers, his own earlier account—according to which

the entities in question are taken to be indefinables, whose existence is

accepted on the basis of some purported “axiom”— in the case of real

numbers, an “axiom of continuity”; in the case of cardinal numbers, his

earlier “axiom of abstraction”—or “immediate intuition”. In each case,

he argues (assuming the existence of classes), that while there can be

no doubt of the existence of the classes he has defined, there is less

certainty that there are such indefinables. In each case, he argues that

since the class–theoretic entities “do all that is required” of the entities

in question, there is then no need to assume the alleged indefinables or

take them to be the entities in question. In neither case, does he defend

his definition on the basis that it reflects “what we ordinarily mean”

when we use the term in question.

Similarly, in discussing Cantor’s and Dedekind’s definitions of “infi-

nite”, as well as Cantor’s definition of “continuity”, which, as I have dis-

cussed above, he accepted immediately following the Paris Congress,

Russell does not present them as simply articulating “what we mean”

when we use these terms. Thus, in “Recent Work on the Principles of

Mathematics”, he writes “though people had talked glibly about infin-

ity ever since the beginnings of Greek thought”, before Dedekind and

Cantor “if any philosopher had been asked for a definition of infinity,

he might have produced some unintelligible rigmarole, but he would

certainly not have been able to give a definition that had any meaning

at all”. In contrast, “the first and perhaps the greatest step” of Dedekind
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and Cantor was that they “found . . . a perfectly precise definition of an

infinite number or an infinite collection of things” (1901d, 372).

And in discussing, in his November 1900 draft of Part V of PoM,

Cantor’s definition of “continuity”, he writes that “Cantor’s merit lies,

not in meaning what other people mean, but in telling us what he means

himself—an almost unique merit, where continuity is concerned” (PoM,

353).

Thus Russell indicates, in opposition to the Moorean conception of

analysis, that the task of defining “infinity” or “continuity” is not to iden-

tify “the meaning” of these terms as they are “ordinarily understood”,

or “what is present to the mind” to someone who understands these

terms. Rather, he suggests that prior to Cantor and Dedekind no one,

including no philosopher, who had previously used these terms, had any

definite meaning “before the mind”, and that the achievement of Can-

tor and Dedekind was to give these terms a precise meaning sufficient

for all our theoretical needs.56 And throughout his writings—including,

for example, in PM, Volume I (12), 1919a (105–6), and 1946 (783)—

Russell characterizes Cantor’s definition of “continuity” as one in which

he made “precise” or “definite” what had previously been “vague”.

While the post–Peano Russell thus already departs from the Moorean

conception of analysis as soon as he introduces his definitions of real

numbers and accepts Cantor’s and Dedekind’s definitions of “infinity”

and “continuity” in the period immediately following the Paris Con-

gress, there are some respects in which the departure becomes more

dramatic once he accepts (Numdf) and other instances of (Abdf). First,

one might hold that the notions of “real number”, “infinity”, and “conti-

nuity” are technical or abstruse concepts that, while important for math-

ematicians and philosophers, are not central to ordinary discourse, in

which case few, if any, people understood sentences containing these

terms before the appropriate definitions were introduced. However,

terms for the cardinal numbers are introduced to children at a very

young age and thus seem central our common conceptual repertoire, in

which case, it would seem harder to deny that such terms were mean-

ingful or occurred in sentences we were capable of understanding be-

fore the definitions were introduced. But in that case, Russell would be

forced to conclude, as against (Aug), each such term was meaningful

before it succeeded in standing for a unique entity that is its meaning,
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and, as against (PoA), such a term could occur in a sentence we could

understand, even though there was no entity that was “the meaning” of

such a term for us to be acquainted with in understanding that sentence.

Further, in the cases of “real number”, “infinity”, and “continuity”,

Russell comes to accept definitions of notions he had previously re-

garded as illegitimate. The pre–Peano Russell had denied that the no-

tion of “the completed or definite infinite” is coherent, and in doing so,

he not only rejected Dedekind’s and Cantor’s definition of “infinity” and

Cantor’s definition of “continuity”, but also denied that there are any

real numbers, for he took their existence to depend on the legitimacy

of “the completed or definite infinite”. In contrast, in the case of car-

dinal numbers, what changes for Russell is not whether the notion is

legitimate or whether there are such entities but rather his view as to

what they are. From his later perspective, Russell might claim that his

own confusions had prevented him from associating any meaning with

“real number”, “infinity”, or “continuity”, so that he was in no position

to regard such terms as meaningful or to understand sentences contain-

ing them until he overcame these confusions. In contrast, in the case

of cardinal number, Russell replaced one definite notion of what they

are—indefinables common to similar classes—with another—classes of

similar classes. What would seem to be in question here is not whether

the term “cardinal number” is legitimate or meaningful at all but rather

what meaning to assign to that term. Here, the view of analysis as

replacing a “vague” notion with a “precise” one cannot be so easily pre-

sented as a case of moving from assigning no meaning to a term and

thus having nothing to understand to assigning it a definite meaning

and thus having something to understand; rather, it would seem to be

a case of choosing among different assignments of meaning to a term

that is clearly meaningful and that we understand. Thus, this sort of

case presents a more direct threat to his Moorean conception of mean-

ing and understanding. For it suggests, as against (Aug), that an ex-

pression can be meaningful without there being a single entity that is

its “meaning” and, as against (PoA), that a sentence containing a given

expression can be understood without one’s having to be acquainted

with the entity that is “the meaning” of that expression.

The problem for Russell, however, is that he while never presents his

acceptance of (Numdf), or other instances of (Abdf), as conforming to
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his Moorean conception of analysis, he continues to endorse (Aug) and

(PoA), views of meaning and understanding that underpin the Moorean

conception of analysis. In particular, by presenting analysis as a process

of moving from the “vague” to the “precise”, while also officially accept-

ing (Aug) and (PoA), Russell is committed to holding that our words —

including, commonly used numerical expressions—that, as ordinarily

used, are “vague” are meaningless and cannot occur in sentences that

we understand.

I argue now that once he accepts his behaviorist account of mean-

ing and understanding in his post post–1918 writings, Russell is able

to avoid this conclusion; for by introducing his behaviorist account of

meaning and understanding, Russell is in a position to reject (Aug) and

(PoA), thereby it possible for him to hold that “vague” language can

be meaningful and understood and thereby making more coherent and

plausible his post–Peano practice of analysis.

3.3. Vagueness, Analysis, and Behaviorism

The topic of vagueness plays a central role in a number of Russell’s post–

1918 publications, including, most prominently, his influential 1923 pa-

per “Vagueness”.57 Those who have considered the genesis of Russell’s

interest in the topic have typically found little, if any, connection be-

tween his post–1918 discussions of vagueness and his earlier philosophy

of mathematics in either PoM or PM.58 As against this, I argue that the

definition of vagueness Russell provides in his post–1918 writings cap-

tures the notion of vagueness he appeals to in defending (Numdf); how-

ever, I argue also that what Russell possesses in his post–1918 writings

that he previously lacked is a theoretical framework that allows vague

language to be meaningful and capable of being understood, thereby

enabling him engaging in his post–Peano practice of analysis without

having to regard language, as it is ordinarily used, prior to analysis

as meaningless and not capable of being understood. While Russell’s

post–Peano practice of analysis leads him to recognize the phenomenon

of vagueness that he later articulates more fully, it is not until he adopts

a behaviorist account of meaning and understanding that he has a plau-

sible account of that phenomenon and hence of that practice of analysis.

In “Vagueness”, Russell holds that “vagueness and precision alike

are characteristics which can only belong to a representation, of which
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language is an example” (1923a, 147). He holds generally that a rep-

resentational system is “precise” when there is a one–one relation be-

tween that system and the system it represents, while “a representation

is vague when the relation of the representing system to the represented

system is not one–one but one–many” (ibid., 152). For Russell, “a pho-

tograph which is so smudged that it might equally represent Brown or

Jones or Robinson is vague”, and a map is more vague to the extent that

“various different courses [of, say, a road or river] are compatible with

the representation it gives” (ibid.). Then “passing from representation

in general to the kinds of representation that are specially interesting to

the logician”, Russell writes:

. . . the representing system will consist of words, percep-

tions, thoughts, or something of the kind, and the would–

be one–one relation between the representing system and

the represented system will be meaning. In an accurate

language, meaning would be a one–one relation; no word

would have two meanings, and no two words would have

the same meaning. In actual languages . . . meaning is one–

many. . . . That is to say, there is not only one object that

word means, and not only one possible fact that will verify

a proposition. The fact that meaning is a one–many relation

is the precise statement of the fact that all language is more

or less vague. (Ibid.)

In indicating that in vague language, “meaning” is a “one–many rela-

tion”, Russell is not, I take it, claiming that a vague word succeeds in

standing for more than one entity; instead, he is indicating that a vague

word fails to succeed in picking out, or standing for, one and only one

entity as its meaning. That is, a vague word is such that it is compat-

ible with the use of that word that different entities be taken as “the

entity” that it stands for, in which case, there is nothing in the use of

that word which singles out one of those entities, to the exclusion of

the others, as “the entity” it stands for;59 but this is not to say that

one is entitled to take that vague word as standing for all those entities

together. Thus, in Russell’s example, the smudged photograph that is

vague “might equally represent Brown or Jones or Robinson”; but this is

not to say that it thereby represents all of them simultaneously. Rather,

there is only one person that the photograph can be of; but there is
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nothing in that photograph that determines which person that is.

Again, Russell argues that because “birth is a gradual process” and

likewise death, the name “Ebenezer Wilkes Smith” is vague, for it does

not succeed in designating one and only one particular whose existence

begins and ends at determinate times (ibid., 149). Given that “Ebenezer

Wilkes Smith” is a proper name, we take it as referring to only one

entity; but there is nothing in our use of that name that that enables it

to pick out exactly which entity, with exactly which life–span, that is.

Likewise, for Russell, because “there are shades of colour concerning

which” it is “essentially doubtful” whether the word “red” applies to

them or not, the predicate “red” is vague (ibid., 148); for Russell, since

“red” is a predicate, we take it to stand for one universal, but there is

nothing in our use of that word determining exactly which universal,

encompassing which shades of color, that is.60

This account of vagueness is in accord with Russell’s PoM character-

ization of numerical expressions as vague. For by indicating there that

so far as “all mathematical uses” of numerical expressions goes, we can

take those expressions to be referring either to the indefinables that he

had previously taken the cardinal numbers to be or to be classes of sim-

ilar classes, Russell is indicating that there is nothing in our ordinary

use of such expressions that determines which (if either) of these sorts

of entities those expressions stand for—which is not to say that such

expressions stand for both sorts of entities. For while we may interpret

such an expression as standing for either sort of entity, we cannot in-

terpret it as standing for both sorts of entity simultaneously. Thus, for

Russell (in PoM61), while we take a numerical expression to refer to

a single entity, there is nothing in our ordinary use of that expression

which determines exactly which entity that is, in which case such an

expression fails to succeed in standing for one entity to the exclusion of

others. Hence, the phenomenon of vagueness that Russell identifies in

arithmetical discourse in 1903 is the same phenomenon he character-

izes generally in his 1923 paper.

What has changed by 1923 is that Russell now has a general account

of meaning and understanding that puts him in a position to hold that

vague discourse may be meaningful and understood. So long as he of-

ficially accepts (Aug) and (PoA), he is no position to hold that a vague

expression—that is, an expression which does not succeed in standing
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for one and only one entity—is meaningful or can be understood. How-

ever, once he holds that

A person “understands” a word when (a) suitable circum-

stances make him use it, (b) the hearing of it causes suitable

behavior in him, (1919b, 290; 1921, 197)

and that:

Understanding words does not consist in knowing their dic-

tionary definitions, or in being able to specify the objects to

which they are appropriate. . . . Understanding language

is more like understanding cricket: it is a matter of habits,

acquired in oneself and rightly presumed in others. To say

that a word has a meaning is not to say that those who use

the word correctly have ever thought out what the meaning

is: the use of the word comes first, and the meaning is to be

distilled out of it by observation and analysis, (1921, 197;

see also 1919b, 290)

then there is room for the possibility that word can be meaningful and

understood, even if it is vague. For since what is now required for a

word to be meaningful is for it to be used in certain ways, it becomes an

open question whether the use which is sufficient for establishing that a

given word is meaningful is also sufficient for determining a unique en-

tity that is “the meaning” of that word. If it is not thus sufficient, then,

as against (Aug), that word is meaningful, even though it is vague.

Likewise, if understanding that word is simply a matter of using and

reacting to it in certain ways, and if the use which is sufficient for es-

tablishing that someone has understood that word is not sufficient for

regarding that person as having identified a unique entity, to the exclu-

sion of others, as “the meaning” of that word, then, as against (PoA), a

person may understand that word without being acquainted with any

entity that is “the meaning” of that word.

This is not to say that everyone who adopts such a behaviorist ac-

count of meaning and understanding will automatically deny that any,

let alone each, word fails to succeed in standing for one and only one

entity that is thereby “the meaning” of that word. For some might

hold that the behavior which is sufficient for establishing that a word is
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meaningful is also sufficient for identifying a unique entity that is “the

meaning” of that word. This, however, is not Russell’s view.62 For imme-

diately after the passage from The Analysis of Mind I have just quoted,

he continues:

Moreover, the meaning of a word is not absolutely definite:

there is always a greater or lesser degree of vagueness. The

meaning is an area like a target: it may have a bull’s eye, but

the outlying parts of the target are still more or less within

the meaning, in a gradually diminishing degree as we travel

further from the bull’s eye. As language grows more precise,

there is less and less of the target outside the bull’s eye, and

the bull’s eye itself grows smaller and smaller; but the bull’s

eye never shrinks to a point, and there is always a doubtful

region, however small, surrounding it. (1921, 197–8)

Thus, for Russell, whatever we can “distill out of” the use of a given

word, it will not be enough to pick out one unique entity that is “the

meaning” of that word. For Russell, once we cease to assume at the

outset, as (Aug) requires, that for a given word to be meaningful is

for it to stand for one and only one entity that is its “meaning”, and

instead hold that for a given word to be meaningful is for it to be used in

certain ways, we will be able to raise the question whether a meaningful

word succeeds in standing for a unique entity that is its “meaning”;

and once we raise that question, the answer we should give is that

no meaningful word ever thus succeeds. Here, I am not concerned

to assess Russell’s view that once meaning is understood behaviorally,

we will not, in general, be able to identify a unique entity that is “the

meaning” of a given word; rather, I am only concerned to point out how,

by accepting this view, he is able to reject (Aug) and (PoA), and thereby

hold that vague language may be meaningful and understood.

In coming to hold this view, Russell’s theory has finally caught up

with his practice. The Moorean conception of analysis presumes that

words as we ordinarily use them are meaningful and can be understood

by standards of (Aug) and (PoA). Thus each word succeeds in stand-

ing for a unique entity; each sentence succeeds in expressing a unique

proposition; and the task of analysis is to identify the constituents of

the proposition expressed by a given sentence—that is, the meanings

of the words in that sentence with which, by (PoA), we must be ac-
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quainted in order to understand that sentence. In contrast, Russell’s

post–Peano practice of analysis of mathematical discourse begins with

the use of certain expressions—for example, the numerical expressions

in “the formulae of arithmetic”. There is no assumption that each word

in the relevant sentences succeeds in standing for a unique entity to the

exclusion of others, but only the assumption that the relevant sentences

are true; here, the task of analysis is not to identify “the” constituents

of “the” propositions expressed by the sentences in question but rather

to specify propositions and thus to specify meanings for the words in

those sentences that will insure that the sentences which we take at the

outset to be true are, in fact, true. Here, when we begin with sentence

S1 and end up with sentence S2 as the outcome of our analysis, we do

not regard S2 as a perspicuous representation of “the” proposition we

originally apprehended when we originally understood S1; rather, we

regard S1 as “vague”, as not succeeding in expressing one proposition to

the exclusion of others, and we regard S2 as precisely (or at least more

precisely) expressing a proposition that we are confident will have the

same truth–value we wish to assign to S1, but a proposition one need

not apprehend when one originally understood S1.

Insofar as Russell holds that the sentences we take to be obviously

true at the outset of our analysis are meaningful, his post–Peano prac-

tice of analysis thus requires is a view of meaning that enables us to

ask how we may interpret an expression that is meaningful but vague.;

and this is what he provides in his post–1918 view that “the use of the

word comes first, and the meaning is to be distilled out of it by obser-

vation and analysis”. Use is what determines whether an expression is

meaningful, and use is the condition that any interpretation of an ex-

pression must meet; where its use is compatible with interpreting that

expression in more than one way, then that expression is vague; and in

such a case, the task of analysis is to find a “prudent” interpretation of

that expression compatible with its use—in particular, an assignment of

meaning that will “safely” allow us to assign the truth–values we wish

to assign to the sentences containing the expression in question. And

it is in these sorts of terms that Russell typically characterizes the task

of analysis in his post–Peano writings.

Thus, for example, in his 1914 paper, “The Relation of Sense–Data

to Physics”, Russell writes that “the supreme maxim in scientific philos-
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ophizing is this: Wherever possible, logical constructions are to be sub-

stituted for inferred entities” (1914a, 11), and, as examples of these,

he mentions his PoM definition of the irrationals, his PoM definition of

the cardinal numbers, and his PM “no classes” account of discourse ap-

parently about classes. In these cases, Russell provides definitions that

enable us to prove propositions in the relevant domain without hav-

ing to hold that there are indefinables of the sort that some (Dedekind,

Cantor, and Weierstrass, in the case of the irrationals; his own earlier

self, in the case of the cardinals; and Frege along with his earlier self,

in the case of classes) have taken irrationals, cardinal numbers, and

classes to be, and without having to accept purported “axioms” (such

as Dedekind’s “axiom of continuity”, or his own earlier “axiom of ab-

straction”, or Frege’s Axiom V) that would guarantee the existence of

such indefinables. In none of these cases, does Russell actually deny

that there are such indefinables; and in none of them does Russell pro-

ceed in accord with the Moorean conception of analysis. For, Russell’s

central claim is not that his definitions reflect “what we mean” or what

is “present to our minds” when we understand sentences containing the

defined expressions but rather that given his definitions, the sentences

we take to be true in the relevant domains will be true whether or not

there are such indefinables.

I have made these points above with regard to his PoM definitions

of the irrationals and the cardinal numbers; and they hold as well for

his “no classes” theory, which he introduces in PM by writing:

It is not necessary for our purposes . . . to assert dogmati-

cally that there are no such things as classes. It is only nec-

essary for us to show that the incomplete symbols which we

introduce as representatives of classes yield all the proposi-

tions for the sake of which classes might be thought essen-

tial. (PM, Vol. I, 72)

Again, Russell presents himself as developing a theory that “yield[s] all

the propositions for the sake of which classes might be thought essen-

tial” without having to assume that there are “such things as classes”.

He does not “assert dogmatically that there are no such things as classes”;

nor does he present himself as providing an account of “what we mean”

or of what is “present to our minds” when we understand “the proposi-

tions for the sake of which classes might be thought essential”. Rather,
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he is seeking to arrive at an interpretation of sentences containing class

symbols that enables us to assign the truth–values we take those sen-

tences as having, irrespective of how far that interpretation may be from

what was “present to our minds” when we first understood such sen-

tences. Just as his class theoretic definitions—or “logical constructions”,

in his terminology of 1914—of the irrationals and cardinal numbers will

insure that the relevant formulae are true regardless of whether there

are indefinables—“inferred entities”, in his 1914 terminology, whose ex-

istence follows from the supposed relevant “axioms”—of the sort others

have taken irrationals and cardinal numbers to be, so too the “logical

constructions” of his “no class” theory will “yield all the propositions

for the sake of which classes might be thought essential” regardless

of whether there actually are the “inferred” entities—namely, classes

themselves—that people have thought those propositions are about.

Accordingly, after mentioning these three cases in which he had

“substituted logical constructions” for “inferred entities”, Russell con-

tinues in “The Relation of Sense–Data to Physics” by writing:

The method by which the construction proceeds is closely

analogous in these and all similar cases. Given a set of

propositions nominally dealing with the supposed inferred

entities, we observe the properties which are required of the

supposed entities in order to make these propositions true.

By dint of a little logical ingenuity, we then construct some

logical function of less hypothetical entities which has the

requisite properties. This constructed function we substi-

tute for the supposed inferred entities, and thereby obtain

a new and less doubtful interpretation of the body of propo-

sitions in question. This method, so fruitful in the philoso-

phy of mathematics, will be found equally applicable in the

philosophy of physics, where, I do not doubt, it would have

been applied long ago but for the fact that all who have

studied this subject hitherto have been completely ignorant

of mathematical logic. (1914a, 12)

The “method” which Russell describes here and seeks to apply to state-

ments of physics is not that which would be required by a Moorean con-

ception of analysis. Rather than presenting himself as identifying the

constituents of the propositions expressed by certain sentences—and
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hence, by the (PoA), as identifying the entities with which one must be

acquainted in order to understand those sentences—Russell indicates

that his purpose is arrive at an “interpretation” of a given body of sen-

tences that will insure that those sentences are true. Thus, the “data”

Russell is seeking to accommodate by this method are not Moorean

“data” as to “what we mean” or what is “before the mind” when we

understand those sentences, but rather the “data” that those sentences

are true; and thus Russell will succeed in his task so long as the “inter-

pretation” he provides of those sentences gives them the truth–values

we pre–theoretically take them as having, regardless of whether it also

gives them the “meaning” we pre–theoretically take them as having.63

In the lecture series “The Philosophy of Logical Atomism” (PLA) he

delivered in January–March 1918, shortly before he went to prison that

May, Russell similarly describes his conception of analysis, this time

appealing to the notion of “vagueness”. Thus, early in the first of those

lectures, Russell remarks:

It is a rather curious fact in philosophy that the data which

are undeniable to start with are always rather vague and

ambiguous. You can, for instance, say: “There are a num-

ber of people in this room at this moment.” That is obvi-

ously in some sense undeniable. But when you come to try

and define what this room is, and what it is for a person

to be in a room, and how you are going to distinguish one

person from another, and so forth, you find that what you

have said is most fearfully vague and that you really do not

know what you meant. That is a rather singular fact, that

every thing you are really sure of, right off is something

you do not know the meaning of, and the moment you get

a precise statement you will not be sure whether it is true

or false, at least right off. The process of sound philoso-

phizing, to my mind, consists mainly in passing from those

obvious, vague, ambiguous things, that we feel quite sure

of, to something precise, clear, definite, which by reflection

and analysis we find is involved in the vague thing that we

start from, and is, so to speak, the real truth of which that

vague thing is a shadow. . . . Everything is vague to a de-

gree you do not realize till you have tried to make it precise,
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and everything precise is so remote from everything that we

normally think, that you cannot for a moment suppose that

is what we really mean when we say what we think. (PLA,

161–2)

Here, Russell presents a view of vagueness and of analysis which is

in accord with both his post–Peano “analyses” of mathematical con-

cepts64 and his post–1918 characterization of vagueness, but which

is opposed to his Moorean views of analysis and meaning. Thus, in

claiming that although “the data” with which we begin in philosophy

are claims we take to be obviously true, those claims themselves are

“fearfully vague”, so that “you really do not know what you meant” in

making such claims, Russell is characterizing his post–Peano procedure

of beginning with statements in a given domain that we take to be true

and then attempting to find a precise “interpretation” of those state-

ments which, while insuring that those statements are true, is not in-

tended to reflect “what we really mean” when we originally made those

statements. And while that procedure is in accord with his post–1918

view that “the use of the word comes first” and that “the meaning” of a

word that may be “distilled out” of its use is “not absolutely definite”, it

is opposed to the Moorean conception of analysis, according to which,

given (PoA), it is incoherent to suppose that we can understand a sen-

tence and take it to be obviously true, and not know “what we mean”

in uttering that sentence.

Russell’s notion of vagueness is not only central to his post–Peano

characterization of analysis as “passing” from what is “obvious” and

“vague” to “something precise, clear, definite, which by reflection and

analysis we find is involved in the vague thing that we start from”;

it also sets the main problem that his methodology of “substituting”

“logical constructions” for “inferred entities” is meant to address. For

given that a vague claim is one that admits of many different precise

interpretations, then insofar as the original vague claim will be true so

long as any of those precise interpretations is true, it is more likely that

the original claim will be true than will any of its precise interpretations.

Accordingly, in “Vagueness”, Russell writes: “A vague belief has a much

better chance of being true than a precise one, because there are more

possible facts that would verify it” (1923a, 153; see also 1921, 188).

Similarly, in the passage I have just quoted from PLA, Russell contrasts
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the certainty of the vague (“everything you are really sure of, right off is

something you do not know the meaning of”) with the lack of certainty

of the precise (“the moment you get a precise statement you will not be

sure whether it is true or false, at least right off”); and in the following

paragraph he adds:

When you pass from the vague to the precise by the method

of analysis and reflection that I am speaking of, you always

run a certain risk of error. If I start with a statement that

there are so and so many people in this room, and then set

to work to make the statement precise, I shall run a great

many risks and it will be extremely likely that any precise

statement I make will be something not true at all. So you

cannot very easily or simply get from these vague undeni-

able things to precise things which are going to retain the

undeniability of the starting–point. (PLA, 162)

Accordingly, the challenge of analysis for Russell is to move from a

vague statement we take to be obviously true to a precise interpreta-

tion of that statement that is less at risk of being false than are other

precise interpretations of that statement. And accordingly also, Russell’s

main defense of his “logical constructions” is that they provide interpre-

tations of the original “obvious” statements that render it more certain

that those original statements are true than do interpretations accord-

ing to which those statements are about “inferred” entities. Thus, in

PoM, Russell argues that whether or not there are indefinables of the

sort he had previously taken the cardinal numbers to be, there are at

least classes of similar classes, in which case interpreting “the formulae

of arithmetic” as being about classes of similar classes renders it more

certain that those formulae are true than interpreting them as being

about the former sort of indefinables.

In the final lecture of PLA, Russell presents the task of analysis in

similar terms. In particular, he discusses “the purpose embodied in the

maxim called Occam’s Razor” as follows:

[T]ake some science, say physics. You have there a given

body of doctrine, a set of propositions expressed in symbols

. . . and you think that you have reason to believe that on

the whole those propositions, rightly interpreted, are fairly
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true, but you do not know what is the actual meaning of the

symbols that you are using. The meaning they have in use

would have to be explained in some pragmatic way: they

have a certain kind of practical or emotional significance

to you which is a datum, but the logical significance is not

a datum, but a thing to be sought, and you go through,

if you are analyzing a science like physics, these proposi-

tions with a view to finding out what is the smallest em-

pirical apparatus—or the smallest apparatus, not necessar-

ily wholly empirical—out of which you can build up these

propositions. (Ibid., 235)

And he adds later:

[E]very diminution of apparatus diminishes the risk of er-

ror. Suppose, e.g., that you have constructed your physics

with a certain number of entities and a certain number of

premisses; suppose you discover that by a little ingenuity

you can dispense with half those entities and half of those

premisses, you clearly have diminished the risk of error, be-

cause if you had before 10 entities and 10 premisses, then

the 5 you have now would be all right, but it is not true con-

versely that if the 5 you have now are all right, the 10 must

have been. Therefore you diminish the risk of error with

every diminution of entities and premisses. (Ibid., 242–3)

Moreover, with regard to the entities he thus “dispenses” with, he claims:

“I am not denying the existence of anything; I am only refusing to affirm

it.” (Ibid., 237) Thus, for example, in discussing his view that we can

dispense with “the metaphysical and constant desk” and treating it as a

“logical construction” out of “appearances”, he writes:

You have anyhow the successive appearances, and if you

can get on without assuming the metaphysical and constant

desk, you have a smaller risk of error than you had before.

You would not necessarily have a smaller risk of error if you

were tied down to denying the metaphysical desk. That is

the advantage of Occam’s Razor, that it diminishes your risk

of error. (Ibid., 243)
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Again, Russell is here describing his post–Peano practice of analysis:

begin with a body of propositions we take to be true but with which we

have associated no precise meaning, and find a precise interpretation

of those propositions that minimizes the “risk” of those propositions

being false. In doing so, we will “dispense” with certain entities we

may have formerly assumed to exist, but in thus dispensing with those

entities, we are not positively denying that they exist, only refusing to

affirm that they do. For we increase our “risk of error”—we make an

added claim on reality that might be false—if we either affirm or deny

that they exist. Again, the procedure he describes is opposed to his

Moorean conception of analysis, which precludes the possibility that a

sentence can have a meaning “in use” for us without it expressing a

definite proposition that we apprehend, and which takes the task of

analysis to consist in identifying “the” constituents of “the” proposition

we thus apprehend in understanding the sentence in question, not in

finding an “interpretation” of that sentence that minimizes the “risk” of

that sentence’s being false.

As late as PLA, however, the problem remains for Russell that insofar

as he holds that “vague undeniable” statements which we accept at the

outset of our analyses are meaningful and can be understood, then his

post–Peano practice of analysis, which he accurately describes in both

the first and last lectures in that series, is incompatible with views of

meaning and understanding, including (Aug) and (PoA), he officially

endorses (especially in the context of presenting his most well–known

analysis, namely the theory of descriptions65), including in that lecture

series. Thus, in the second lecture he says: “When I speak of a symbol

I simply mean something that ‘means’ something else”(ibid., 167); and

in the third he writes: “[T]o understand a symbol is to know what

it stands for”(ibid., 182). Further, he claims that “the meaning you

attach to your words must depend on the nature of the objects you

are acquainted with” (ibid., 174). More specifically, he defines proper

names as words that “stand for” particulars (ibid., 178), while “by a

predicate . . . I mean a word that is used to designate a quality such as

red, white, square, round” (ibid., 182). He says also that “to understand

a name, you must be acquainted with the particular of which it is a

name” (ibid.), while in discussing what is involved in understanding

the word “red”, he writes:
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[S]uppose,—as one always has to do—that “red” stands for

a particular shade of colour. You will pardon that assump-

tion, but one never can get on otherwise. You cannot un-

derstand the word “red” except by seeing red things. There

is no other way it can be done. . . . All analysis is possible

in regard to what is complex, and it always depends in the

last analysis, upon acquaintance with the objects that are

the meanings of certain simple symbols. . . . In the sense of

analysis, you cannot define “red”. (Ibid., 173–4)

All these remarks are in accord with views Russell accepted during his

Moorean period: the meaning of a word (at least, of a name or a pred-

icate) is a unique entity that that word “stands for”; understanding a

word (at least, a name or predicate) requires knowing, or being ac-

quainted with, the entity it stands for; where a word stands for a simple

entity, that word cannot be defined or understood in terms of other ex-

pressions already understood, but can only be understood by acquain-

tance with the simple entity that its meaning. While he hints here at

the vagueness of the predicate “red”, he indicates that “one never can

get on” without assuming that it “stands for a particular shade of mean-

ing”. Whereas in the first lecture, he presents vagueness as central to

his whole conception of analysis, here he presents vagueness as a phe-

nomenon that has to be ignored if we are to characterize meaning and

understanding. Whereas in his final lecture, he alludes to a notion of

“meaning” an expression can have “in use”, which does not require us to

“know” any definite meaning corresponding to that expression, in these

passages, in accord with (Aug) and (PoA), he identifies having mean-

ing with standing for a unique entity, and understanding an expression

with being acquainted with the entity it stands for.

By “On Propositions”, written in February and March 1919, Russell

finally gives up these Moorean views of meaning and understanding.

No longer is it necessary for a word to be meaningful that succeed in

standing for a unique entity that is “the meaning” of that word; no

longer is it necessary for “understanding” a word that a person should

“know what it means”; no longer is it necessary for Russell to ignore the

phenomenon of vagueness when presenting his official views of mean-

ing and understanding. In the first lecture in PLA, in the course of

characterizing “the method of analysis” as “pass[ing] from the vague

www.thebalticyearbook.org

From Moore to Peano to Watson 110

to the precise”, Russell remarks: “I should like, if time were longer

and if I knew more than I do, to spend a whole lecture on the concep-

tion of vagueness.” (Ibid., 161) Given that accepting the conception of

vagueness central to his post–Peano practice of analysis requires reject-

ing (Aug) and (PoA)—principles he continues to advocate in PLA—if

he is to allow that vague discourse can be meaningful and understood,

then it is perhaps not surprising that in PLA, he is not yet in a position to

deliver “a whole lecture on the conception of vagueness”. By adopting

a behaviorist account of meaning and understanding shortly after PLA,

enabling him to reject (Aug) and (PoA), Russell is finally in a position

to provide a coherent account of vagueness and hence of the “method

of analysis” he has practiced since shortly after the Paris Congress.

In Word and Object, in discussing the set–theoretical definition of

“ordered–pair”, Quine writes:

This construction [of the ordered pair] is paradigmatic of

what we are most typically up to when in a philosophical

spirit we offer an “analysis” or “explication” of some hith-

erto inadequately formulated “idea” or expression. We do

not claim synonymy. We do not claim to make clear and ex-

plicit what the users of the unclear expression had uncon-

sciously in mind all along. We do not expose hidden mean-

ings, as the words ‘analysis’ and ‘explication’ would suggest;

we supply lacks. We fix on the particular functions of the

unclear expression that make it worth troubling about, and

then devise a substitute, clear and couched in terms to our

liking that fills those functions. (1960, 258–9)

Quine’s account here is in accord with Russell’s post–Peano view of

analysis as “pass[ing] from the vague to the precise”. Like Russell,

and as against (Aug) and (PoA), Quine denies that there was one defi-

nite meaning that that phrase had prior to the analysis and that under-

standing that phrase was a matter of having such a meaning “in mind”.

Hence, like Russell, Quine does not present himself as articulating “the”

meaning that the phrase to be analyzed had prior to the analysis or the

meaning that the users of that phrase “had unconsciously in mind all

along”. Like Russell, Quine presents the analysis as a matter of replac-

ing an unclear expression which fulfilled certain functions by a clear

expression that fulfills those same functions. 66
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However, when Quine presents this account of analysis in Chapter 5

of Word and Object, he had already argued in Chapter 2, on the basis of a

behaviorist view of language, against the view that each term succeeds

in standing for a unique entity that is “the meaning” of that term or that

each sentence succeeds in expressing a unique proposition, and thus

against a view of language that would sustain the Moorean conception

of analysis. In Russell’s own development, in contrast, while his post–

Peano practice of analysis presumes that terms to be analyzed do not

succeed in having unique “meanings” and that the process of analysis is

one of “passing from the vague to the precise”, it only after 1918 that he

arrives at a behaviorist view of language that enables to make coherent

that practice of analysis.67 Whereas Quine presents his view of analysis

as following from his earlier rejection of synonymy and determinate

meaning, for Russell, the practice of non–Moorean analysis precedes by

more than fifteen years the theory of language that he eventually uses

to underpin it.

CONCLUSION

As I have discussed at the outset, recent and growing interest in Russell’s

post–1918 publications calls into question the view that, throughout

his philosophical development, Russell adhered to a number of views—

including a foundationalist epistemology, (Aug), and (PoA)—that were

only challenged within the analytic tradition by such philosophers as

the later Wittgenstein, Quine, and Sellars in the middle part of the

twentieth century; for it is clear that by the early 1920’s Russell him-

self had already rejected those views. Here, I have argued further that

just as it would be wrong to ignore his post–1918 publications when

considering Russell’s place in the analytic tradition, so too it would be

wrong to acknowledge how opposed those post–1918 publications are

to the stereotyped view of Russell’s philosophy while also presenting

those post–1918 publications as expressing views for which there is no

precedent in his earlier writings. More specifically, I have argued that

just as it would be wrong to suppose that after he broke with Ideal-

ism, Russell was throughout the rest of his philosophical development a

foundationalist epistemologist who adhered to (Aug) along with (PoA),

it would also be wrong to suppose that in his writings through 1918
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at least, Russell was a foundationalist epistemologist whose practice of

analysis uniformly reflects a commitment to (Aug) along with (PoA).

As I have presented Russell’s development, following the Paris Con-

gress through his writings in 1918, there is a tension in Russell’s philos-

ophy between the Moorean philosopher, who is a foundationalist epis-

temologist who accepts (Aug) along with (PoA), and the post–Peano

philosopher, who undermines central Moorean principles. While the

Moorean principles are central to the broad ideology for much of Rus-

sell’s general anti–Idealist rhetoric, the post–Peano philosopher is one

whose general philosophical views emerge as a result of technical com-

mitments. Thus, the post–Peano philosopher does not set out to argue

on general epistemological grounds against foundationalism; however,

the details of accepting Cantor’s theory of the transfinite and, later, of

responding to the paradoxes commit Russell to views at odds with his

Moorean foundationalism. Likewise, the post–Peano philosopher does

not set out to present an account of meaning and understanding that

is opposed to (Aug) and (PoA); however, by introducing his definitions

of irrationals and cardinal numbers, by later developing his “no classes”

theory, and then by applying the techniques he developed in the philos-

ophy of mathematics to other areas, including the philosophy of physics

and the philosophy of mind, Russell becomes committed to a view of

analysis that is opposed not only to the Moorean conception of analysis

but also to (Aug) and (PoA), which underpin the Moorean conception

of analysis.

On this interpretation, what Russell achieves by the 1920’s is a gen-

eral philosophical outlook that is clearly aligned with the commitments

and practice of the post–Peano philosophical and that is thereby op-

posed to fundamental features of the Moorean philosophy.68 Already,

by the 1910’s, and in accord with anti–foundationalism required to ac-

cept Cantor’s theory and to address the paradoxes, Russell recognizes

no sharp distinction between philosophy and science; but by accepting

further, by the 1920’s, a behaviorist account of meaning and under-

standing, to which he was led by reading Watson but which enabled

him to reject (Aug) and (PoA) and account for the phenomenon of

vagueness that is central to his post–Peano practice of analysis, Russell’s

naturalism—and disdain for traditional philosophy—becomes more pro-

nounced. Freed of the basic epistemological and semantic commitments
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of his earlier Moorean philosophy, Russell now practices a philosophy

that sets him apart, in both substance and style, from any other philoso-

pher in the analytic tradition until the emergence of Quine.69

Notes

1 See, for example, Pears (1967), Ayer (1971), and Sainsbury (1979).
2 For other recent work emphasizing Russell’s naturalism, see, for example, O’Grady

(1995), Lugg (2006a,b), Stevens (2005, 2006a,b), and Kitchener (2007).
3 I recognize that Russell often presents himself as differing with behaviorists in that he

recognizes the existence of mental images (see, for example, 1919b, 283–90); however,

as Dreben points out (1996, 59, note 52), by 1926 Russell endorses the view that “’images’

should not be used in explaining ‘meaning”’ (1926, 140).
4 However, they do not include all features of the stereotyped picture—in particular,

the view that we are acquainted with sense–data, but not with material objects.
5 For this sort of characterization of Absolute Idealism, see, for example, Russell

(1899–1900, 39, 96, 160–1).
6 During his Moorean period, Russell regards numbers as properties of plural subjects

(see, for example, PoL, 12). This is opposed to the Fregean view Russell later came to

accept that “statements of number” are about properties, not objects (see, for example,

OKEW, 201–2). See Byrd (1987, 65–6) for some discussion of how this change in view is

reflected in late additions Russell made to PoM.
7 For early statements by Moore of the “act–object” distinction, see, for example, his

1902, 157; see also the discussion by Baldwin (1990, 12–16).
8 After the Paris Congress, Russell rewrote 1901b in English and had it published in

Mind as 1901c, making numerous changes, largely as a result of discussion with Moore,

to the first part of the paper, which concerns the detail of his argument regarding time

and space (see CP3, 259–60). However, he also inserts the following into the passage I

have quoted in which he criticizes Lotze:

In short, all knowledge must be recognition, on pain of being mere delu-

sion; Arithmetic must be discovered in just the same sense in which Colum-

bus discovered the West Indies, and we no more create numbers than he

created the Indians. The number 2 is not purely mental, but is an entity

which may be thought of. (1901c, 278; see also PoM, 451)

Here, by using the word “knowledge”, Russell clearly associates our thinking of an entity

with our “knowing” or “recognizing” that entity; in doing so, he is, I take it, simply
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9 As he does in PoM, “Preface”, third–to–last paragraph.
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ton has emphasized (1990, 245–8); see also my 1998a, 416–9, 440) that he increasingly

recognizes limitations on our powers of acquaintance. Thus, for example, in PoP he ar-

gues that we are not acquainted with physical objects in which case, by (PoA), they can-

not be constituents of propositions we can apprehend. Earlier in PoM (145), he argues

that since we (humans) cannot apprehend an infinitely complex proposition, then, by

(PoA), infinite classes (which, following the Paris Congress, he recognizes as completed
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totalities—see Part 2 below) cannot be constituents of propositions we can apprehend.

During his Moorean period, however, Russell seems to recognize no limitations on our

powers of acquaintance—each entity can be an “object” of one of our ideas. Hence, dur-

ing his Moorean period, Russell has no occasion to use the (PoA), as he does later, as the

engine driving the analysis of propositions expressed by sentences which we understand

but which contain expressions that seem to stand for entities with which we are not ac-

quainted. In these sorts of cases, it becomes, in Russell’s words I have quoted above, “the

fundamental principal in the analysis of propositions containing descriptions” (1911b,

154; PoP, 58).
11 I take it that, for Russell, since his concern here is the “objects” of our mental acts, not

those mental acts themselves, then what is “present” to, or “before”, our minds, and not

what is “in” our minds, is a more precise statement of his real concern here, something

he does not make clear in this relatively popular essay.
12 Russell also writes: “In cases where, as with numbers and colours, these positions

[that is, the absolute positions in independent series] have names, the absolute theory

is plainly correct.” (1900b, 226) Here, Russell seems to be assuming some such view as

that, consistent with (PoA), in understanding a name of number or color, we will thereby

know that it stands for an indefinable ultimate constituent of the universe.
13 This argument is central to Russell’s initial rejection of Idealism; for some discussion

of it, see Griffin (1991, Chapter 8, section 6) and also my 1998b, 103–7.
14 Thus the defense of “common sense” against philosophical theorizing—prominent

Moore’s later writings, such as “A Defense of Common Sense” (1925) and “Proof of an

External World” (1939)—is also reflected in Russell’s early Moorean philosophy.
15 For an overview of some of these issues, see Grattan-Guinness (1996–7).
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xxvii) and Byrd (1994, 56–64); see also below Part 3.
17 See, for example, Moore & Garciadiego (1981, 328–9).
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Russell himself focuses on in discussing “the enlightenment that I derived from Peano”

(1959, 66).
19 For a fuller discussion of which, see G. H. Moore (1995, 226f).
20 An assumption which, Russell came to realize, applies, on Cantor’s theory, to transfi-

nite ordinal numbers, but not to transfinite cardinals.
21 Convergent in the sense that the difference between consecutive members of that

sequence becomes as small as we like, if they are sufficiently far out in the series (see

PoM, 281, for this sense of convergence).
22 Russell’s criticism here of Dedekind is the basis for his later remark that Dedekind’s

“method of postulating” the irrational numbers as the limits of certain sequences of ratio-

nal numbers “has all “the advantages of theft over honest toil” (1919a, 71).
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(which he thereby distinguishes from rational number 1/2—see PoM, 270); and the class

of rational numbers which are such that their squares are less than 2 is the real numberp
2.
25 Sometime between June 1902 and February 1903 while he corrects the final proofs of

the book, Russell acknowledges the problems raised by his paradox, by adding “although

certain special infinite classes do give rise to hitherto unsolved contradictions” (PoM, 368,
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that “the nature of the infinite and the continuum were completely revealed by Cantor

and Dedekind, and the concept of an infinitesimal had been found to be incoherent and

was ‘banished from mathematics’ through the work of Weierstrass and others” (2006, 2),

views which, for Ehrlich, are historically inaccurate, given the existence, from the early
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infinitely small” (ibid., 3). Somewhat similarly Bell discusses Part V of PoM as “a kind of

paean to Weierstrass and Cantor” (2005, 168), suggests that Russell ignored the work of

mathematicians who were developing notions of infinitesimals (ibid., 176), and indicates

that Russell would be “greatly surprised—perhaps even dismayed” at the resurgence of

mathematically respectable notions of infinitesimals in recent years (ibid., 184).
27 Similarly, in “Recent Italian Work on the Foundations of Mathematics”, begun, ap-

parently, in October 1900, Russell writes that the “school of Italian philosophical mathe-

maticians” use “a rigid formalism which leaves no opening for the pernicious influence of

obviousness”, and then adds:

Those who know how many obvious mathematical propositions are false

and how many highly paradoxical propositions are true, and how difficult

it is, in verbal reasoning, to avoid unconscious employment of an obvi-

ous proposition, will appreciate the reasons for banishing all words from

our deductions, and effecting everything in a wholly symbolic language.

(1901f, 352)

For Russell’s use of “paradoxical” here, see below.
28 Russell describes a somewhat similar process in geometry, where attempts to prove

the “axiom of parallels” led to the development of non–Euclidean geometries (see PoM,

373).
29 Russell notes, however, that in order to prove that “the similarity of part and whole”

is “impossible” for finite classes, a different definition of the distinction between infinite

and finite class should be used “to avoid tautology” (PoM, 360, first footnote).
30 See, for example, the passage cited in note 27 above and other examples below.
31 For similar discussions of arriving at the axioms of logic, see PM, Vol. I, 59–60

(“Reasons for Accepting the Axiom of Reducibility”) and 1924a, 165–6.
32 See, for example, Irvine (1989 and 1994) and Hylton (1990, 321–5).
33 In his 1999b, Schwerin, discusses a tension in PoP, between a conception of phi-

losophy as enabling us to attain certainty via attention to immediate knowledge gained

through acquaintance, and the view Russell presents in the final chapter according to
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which the “value” of philosophy “is to be sought largely in its very uncertainty” (PoP, 156)

and in its power to challenge our preconceptions. Schwerin argues that “this tension is

due in large measure to Lady Ottoline’s influence, and to [Russell’s] wish to reconcile his

thought to hers” (1999b, 28). However, as I have presented Russell’s development, what-

ever personal motivations may have been involved in the composition of PoP, the tension

Schwerin points to reflects that between Russell’s Moorean and post–Peano philosophies.
34 Hylton, who has only a brief discussion of Russell’s post–Peano acceptance of Cantor’s

theory of the transfinite (1990, 192–5), observes, as one of the two points he emphasizes

there, how accepting the views of Cantor and Weierstrass supports Russell’s Moorean

metaphysics (ibid., 194–5), thereby supporting his general view that what Russell gained

from the Paris Congress “enable[d] him to defend his [Moorean] doctrines” and to “show

that they could play a role in the solution of problems which had previously seemed

insoluble” (ibid., 153). While Russell does thus use the views of Cantor and Weierstrass

to support his Moorean metaphysics, I am arguing here that his acceptance of their views

undermines his Moorean epistemology along with his Moorean conception of the proper

“method” in philosophy and of the relation between philosophy and science.
35 This had been Russell’s own pre–Peano practice (see, for example, 1899–1900, 72).
36 Russell actually leaves it as an open question as to whether space exhibits this struc-

ture (see PoM, 444; also OKEW Lecture V, especially 147–50).
37 As Quine suggests, this sort of view of justification leads to the view that for philoso-

phers to appeal to science, in particular, psychology, when doing epistemology would

involve “circular reasoning” (see 1969, 75–6).
38 In all the passages I cite below, Russell presents Cantor as having definitively resolved

all the traditional problems of infinity and continuity; however, in a recently discovered

manuscript, apparently written for A History of Western Philosophy, Russell indicates that

set–theoretic paradoxes call into question the status of Cantor’s achievement. In particu-

lar, he writes that resolving the paradoxes requires adopting “methods which throw doubt

on things which have been accepted in mathematics since the seventeenth century”, so

that “the solution of a problem, it should seem, consists only in reducing it to another

problem more difficult than the first” (Vianelli, 10).
39 They are also compatible with the view Russell expresses at the end of PoP that “as

soon as definite knowledge concerning any subject becomes possible, this subject ceases

to be called philosophy, and becomes a separate science”, so that “those questions which

are already capable of definite answers are placed in the sciences, while those only to

which, at present, no definite answer can be given, remain to form the residue which is

called philosophy” (PoP, 155), and likewise at the end of PLA that “the only difference

between science and philosophy is, that science is what you more or less know and philos-

ophy is what you do not know. Philosophy is that part of science which at present people

choose to have opinions about, but which they have no knowledge about” (PLA, 243).

Insofar as Russell takes Cantor to have definitively resolved the problems of infinity and

continuity, he would thus seem to regard him as having removed these problems from

philosophy to science. In his 1950 essay “Logical Positivism”, after discussing the work

of Carnap and Tarski, Russell writes that the “vast technical development of logic, logical

syntax, and semantics . . . has become so technical, and so capable of quasi–mathematical

definiteness, that it can hardly be regarded as belonging to philosophy as formerly un-

derstood” and that “on the same ground” that Newton’s “natural philosophy” is no longer

regarded as part of philosophy “even though it solves problems that were philosophical
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problems”, “much of recent work on logic, syntax, and semantics should be regarded as

definite knowledge, not philosophical speculation” (1950, 159).
40 Even though he hopes, as I have discussed above, that freed of past theory, we will,

in fact, agree as to what we “intuit”.
41 This is perhaps because, given the occasion of that lecture, he is concerned to em-

phasize the ways in which he holds that certain philosophers, Spencer among them, have

misappropriated the results of science (see especially 1914b, 60–4).
42 In identifying being “equal in number” with “similarity” defined in terms of one–to–

one correspondence, Russell reflects his post–Peano acceptance of Cantor’s theory of the

transfinite. For, as I have discussed above, he formerly denied, for example, that the class

of whole numbers and the class of even numbers have the same cardinal number or are

“equal in number”, even though the members of those classes may be placed in a one–to–

one correspondence with each other; for he denied that those classes have any number at

all.
43 As a number of commentators have noted, there is a tension in Russell between

a sort of “structural” logicism he advances in some places (especially when he presents

geometry as part of logic) and the sort of logicism that depends on defining, for example,

the cardinal numbers in logical terms. For some discussion of this topic and how these

different views of logicism are related to the composition of PoM, see Byrd (1999, 44–54).
44 “More” perspicuously, because a fully perspicuous representation of that proposition

would have to take into account the definition of “similarity” in terms of one–to–one

correspondence.
45 Which will be reflexive over the relevant entities in question.
46 The technical difficulty in defining moments and points is that since the “events” in

terms of which they are to be defined “have a finite extent”, events can be “overlapping”

without being entirely simultaneous, so that moments (and points) will have to be “con-

structed” out of “overlapping”, rather than “simultaneous” event particles. Russell credits

Whitehead with the solution of this problem (see, for example, OKEW, 114ff; 1924a,

166).
47 In my (2007), I compare how Russell and Frege understand relations among sen-

tences of the forms (Ab1), (Ab2), and (Ab3); however, I do not there discuss issues I focus

on below regarding how Russell’s post–logicist understanding such sentences bears on his

Moorean conception of analysis.
48 In PM, Russell had dispensed with classes by accepting the “no classes” theory; how-

ever, in the passage I have quoted from OKEW, Russell makes no allusion to his dispensing

with classes and instead reflects the understanding of the “principle of abstraction” he had

at the time of PoM. Thus, as early as December 1903, Russell wrote to Couturat that once

he proves his earlier “axiom of abstraction” by substituting an equivalence class of objects

for the “hypothical quality common to all these objects” (“substítuer la classe même des ob-

jects dont il est question á la qualité hypothétique commune á tous ces objects”), it would be

better to call the “principle of abstraction” the “principle replacing abstraction” (“princípe

remplaçant l’abstraction”). See Schmid (2001, 346–7).
49 Thus, if E(α,β), where E is transitive and symmetric, then for any x , if E(x ,α), then

(since, by assumption E(α,β) and E is transitive) E(x ,β); and given E(α,β), then (since

E is symmetric), E(β ,α), in which case for any x, if E(x ,β), then (since E is transitive

together with E(x ,β) and E(β ,α)), then E(x ,α). Thus, if E(α,β), then, (∀x)(E(x ,α)↔
E(x ,β)), in which case—by naïve set theory—{x : E(x ,α)} = {x : E(x ,β)}. In PoM
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(305), Russell indicates that “the proof of the principle of abstraction . . . is philosophi-

cally subject to the doubt resulting from the contradiction [that is, Russell’s paradox] set

forth in Part I, Chapter X.”
50 See note 21 above.
51 In his 1884, §69, Frege acknowledges that we do not typically think of numbers as

classes, or “extensions of concepts”; and in that case, we would not typically ascribe to

numbers properties—such as having elements or as having more elements than a given

class—that we typically assign to classes. As G. H. Moore notes (CP3, xxvii), insofar as

Russell was led to regard cardinal numbers as classes of similar classes as a result of

considering the view that Peano rejects in the paper Russell cites in this passage, then

Russell was probably indirectly influenced by Frege’s view, since Peano was probably led

to discuss the view he there criticizes by his knowledge of Frege’s view, having reviewed

Frege’s Grundgesetze in 1995.
52 As I have mentioned above (note 6), during his Moorean period, Russell regarded

cardinal numbers as properties of plural subjects.
53 While Whitehead and Russell do not consider alternative set–theoretic definitions of

the sort introduced by Zermelo and von Neumann, it seems clear that they would have

no difficulty in acknowledging that such definitions are possible and would take the pos-

sibility of such definitions as confirming their view that the ordinary use of numerical

expressions is “vague”, so that it is up to us to choose which “precise” meaning to assign

to such terms, much in the same way that Quine uses the possibility of alternative set–

theoretical definitions of numerical expressions to support his thesis of the “inscrutability

of reference”. (See in this connection note 67 below.) Note that in addition to mention-

ing alternative set–theoretic definitions of numbers, Quine also mentions (1969, 43f) the

possibility of assuming “the natural numbers themselves” without defining them in set–

theoretic terms at all; this amounts to treating them as indefinables of the sort that Russell

originally took numbers to be and that he comes to regard as the main alternative to his

definition of numbers as classes of similar classes. What is needed to establish the “vague-

ness” (in Russell’s sense) of numerical terms, or the “inscrutability” of their reference (in

Quine’s terms) is simply that there are different ways to assign reference to such terms

compatible with the mathematical statements we wish to affirm, not that those different

assignments have to all involve set–theoretic definitions.
54 More generally, in OKEW, 124–6, Russell provides this sort of defense of all defini-

tions of the form (Abdf),
55 Later in that typescript (25), Moore indicates that he regards Russell’s theory of

“On Denoting” as presenting a better account of what is “before our minds” when we

apprehend the propositions analyzed there than the account he had previously accepted

in PoM.
56 Accordingly, it perhaps is no surprise that in his unpublished review of PoM, Moore

writes that neither of the two definitions of infinity (the first, derived from Dedekind,

that an infinite number is the number of a class which is similar to a proper subset of

itself, the second derived from Cantor, according to which an infinite number is a number

which cannot be reached by starting with 0 and successively adding 1) used by Russell

reflect “the property” (namely, “endlessness”) which the word “infinity” “most naturally

suggests” and which is “undoubtedly the most easily intelligible of any which the word

can suggest” (1905–6?, 29); and he attempts to arrive at an “equivalent” definition of

infinity (according to which “a series is infinite, if and only if it either is itself endless or
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contains an endless series as a part of itself”) which “is far more in accordance with the

ordinary use of the word ‘infinity”’(ibid., 30–1) than the definitions used by Russell.
57 See, for example, 1919c, 139–42; 1921, 180–4, 220–3; 1927a, 1–3;1927b, 220–23.
58 Thus, for example, Williamson (1994, 52) traces Russell’s concern with vagueness

only to as far back as 1913, while Faulkner writes: “[V]agueness had hardly figured as

philosophically important in [Russell’s] earlier writings. In The Principles of Mathematics

(1903) and Principia Mathematica (1910–13) there is next to nothing on vagueness.”

(2003, 43) While Schwerin notes the use of the term “vague” in PM (Volume I, 12), he

argues that since that is the only use of that term in PM and occurs “only in passing

. . . students looking for insights into Russell’s Principia conception of vagueness will be

better served looking elsewhere” (1999a, 52–3).
59 See here Hyde’s gloss on Russell’s characterization of vagueness: “A representation

if vague just if there are, or could be, various different referents compatible with the

representation given. On the basis of the representation itself one cannot determine its

referent—various possibilities remain open, the representation lacking the distinctness

which would entail any particular referent as being represented.” (1992, 147)
60 The charge is often made that Russell fails to distinguish between vagueness and

generality (see, for example, Black (1937, 432, note 22), Kohl (1969, 37–8), Rolf (1982,

71)). However as Hyde (1992, see, for example, 148–50 and 153–7) makes clear, once it

is recognized that Russell takes a predicate as purporting to designate a property rather

than the individuals to which it applies, then what determines, for Russell, whether a

predicate is precise is whether is it succeeds in designating a unique property, so that a

predicate can be general and precise if it designates a unique property which in turn ap-

plies to more than one individual, and whether it is vague is determined not by how many

individuals it applies to (or can apply to) but how many properties it may be interpreted

as designating.
61 Before he adopted his “no classes” theory, enabling him to deny that numerical ex-

pressions are referring expressions altogether.
62 Or Quine’s.
63 In his 2007 (102–3) Hylton presents Russell’s “supreme maxim of scientific philoso-

phizing” as a case in which Russell is applying his “Principle of Acquaintance”. Moreover,

he presents Russell as holding that in all cases of analysis, “the fully analysed sentence

corresponds to the thought which is expressed by the ordinary, unanalysed sentence”, in

particular that “the fully analysed sentence has a structural correspondence with some-

thing which is psychologically real” (93). And further he finds it puzzling for Russell to be

agnostic regarding the existence of such entities as classes (see 105, note 1). On all these

points, I believe that Hylton wrongly assimilates Russell’s pre–Peano Moorean concep-

tion of analysis to his post–Peano style of “substituting logical constructions for inferred

entities” (although, as I discuss in note 65 below, I believe that Russell’s theory of descrip-

tions, which Hylton takes as the exemplar of Russellian analysis, differs in a number of

respects from his post–Peano “logical constructions”). Accordingly, I believe also that Lin-

sky (2007, 109, 114–5) and similarly Sainsbury (1979, 298–301) are right to argue that

some of Russell’s post–Peano “logical constructions” should not be construed as providing

accounts as to what our ordinary sentences in the relevant domain mean, or what we

are acquainted with when we understand those ordinary sentences. However, given that

Russell’s “logical constructions” cannot be made coherent so long as he remains commit-

ted to such principles as (Aug) and (PoA), then while Linsky and Sainsbury rightly argue
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that many of Russell’s characteristic post–Peano “analyses” do not reflect the Moorean

conception of analysis, Hylton is right to suggest that there are difficulties in reconciling

those post–Peano “analyses” with Russell’s “official” (pre–1919) view of analyses. Note

also in this connection that in a 1944 reply to Max Black, Russell writes:

I come now to the question of logical constructions. Mr. Black connects

this much more closely than I should do with my doctrine that sentences

we can understand must be composed of words with whose meaning we

are acquainted. My first applications of the method of logical construction

were in pure mathematics: the definitions of cardinals, ordinals, and real

numbers, and the construction of points in a projective space as pencils in a

descriptive space. All these antedated the theory of descriptions, and were

dictated by dislike of postulation where it can be avoided. This motive

remains, quite independently of my later introduction of acquaintance.

(1944b, 692)

Here, I believe that while Russell correctly indicates that his “logical constructions” should

not be understood as applications of (PoA), it is misleading for him to claim that these

“constructions” precede his “introduction of acquaintance”. For, as I have argued, Russell

introduces the notion, if not the term, “acquaintance”, during his Moorean period, before

his post–Peano “logical constructions”. More generally, it is misleading for him to sug-

gest that his “logical constructions” are independent of, and thus consistent with, (PoA);

instead, insofar as he accepts (PoA), he should not carry out his “logical constructions”,

and insofar as “analysis” should follow the model of his “logical constructions”, he should

reject (PoA).
64 See also TK (6), where Russell relates his analysis of “experience” to the “vagueness”

of that term and OKEW (211), where he characterizes “philosophic analysis” in general

terms as beginning with “data” which are “vague”.
65 Russell’s theory of descriptions differs in a number of ways from his post–Peano

“logical constructions”. First, of all, Russell often presents that theory in conjunction with

emphasizing (PoA); see, for example, OD, 415, 427; 1911b and note 10 above. Moreover,

Russell suggests (1911b, 155) that his analysis is meant to reflect “what is actually in my

mind” when I understand a statement involving a definite description or ordinary proper

name, such as “Julius Caesar”. Further, in PM (Vol. I, 72) Russell contrasts “the case of

descriptions”, in which “it was possible to prove that they are incomplete symbols” with

“the case of classes” in which “we do not know of any equally definite proof” and in

which “it is not necessary . . . for our purposes to assert dogmatically that there are no

such things as classes”. Also, in OD, Russell takes himself to present decisive arguments

against other proposed analyses of the propositions in question. However, as against

this, Russell acknowledges in OD that his “interpretation” of propositions expressed by

sentences of the form “The F is G” “may seem . . . somewhat incredible” (417), and in his

1957 reply to Strawson, he writes:

This brings me to a fundamental divergence between myself and many

philosophers with whom Mr Strwson appears to be in general agreement.

They are persuaded that common speech is good enough, not only for

daily life, but also for philosophy. I, on the contrary, am persuaded that

common speech is full of vagueness and inaccuracy, and that any attempt

to be precise and accurate requires modification of common speech both

Vol. 4: 200 Years of Analytical Philosophy

http://www.thebalticyearbook.org/


121 James Levine

as regards vocabulary and as regards syntax. . . . My theory of descriptions

was never intended as an analysis of the state of mind of those who utter

sentences containing descriptions. . . . I was concerned to find a more

accurate and analysed thought to replace the somewhat confused thoughts

which most people at most times have in their heads, (see 1959, 241–243)

Thus, while there are some reasons for holding that Russell originally intended for his

theory of descriptions to conform to the Moorean conception of analysis, however he

originally regarded that theory, he eventually comes to regard it as conforming to his

other post–Peano analyses in which the goal is to “pass from the vague to the precise”.

For some further discussion of the issues raised here, see Szabó (1905, section 2) and

Kripke (2005, 1107, note 208).
66 Hylton concludes his 1996 (47–8), by quoting this passage from Quine and argu-

ing that it rejects presuppositions regarding propositions and their structure that were

taken for granted by Russell. While I agree that this passage rejects presuppositions of

Russell’s early Moorean conception of analysis, my claim is that it is in accord with Rus-

sell’s post–Peano practice of analysis and also with his post–1918 views of meaning and

understanding which make that practice of analysis coherent.
67 In his “The Many Lives of Ebenezer Wilkes Smith”, Vann McGee presents Russell’s

1923a account of the vagueness of the name “Ebenezer Wilkes Smith” as a case of “the

inscrutability of reference” consistent with “the line of argument of argument of Chapter

Two of Word and Object” (2004, 621). I have argued, in effect, that in his earlier account

of the vagueness of numerical terms—specifically, in his acknowledging that if there are

indefinables of the sort he previously took cardinal numbers to be, then either those

indefinables, or classes of similar classes will enable us to sustain the same “formulae of

arithmetic”—Russell is likewise arguing for a case of the “inscrutability of reference”.
68 Here, I recognize, I have considered only a few aspects of Russell’s post–1918 views

and how they are related to his earlier philosophy. Stevens (2005, Chapters 5; see also

2006b) discusses another aspect—namely, how Russell’s engagement with Wittgenstein

contributes to his willingness to “psychologize” propositional contents in his post–1918

writings. I recognize also that in addition to the similarities between Russell’s post–1918

views and Quine’s that I have pointed to, there are also significant differences. One such

difference is Russell’s continuing adherence (from 1910 on) to a correspondence theory of

truth and the notion of “fact”, which contrasts with Quine’s acceptance of a “deflationary”

view of truth.
69 Thanks to the participants of the Riga conference and an anonymous referee for

helpful comments.
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