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PTARITHMETIC

ABSTRACT: The present article introduces ptarithmetic (short

for “polynomial time arithmetic”) — a formal number theory sim-

ilar to the well known Peano arithmetic, but based on the recently

born computability logic instead of classical logic. The formulas of

ptarithmetic represent interactive computational problems rather

than just true/false statements, and their “truth” is understood as

existence of a polynomial time solution. The system of ptarith-

metic elaborated in this article is shown to be sound and com-

plete. Sound in the sense that every theorem T of the system rep-

resents an interactive number-theoretic computational problem

with a polynomial time solution and, furthermore, such a solu-

tion can be effectively extracted from a proof of T . And complete

in the sense that every interactive number-theoretic problem with

a polynomial time solution is represented by some theorem T of

the system.

The paper is self-contained, and can be read without any prior

familiarity with computability logic.

This paper was completed in early 2009 (cf.

http://arxiv.org/abs/0902.2969), and has remained unpublished

since then. Among the reasons is that an alternative — in a sense more

general and elegant — approach named “clarithmetic” was introduced

Ptarithmetic 2

and developed (Japaridze 2011, unpublished, forth.). In retrospect,

however, the author finds that “Ptarithmetic” contained a number of

potentially useful ideas that have not been subsequently adopted by

the “clarithmetics” line of research (at least not yet), and that, for this

reason, it would be a pity to let this material remain unpublished.

Probably the most important of such ideas is the “Polynomial Time

Induction” (PTI) rule of Ptarithmetic, with no close or distant relatives

elsewhere in the literature.

What follows is a copy of the original manuscript without any mod-

ifications, except some minor changes made in 2010 before shelving

the paper. Some parts of the above manuscript were used in Japaridze

(2011), which explains occasional textual overlaps between the two

articles.

1. INTRODUCTION

Computability logic (CL), introduced in Japaridze (2003, 2006b,

2009a), is a semantical, mathematical and philosophical platform, and

an ambitious program, for redeveloping logic as a formal theory of

computability, as opposed to the formal theory of truth which logic has

more traditionally been. Under the approach of CL, formulas represent

computational problems, and their “truth” is seen as algorithmic solv-

ability. In turn, computational problems — understood in their most

general, interactive sense — are defined as games played by a machine

against its environment, with “algorithmic solvability” meaning exis-

tence of a machine that wins the game against any possible behavior

of the environment. And an open-ended collection of the most basic

and natural operations on computational problems forms the logical

vocabulary of the theory. With this semantics, CL provides a systematic

answer to the fundamental question “what can be computed?”, just as

classical logic is a systematic tool for telling what is true. Furthermore,

as it turns out, in positive cases “what can be computed” always allows

itself to be replaced by “how can be computed”, which makes CL of

potential interest in not only theoretical computer science, but many

more applied areas as well, including interactive knowledge base sys-

tems, resource oriented systems for planning and action, or declarative

programming languages.
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3 Giorgi Japaridze

While potential applications have been repeatedly pointed out and

outlined in introductory papers on CL, so far all technical efforts have

been mainly focused on finding axiomatizations for various fragments

of this semantically conceived and inordinately expressive logic. Con-

siderable advances have already been made in this direction (Japaridze

2006d,a,c, 2009b, 2010; Mezhirov & Vereshchagin 2010), and more re-

sults in the same style are probably still to come. It should be, however,

remembered that the main value of CL, or anything else claiming to be

a “Logic” with a capital “L”, will eventually be determined by whether

and how it relates to the outside, to the extra-logical world. In this

respect, unlike many other systems officially qualified as “logics”, the

merits of classical logic are obvious; these merits are most eloquently

demonstrated by the fact that applied formal theories, a model exam-

ple of which is Peano arithmetic PA, can be and have been successfully

based on it. Unlike pure logics with their meaningless symbols, such

theories are direct tools for studying and navigating the real world with

its non-man-made, meaningful objects, such as natural numbers in the

case of arithmetic. To make this point more clear to a computer scien-

tist, one could compare a pure logic with a programming language,

and applied theories based on it with application programs written

in that language. A programming language created for its own sake,

mathematically or aesthetically appealing but otherwise unusable as a

general-purpose, comprehensive basis for application programs, would

hardly be of much interest.

So, in parallel with studying possible axiomatizations and vari-

ous metaproperties of pure computability logic, it would certainly be

worthwhile to devote some efforts to justifying its right to existence

through revealing its power and appeal as a basis for applied theo-

ries. The first and so far the only concrete steps in this direction have

been made very recently in Japaridze (2010), where a CL-based system

CLA1 of (Peano) arithmetic was constructed.1 Unlike its classical-logic-

based counterpart PA, CLA1 is not merely about which arithmetical

facts are true, but about which arithmetical problems can be actually

computed or effectively solved. More precisely, every formula of the lan-

guage of CLA1 expresses a number-theoretic computational problem

(rather than just a true/false fact), every theorem expresses a problem

that has an algorithmic solution, and every proof encodes such a so-

www.thebalticyearbook.org
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lution. Does not this sound exactly like what the constructivists have

been calling for?

Unlike the mathematical or philosophical constructivism, however,

and even unlike the early-day theory of computation, modern com-

puter science has long understood that, what really matters is not just

computability, but rather efficient computability. So, the next natural

step on the road to revealing the importance of CL for computer science

would be showing that it can be used for studying efficient computabil-

ity just as successfully as for studying computability-in-principle. Any-

one familiar with the earlier work on CL could have found reasons for

optimistic expectations here. Namely, every provable formula of any

of the known sound axiomatizations of CL happens to be a scheme of

not only “always computable” problems, but “always efficiently com-

putable” problems as well, whatever efficiency exactly mens in the con-

text of interactive computation that CL operates in. That is, at the level

of pure logic, computability and efficient computability yield the same

classes of valid principles. The study of logic abounds with phenomena

in this style. One example would be the well known fact about classical

logic, according to which validity with respect to all possible models is

equivalent to validity with respect to just models with countable do-

mains.

At the level of reasonably expressive applied theories, however,

one should certainly expect significant differences depending on

whether the underlying concept of interest is efficient computability or

computability-in-principle. For instance, the earlier-mentioned system

CLA1 proves formulas expressing computable but not always efficiently

computable arithmetical problems. The purpose of the present paper

is to construct a CL-based system for arithmetic which, unlike CLA1,

proves only efficiently — specifically, polynomial time — computable

problems. The new applied formal theory PTA (“ptarithmetic”, short

for “polynomial time arithmetic”) presented in Section 12 achieves this

purpose.

Just like CLA1, our present system PTA is not only a cognitive, but

also a problem-solving tool: in order to find a solution for a given prob-

lem, it would be sufficient to write the problem in the language of the

system, and find a proof for it. An algorithmic solution for the problem

would automatically come together with such a proof. However, unlike
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the solutions extracted from CLA1-proofs, which might be intractable,

the solutions extracted from PTA-proofs would always be efficient.

Furthermore, PTA turns out to be not only sound, but also complete

in a certain reasonable sense that we call extensional completeness. Ac-

cording to the latter, every number-theoretic computational problem

that has a polynomial time solution is represented by some theorem of

PTA. Taking into account that there are many ways to represent the

same problem, extensional completeness is weaker than what can be

called intensional completeness, according to which any formula rep-

resenting an (efficiently) computable problem is provable. In these

terms, Gödel’s celebrated theorem, here with “truth”=“computability”,

is about intensional rather than extensional incompleteness. In fact,

extensional completeness is not at all interesting in the context of

classical-logic-based theories such as PA. In such theories, unlike

computability-logic-based theories, it is trivially achieved, as the prov-

able formula ⊤ represents every true sentence.

Syntactically, our PTA is an extension of PA, and the semantics of

the former is a conservative generalization of the semantics of the

latter. Namely, the formulas of PA, which form only a proper sub-

class of the formulas of PTA, are seen as special, “moveless” sorts of

problems/games, automatically solved/won when true and failed/lost

when false. This makes the classical concept of truth just a special

case of computability in our sense — it is nothing but computability

restricted to (the problems represented by) the traditional sorts of for-

mulas. And this means that Gödel’s incompleteness theorems automat-

ically extend from PA to PTA, so that, unlike extensional completeness,

intensional completeness in PTA or any other sufficiently expressive

CL-based applied theory is impossible to achieve in principle. As for

CLA1, it turns out to be incomplete in both senses. Section 22 shows

that any sufficiently expressive sound system would be (not only inten-

sionally but also) extensionally incomplete, as long as the semantics

of the system is based on unrestricted (as opposed to, say, efficient)

computability.

Among the main moral merits of the present investigation and its

contributions to the overall CL project is an illustration of the fact that,

in constructing CL-based applied theories, successfully switching from

computability to efficient computability is possible, and more than just

www.thebalticyearbook.org
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possible. As noted, efficient computability, in fact, turns out to be much

better behaved than computability-in-principle: the former allows us

to achieve completeness in a sense in which the latter yields inherent

incompleteness.

An advanced reader will easily understand that the present paper,

while focused on the system PTA of (pt)arithmetic, in fact is not only

about arithmetic, but also just as much about CL-based applied theo-

ries or knowledge base systems in general, with PTA only serving as a

model example of such systems and a starting point for what may be a

separate (sub)line of research within the CL enterprise. Generally, the

nonlogical axioms or the knowledge base of a CL-based applied system

would be any collection of (formulas expressing) problems whose al-

gorithmic or efficient solutions are known. Sometimes, together with

nonlogical axioms, we may also have nonlogical rules of inference, pre-

serving the property of computability or efficient computability. An ex-

ample of such a rule is the polynomial time induction (PTI) rule of PTA.

Then, the soundness of the corresponding underlying axiomatization of

CL (in our present case, it is system CL3 studied in Japaridze (2006c))

— which usually comes in the strong form called uniform-constructive

soundness — guarantees that every theorem T of the theory also has

an effective or efficient solution and that, furthermore, such a solution

can be effectively extracted from a proof of T . It is this fact that, as

mentioned, makes CL-based systems problem-solving tools.

Having said the above, motivationally (re)introducing and

(re)justifying computability logic is not among the goals of the present

paper. This job has been done in Japaridze (2003, 2006b, 2009a), and

the reader would benefit from becoming familiar with any of those

pieces of literature first, of which most recommended is the first 10

tutorial-style sections of Japaridze (2009a). While helpful in fully ap-

preciating the import of the present results from the purely technical

point of view, such familiarity is not necessary, as this paper provides

all relevant definitions.

2. AN INFORMAL OVERVIEW OF THE MAIN OPERATIONS ON GAMES

As noted, formulas in CL represent computational problems. Such

problems are understood as games between two players: ⊤, called
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machine, and ⊥, called environment. ⊤ is a mechanical device with

a fully determined, algorithmic behavior. On the other hand, there are

no restrictions on the behavior of ⊥. A given machine is considered

to be solving a given problem iff it wins the corresponding game no

matter how the environment acts.

Standard atomic sentences, such as “0=0” or “Peggy is John’s

mother”, are understood as special sorts of games, called elementary.

There are no moves in elementary games, and they are automatically

won or lost. Specifically, the elementary game represented by a true

sentence is won (without making any moves) by the machine, and the

elementary game represented by a false sentence is won by the envi-

ronment.

Logical operators are understood as operations on games/problems.

One of the important groups of such operations, called choice opera-

tions, comprises ⊓ , ⊔ ,⊓,⊔. These are called choice conjunction,

choice disjunction, choice universal quantifier and choice existen-

tial quantifier, respectively. A0 ⊓ A1 is a game where the first legal

move (“choice"), which should be either 0 or 1, is by ⊥. After such

a move/choice i is made, the play continues and the winner is de-

termined according to the rules of Ai; if a choice is never made, ⊥

loses. A0 ⊔ A1 is defined in a symmetric way with the roles of ⊥ and

⊤ interchanged: here it is ⊤ who makes an initial choice and who

loses if such a choice is not made. With the universe of discourse be-

ing {0,1,10,11,100, . . .} (natural numbers identified with their binary

representations), the meanings of the quantifiers ⊓ and ⊔ can now be

explained by

⊓xA(x) = A(0) ⊓ A(1) ⊓ A(10) ⊓ A(11) ⊓ A(100) ⊓ . . .

and

⊔xA(x) = A(0) ⊔ A(1) ⊔ A(10) ⊔ A(11) ⊔ A(100) ⊔ . . . .

So, for example,

⊓x
�
Prime(x) ⊔ Composite(x)

�

is a game where the first move is by the environment. Such a move

should consist in selecting a particular number n for x , intuitively

amounting to asking whether n is prime or composite. This move

www.thebalticyearbook.org
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brings the game down to (in the sense that the game continues as)

Prime(n) ⊔ Composite(n).

Now the machine has to move, or else it loses. The move should con-

sist in choosing one of the two disjuncts. Let us say the left disjunct is

chosen, which further brings the game down to Prime(n). The latter is

an elementary game, and here the interaction ends. The machine wins

iff it has chosen a true disjunct. The choice of the left disjunct by the

machine thus amounts to claiming/answering that n is prime. Over-

all, as we see, ⊓x
�
Prime(x) ⊔ Composite(x)

�
represents the problem

of deciding the primality question.2

Similarly,

⊓x⊓y⊔z(z = x × y)

is the problem of computing the product of any two numbers. Here the

first two moves are by the environment, which selects some particular

m = x and n = y , thus asking the machine to tell what the product of

m and n is. The machine wins if and only if, in response, it selects a

(the) number k for z such that k =m×n.

The present paper replaces the above-described choice quantifiers

⊓ and ⊔ with their bounded counterparts ⊓b and ⊔b, where b is a

variable. These are the same as ⊓ and ⊔, with the difference that the

choice here is limited only to the objects of the universe of discourse

whose sizes do not exceed a certain bound, which is represented by the

variable b. So, ⊓bxA(x) is essentially the same as ⊓x
�
|x |≤b→ A(x)
�

and ⊔bxA(x) is essentially the same as ⊔x
�
|x |≤b ∧ A(x)
�
, where (the

meanings of → , ∧ will be explained shortly and) |x |≤b means “the

size of x does not exceed b”. As we are going to see later, it is exactly

the value of b with respect to which the computational complexity of

games will be measured.

Another group of game operations dealt with in this paper, two

of which have already been used in the previous paragraph, comprises

¬, ∧ , ∨ , → . Employing the classical symbols for these operations is no

accident, as they are conservative generalizations of the corresponding

Boolean operations from elementary games to all games.

Negation ¬ is a role-switch operation: it turns ⊤’s moves and wins

into ⊥’s moves and wins, and vice versa. Since elementary games have

no moves, only the winners are switched there, so that, as noted, ¬
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acts just as the ordinary classical negation. For instance, as ⊤ is the

winner in 0+1=1, the winner in ¬0+1=1 will be ⊥. That is, ⊤ wins the

negation ¬A of an elementary game A iff it loses A, i.e., if A is false.

As for the meaning of negation when applied to nonelementary games,

at this point it may be useful to observe that ¬ interacts with choice

operations in the kind old DeMorgan fashion. For example, it would

not be hard to see that

¬⊓x⊓y⊔z(z = x × y) = ⊔x⊔y⊓z(z 6= x × y).

The operations ∧ and ∨ are called parallel conjunction and par-

allel disjunction, respectively. Playing A0 ∧ A1 (resp. A0 ∨ A1) means

playing the two games in parallel where, in order to win, ⊤ needs to

win in both (resp. at least one) of the components Ai. It is obvious

that, just as in the case of negation, ∧ and ∨ act as classical conjunc-

tion and disjunction when applied to elementary games. For instance,

0+1=1 ∨ 0×1=1 is a game automatically won by the machine. There

are no moves in it as there are no moves in either disjunct, and the

machine is an automatic winner because it is so in the left disjunct.

To appreciate the difference between the two — choice and parallel —

groups of connectives, compare

⊓x
�
Prime(x) ⊔ ¬Prime(x)

�

and

⊓x
�
Prime(x) ∨ ¬Prime(x)

�
.

The former is a computationally nontrivial problem, existence of an

easy (polynomial time) solution for which had remained an open ques-

tion until a few years ago. As for the latter, it is trivial, as the machine

has nothing to do in it: the first (and only) move is by the environment,

consisting in choosing a number n for x . Whatever n is chosen, the

machine wins, as Prime(n) ∨ ¬Prime(n) is a true sentence and hence

an automatically ⊤-won elementary game.

The operation → , called reduction, is defined by A→ B = (¬A) ∨ B.

Intuitively, this is indeed the problem of reducing B to A: solving A→ B

means solving B while having A as an external computational resource.

Resources are symmetric to problems: what is a problem to solve for

one player is a resource that the other player can use, and vice versa.

www.thebalticyearbook.org
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Since A is negated in (¬A) ∨ B and negation means switching the roles,

A appears as a resource rather than problem for ⊤ in A→ B.

Consider ⊓x⊔y(y = x2). Anyone who knows the definition of x2 in

terms of × (but perhaps does not know the meaning of multiplication,

or is unable to compute this function for whatever reason) would be

able to solve the problem

⊓z⊓u⊔v(v =z ×u) → ⊓x⊔y(y = x2), (1)

i.e., the problem

⊔z⊔u⊓v(v 6=z ×u) ∨ ⊓x⊔y(y = x2),

as it is about reducing the consequent to the antecedent. A solution

here goes like this. Wait till the environment specifies a value n for x ,

i.e. asks “what is the square of n?”. Do not try to immediately answer

this question, but rather specify the same value n for both z and u,

thus asking the counterquestion: “what is n times n?”. The environ-

ment will have to provide a correct answer m to this counterquestion

(i.e., specify v as m where m = n×n), or else it loses. Then, specify

y as m, and rest your case. Note that, in this solution, the machine

did not have to compute multiplication, doing which had become the

environment’s responsibility. The machine only correctly reduced the

problem of computing square to the problem of computing product,

which made it the winner.

Another group of operations that play an important role in CL

comprises ∀ and its dual ∃ (with ∃xA(x) = ¬∀x¬A(x)), called blind

universal quantifier and blind existential quantifier, respectively.

∀xA(x) can be thought of as a “version" of ⊓xA(x) where the particu-

lar value of x that the environment selects is invisible to the machine,

so that it has to play blindly in a way that guarantees success no matter

what that value is.

Compare the problems

⊓x
�
Even(x) ⊔Odd(x)

�

and

∀x
�
Even(x) ⊔Odd(x)

�
.

Both of them are about telling whether a given number is even or odd;

the difference is only in whether that “given number" is known to the
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machine or not. The first problem is an easy-to-win, two-move-deep

game of a structure that we have already seen. The second game, on

the other hand, is one-move deep with only the machine to make a

move — select the “true" disjunct, which is hardly possible to do as the

value of x remains unspecified.

Just like all other operations for which we use classical symbols, the

meanings of ∀ and ∃ are exactly classical when applied to elementary

games. Having this full collection of classical operations makes com-

putability logic a generalization and conservative extension of classical

logic.

Going back to an earlier example, even though (1) expresses a “very

easily solvable” problem, that formula is still not logically valid. Note

that the successfulness of the reduction strategy of the consequent to

the antecedent that we provided for it relies on the nonlogical fact that

x2
= x × x . That strategy would fail in a general case where the meanings

of x2 and x × x may not necessarily be the same. On the other hand,

the goal of CL as a general-purpose problem-solving tool should be to

allow us find purely logical solutions, i.e., solutions that do not require

any special, domain-specific knowledge and (thus) would be good no

matter what the particular predicate or function symbols of the formu-

las mean. Any knowledge that might be relevant should be explicitly

stated and included either in the antecedent of a given formula or in

the set of axioms (“implicit antecedents” for every potential formula) of

a CL-based theory. In our present case, formula (1) easily turns into a

logically valid one by adding, to its antecedent, the definition of square

in terms of multiplication:

∀w(w2
=w ×w) ∧⊓z⊓u⊔v(v =z ×u) → ⊓x⊔y(y = x2). (2)

The strategy that we provided earlier for (1) is just as good for (2),

with the difference that it is successful for (2) no matter what x2 and

z ×u mean, whereas, in the case of (1), it was guaranteed to be success-

ful only under the standard arithmetic interpretations of the square

and product functions. Thus, our strategy for (2) is, in fact, a “purely

logical” solution. Again, among the purposes of computability logic is

to serve as a tool for finding such “purely logical” solutions, so that

it can be applied to any domain of study rather than specific domains

such as that of arithmetic, and to arbitrary meanings of nonlogical sym-

www.thebalticyearbook.org
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bols rather than particular meanings such as that of the multiplication

function for the symbol × .

The above examples should not suggest that blind quantifiers are

meaningful or useful only when applied to elementary problems. The

following is an example of an effectively winnable nonelementary ∀-

game:

∀y
�

Even(y) ⊔Odd(y) → ⊓x
�
Even(x + y) ⊔Odd(x + y)

�
�

. (3)

Solving this problem, which means reducing the consequent to the an-

tecedent without knowing the value of y , is easy: ⊤ waits till ⊥ selects

a value n for x , and also tells — by selecting a disjunct in the an-

tecedent — whether y is even or odd. Then, if n and y are both even

or both odd, ⊤ chooses the first ⊔ -disjunct in the consequent, other-

wise it chooses the second ⊔ -disjunct. Replacing the ∀y prefix by ⊓y

would significantly weaken the problem, obligating the environment

to specify a value for y . Our strategy does not really need to know

the exact value of y , as it only exploits the information about y ’s being

even or odd, provided by the antecedent of the formula.

Many more — natural, meaningful and useful — operations beyond

the ones discussed in this section have been introduced and studied

in computability logic. Here we have only surveyed those that are

relevant to our present investigation.

3. CONSTANT GAMES

Now we are getting down to formal definitions of the concepts infor-

mally explained in the previous section.

To define games formally, we need some technical terms and con-

ventions. Let us agree that by a move we mean any finite string over

the standard keyboard alphabet. A labeled move (labmove) is a move

prefixed with ⊤ or⊥, with such a prefix (label) indicating which player

has made the move. A run is a (finite or infinite) sequence of labmoves,

and a position is a finite run.

Convention 3.1 We will be exclusively using the letters Γ,∆,Φ for

runs, and α,β for moves. The letter ℘ will always be a variable for

players, and

℘
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will mean “℘’s adversary” (“the other player”). Runs will be often de-

limited by “〈" and “〉", with 〈〉 thus denoting the empty run. The mean-

ing of an expression such as 〈Φ,℘α,Γ〉 must be clear: this is the result

of appending to the position 〈Φ〉 the labmove 〈℘α〉 and then the run

〈Γ〉.

The following is a formal definition of what we call constant games,

combined with some less formal conventions regarding the usage of

certain terminology.

Definition 3.2 A constant game is a pair A= (LrA ,WnA), where:

1. LrA is a set of runs satisfying the condition that a (finite or

infinite) run is in LrA iff all of its nonempty finite initial segments are

in LrA (notice that this implies 〈〉 ∈ LrA). The elements of LrA are said

to be legal runs of A, and all other runs are said to be illegal. We say

that α is a legal move for ℘ in a position Φ of A iff 〈Φ,℘α〉 ∈ LrA ;

otherwise α is illegal. When the last move of the shortest illegal initial

segment of Γ is ℘-labeled, we say that Γ is a ℘-illegal run of A.

2. WnA is a function that sends every run Γ to one of the players

⊤ or ⊥, satisfying the condition that if Γ is a ℘-illegal run of A, then

WnA〈Γ〉 = ℘. When WnA〈Γ〉 = ℘, we say that Γ is a ℘-won (or won

by ℘) run of A; otherwise Γ is lost by ℘. Thus, an illegal run is always

lost by the player who has made the first illegal move in it.

An important operation not explicitly mentioned in Section 2 is

what is called prefixation. This operation takes two arguments: a con-

stant game A and a position Φ that must be a legal position of A (oth-

erwise the operation is undefined), and returns the game 〈Φ〉A. Intu-

itively, 〈Φ〉A is the game playing which means playing A starting (con-

tinuing) from position Φ. That is, 〈Φ〉A is the game to which A evolves

(will be “brought down") after the moves of Φ have been made. We

have already used this intuition when explaining the meaning of choice

operations in Section 2: we said that after ⊥ makes an initial move

i ∈ {0,1}, the game A0 ⊓ A1 continues as Ai. What this meant was noth-

ing but that 〈⊥i〉(A0 ⊓ A1) = Ai. Similarly, 〈⊤i〉(A0 ⊔ A1) = Ai. Here is a

definition of prefixation:

Definition 3.3 Let A be a constant game and Φ a legal position of A.

The game 〈Φ〉A is defined by:
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• Lr〈˘〉A = {Γ | 〈Φ,Γ〉 ∈ LrA};

• Wn〈˘〉A〈Γ〉 =WnA〈Φ,Γ〉.

Convention 3.4 A terminological convention important to remember

is that we often identify a legal position Φ of a game A with the game

〈Φ〉A. So, for instance, we may say that the move 1 by ⊥ brings the

game B0 ⊓ B1 down to the position B1. Strictly speaking, B1 is not a

position but a game, and what is a position is 〈⊥1〉, which we here

identified with the game B1 = 〈⊥1〉(B0 ⊓ B1).

We say that a constant game A is finite-depth iff there is an integer

d such that no legal run of A contains more than d labmoves. The

smallest of such integers d is called the depth of A. An elementary

game is a game of depth 0.

In this paper I will exclusively deal with finite-depth games. This

restriction of focus makes many definitions and proofs simpler. Namely,

in order to define a finite-depth-preserving game operation O(A1, . . . ,An)

applied to such games, it suffices to specify the following:

(i) Who wins O(A1, . . . ,An) if no moves are made, i.e., the value of

WnO(A1,...,An)〈〉.

(ii) What are the initial legal (lab)moves, i.e., the elements of

{℘α | 〈℘α〉 ∈ LrO(A1,...,An)}, and to what game is O(A1, . . . ,An)

brought down after such an initial legal labmove ℘α is made.

Recall that, by saying that a given labmove ℘α brings a given

game A down to B, we mean that 〈℘α〉A= B.

Then, the set of legal runs of O(A1, . . . ,An) will be uniquely defined,

and so will be the winner in every legal (and hence finite) run of the

game.

Below we define a number of operations for finite-depth games

only. Each of these operations can be easily seen to preserve the finite-

depth property. Of course, more general definitions of these operations

— not restricted to finite-depth games — do exist (see, e.g., Japaridze

(2009a)), but in this paper we are trying to keep things as simple as

possible, and reintroduce only as much of computability logic as nec-

essary.
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Definition 3.5 Let A, B, A0,A1, . . . be finite-depth constant games, and

n be a positive integer.

1. ¬A is defined by:

(i) Wn¬A〈〉 = ℘ iff WnA〈〉 = ℘.

(ii) 〈℘α〉 ∈ Lr¬A iff 〈℘α〉 ∈ LrA . Such an initial legal lab-

move ℘α brings the game down to ¬〈℘α〉A.

2. A0 ⊓ . . . ⊓ An is defined by:

(i) WnA0 ⊓ ... ⊓ An 〈〉 =⊤.

(ii) 〈℘α〉 ∈ LrA0 ⊓ ... ⊓ An iff℘ =⊥ and α = i ∈ {0, . . . , n}.3 Such

an initial legal labmove ⊥i brings the game down to

Ai.

3. A0 ∧ . . . ∧ An is defined by:

(i) WnA0 ∧ ... ∧ An 〈〉 =⊤ iff, for each i ∈ {0, . . . , n}, WnAi 〈〉 =

⊤.

(ii) 〈℘α〉 ∈ LrA0 ∧ ... ∧ An iff α = i.β , where i ∈ {0, . . . , n}

and 〈℘β〉 ∈ LrAi . Such an initial legal labmove ℘i.β
brings the game down to

A0 ∧ . . . ∧ Ai−1 ∧ 〈℘β〉Ai ∧ Ai+1 ∧ . . . ∧ An.

4. A0 ⊔ . . . ⊔ An and A0 ∨ . . . ∨ An are defined exactly as A0 ⊓ . . . ⊓ An

and A0 ∧ . . . ∧ An, respectively, only with “⊤" and “⊥" interchanged.

5. In addition to the earlier-established meanings, the symbols ⊤ and

⊥ also denote two special — simplest — constant games, defined by

Wn⊤〈〉 =⊤, Wn⊥〈〉 = ⊥ and Lr⊤ = Lr⊥ = {〈〉}.

6. A→ B is treated as an abbreviation of (¬A) ∨ B.

Example 3.6 The game (0=0 ⊓ 0=1)→ (10=11 ⊓ 10=10), i.e.

¬(0=0 ⊓ 0=1) ∨ (10=11 ⊓ 10=10),

has thirteen legal runs, which are:
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1 〈〉. It is won by ⊤, because ⊤ is the winner in the right ∨ -disjunct

(consequent).

2 〈⊤0.0〉. (The labmove of) this run brings the game down to

¬0=0 ∨ (10=11 ⊓ 10=10), and ⊤ is the winner for the same rea-

son as in the previous case.

3 〈⊤0.1〉. It brings the game down to ¬0=1 ∨ (10=11 ⊓ 10=10), and ⊤

is the winner because it wins in both ∨ -disjuncts.

4 〈⊥1.0〉. It brings the game down to ¬(0=0 ⊓ 0=1) ∨ 10=11. ⊤ loses

as it loses in both ∨ -disjuncts.

5 〈⊥1.1〉. It brings the game down to ¬(0=0 ⊓ 0=1) ∨ 10=10. ⊤ wins

as it wins in the right ∨ -disjunct.

6-7 〈⊤0.0,⊥1.0〉 and 〈⊥1.0,⊤0.0〉. Both bring the game down to the

false ¬0=0 ∨ 10=11, and both are lost by ⊤.

8-9 〈⊤0.1,⊥1.0〉 and 〈⊥1.0,⊤0.1〉. Both bring the game down to the

true ¬0=1 ∨ 10=11, which makes ⊤ the winner.

10-11 〈⊤0.0,⊥1.1〉 and 〈⊥1.1,⊤0.0〉. Both bring the game down to

the true ¬0=0 ∨ 10=10, so ⊤ wins.

12-13 〈⊤0.1,⊥1.1〉 and 〈⊥1.1,⊤0.1〉. Both bring the game down to

the true ¬0=1 ∨ 10=10, so ⊤ wins.

4. GAMES AS GENERALIZED PREDICATES

Constant games can be seen as generalized propositions: while propo-

sitions in classical logic are just elements of {⊤,⊥}, constant games are

functions from runs to {⊤,⊥}. As we know, however, propositions only

offer a very limited expressive power, and classical logic needs to con-

sider the more general concept of predicates, with propositions being

nothing but special — constant — cases of predicates. The situation in

computability logic is similar. Our concept of a (simple) game general-

izes that of a constant game in the same sense as the classical concept

of a predicate generalizes that of a proposition.
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We fix an infinite set of expressions called variables:

{w0,w1,w2,w3, . . .}.

The letters

x , y, z, s, r, t,u, v, w

will be used as metavariables for these variables. The Gothic letter

b

will be exclusively used as a metaname for the variable w0, which is

going to have a special status throughout our entire treatment.

We also fix another infinite set of expressions called constants:

{0,1,10,11,100,101,110,111,1000, . . .}.

These are thus binary numerals — the strings matching the regular

expression 0∪1(0∪1)∗. We will be typically identifying such strings —

by some rather innocent abuse of concepts — with the natural numbers

represented by them in the standard binary notation, and vice versa.

The above collection of constants is going to be exactly the universe of

discourse — i.e., the set over which the variables range — in all cases

that we consider. We will be mostly using a, b, c, d as metavariables for

constants.

By a valuation we mean a function e that sends each variable x to a

constant e(x). In these terms, a classical predicate p can be understood

as a function that sends each valuation e to a proposition, i.e., to a

constant predicate. Similarly, what we call a game sends valuations to

constant games:

Definition 4.1 A game is a function A from valuations to constant

games. We write e[A] (rather than A(e)) to denote the constant game

returned by A for valuation e. Such a constant game e[A] is said to

be an instance of A. For readability, we usually write LrA
e and WnA

e

instead of Lre[A] and Wne[A] .

Just as this is the case with propositions versus predicates, con-

stant games in the sense of Definition 3.2 will be thought of as special,

constant cases of games in the sense of Definition 4.1. In particular,
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each constant game A′ is the game A such that, for every valuation e,

e[A] = A′. From now on we will no longer distinguish between such

A and A′, so that, if A is a constant game, it is its own instance, with

A= e[A] for every e.

Where n is a natural number, we say that a game A is n-ary iff there

is are n variables such that, for any two valuations e1 and e2 that agree

on all those variables, we have e1[A] = e2[A]. Generally, a game that is

n-ary for some n, is said to be finitary. Our paper is going to exclusively

deal with finitary games and, for this reason, we agree that, from now

on, when we say “game”, we usually mean “finitary game”.

We say that a game A depends on a variable x iff there are two

valuations e1, e2 that agree on all variables except x such that e1[A] 6=

e2[A]. An n-ary game thus depends on at most n variables. And con-

stant games are nothing but 0-ary games, i.e., games that do not de-

pend on any variables.

We say that a (not necessarily constant) game A is elementary iff so

are all of its instances e[A]. And we say that A is finite-depth iff there

is a (smallest) integer d, called the depth of A, such that the depth of

no instance of A exceeds d.

Just as constant games are generalized propositions, games can be

treated as generalized predicates. Namely, we will see each predicate

p of whatever arity as the same-arity elementary game such that, for

every valuation e, Wnp
e〈〉 = ⊤ iff p is true at e. And vice versa: every

elementary game p will be seen as the same-arity predicate which is

true at a given valuation e iff Wnp
e〈〉 = ⊤. Thus, for us, “predicate”

and “elementary game” are going to be synonyms. Accordingly, any

standard terminological or notational conventions familiar from the

literature for predicates also apply to them seen as elementary games.

Just as the Boolean operations straightforwardly extend from propo-

sitions to all predicates, our operations ¬, ∧ , ∨ , → , ⊓ , ⊔ extend from

constant games to all games. This is done by simply stipulating that

e[. . .] commutes with all of those operations: ¬A is the game such that,

for every valuation e, e[¬A] = ¬e[A]; A⊓ B is the game such that, for

every e, e[A⊓ B] = e[A] ⊓ e[B]; etc.

The operation of prefixation also extends to nonconstant games:

〈Φ〉A should be understood as the unique game such that, for every e,

e[〈Φ〉A] = 〈Φ〉e[A]. However, unlike the cases with all other opera-
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tions, 〈Φ〉A, as a function from valuations to constant games, may be

partial even if A is total. Namely, it will be defined only for those val-

uations e for which we have Φ ∈ LrA
e. Let us call not-always-defined

“games” partial (as opposed to the total games of Definition 4.1). In

the rare cases when we write 〈Φ〉A for a non-constant game A (which

always happens in just intermediate steps), it should be remembered

that it is possible we are dealing with a partial rather than a total game.

Otherwise, the default meaning of the word “game” is always a total

game.

Definition 4.2 Let A be a game, x1, . . . , xn be pairwise distinct vari-

ables, and c1, . . . , cn be constants. The result of substituting x1, . . . , xn

by c1, . . . , cn in A, denoted A(x1/c1, . . . , xn/cn), is defined by stipulat-

ing that, for every valuation e, e[A(x1/c1, . . . , xn/cn)] = e′[A], where

e′ is the valuation that sends each x i to ci and agrees with e on all other

variables.

Following the standard readability-improving practice established

in the literature for predicates, we will often fix pairwise distinct vari-

ables x1, . . . , xn for a game A and write A as A(x1, . . . , xn). Representing

A in this form sets a context in which we can write A(c1, . . . , cn) to mean

the same as the more clumsy expression A(x1/c1, . . . , xn/cn).

Definition 4.3 Below x is an arbitrary variable other than b, and A(x)

is an arbitrary finite-depth game.

1. We define ⊓0 xA(x) = ⊔0 xA(x) = A(0) and, for any positive

integer b, with 1b standing for the binary numeral consisting of b “1”s,

we define the games ⊓b xA(x) and ⊔b xA(x) as follows:

⊓b xA(x) = A(0) ⊓ A(1) ⊓ A(10) ⊓ A(11) ⊓ A(100) ⊓ A(101) ⊓ . . . ⊓ A(1b);

⊔b xA(x) = A(0) ⊔ A(1) ⊔ A(10) ⊔ A(11) ⊔ A(100) ⊔ A(101) ⊔ . . . ⊔ A(1b).

2. Using the above notation, we define

⊓bxA(x)

as the unique game such that, for any valuation e, e[⊓bxA(x)] =

e[⊓b xA(x)], where b = e(b). Similarly,

⊔bxA(x)
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is the unique game such that, for any valuation e, e[⊔bxA(x)] =

e[⊔b xA(x)], where b = e(b). ⊓b and ⊔b are said to be bounded

choice universal quantifier and bounded choice existential quanti-

fier, respectively.

As we see, ⊓b and ⊔b are like the ordinary choice quantifiers ⊓,⊔
of computability logic explained in Section 2, with the only difference

that the size of a constant chosen for x in ⊓bx or ⊔bx should not ex-

ceed the value of b. (The case of that value being 0 is a minor technical

exception which can be safely forgotten.)

Convention 4.4 Because throughout the rest of this paper we exclu-

sively deal with the bounded choice quantifiers ⊓b,⊔b (and never with

the ordinary ⊓,⊔ discussed in Section 2), and because the variable b

is fixed and is the same everywhere, we agree that, from now on, when

we write ⊓ or ⊔, we always mean ⊓b or ⊔b, respectively.

This is not a change of interpretation of ⊓,⊔ but rather some,

rather innocent, abuse of notation.

We will say that a game A is unistructural iff, for any two valuations

e1 and e2 that agree on b, we have LrA
e1
= LrA

e2
. Of course, all constant

or elementary games are unistructural. It can also be easily seen that

all our game operations preserve the unistructural property of games.

For the purposes of the present paper, considering only unistructural

games would be sufficient.

We define the remaining operations ∀ and ∃ only for unistructural

games:

Definition 4.5 Let x be a variable other than b, and A(x) be a finite-

depth unistructural game.

1. ∀xA(x) is defined by stipulating that, for every valuation e, player

℘ and move α, we have:

(i) Wn∀xA(x)
e〈〉 = ⊤ iff, for every constant4 c, WnA(c)

e〈〉 =

⊤.

(ii) 〈℘α〉 ∈ Lr∀xA(x)
e iff 〈℘α〉 ∈ LrA(x)

e. Such an initial le-

gal labmove ℘α brings the game e[∀xA(x)] down to

e[∀x〈℘α〉A(x)].
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2. ∃xA(x) is defined in exactly the same way, only with ⊤ and ⊥

interchanged.

It is worth noting that ∀xA(x) and ∃xA(x) are total even if the

game 〈℘α〉A(x) used in their definition is only partial.

Example 4.6 Let G be the game (3) discussed earlier in Section 2
(only, now ⊓ seen as ⊓b), and let e be a valuation with e(b) = 10.
The sequence 〈⊥1.11, ⊥0.0, ⊤1.1〉 is a legal run of e[G], the effects
of the moves of which are shown below:

e[G] : ∀y
�

Even(y) ⊔ Odd(y)→⊓10 x
�
Even(x + y) ⊔ Odd(x + y)

�
�

〈⊥1.11〉e[G] : ∀y
�
Even(y) ⊔ Odd(y)→ Even(11+ y) ⊔ Odd(11+ y)

�

〈⊥1.11,⊥0.0〉e[G] : ∀y
�
Even(y)→ Even(11+ y) ⊔ Odd(11+ y)

�

〈⊥1.11,⊥0.0,⊤1.1〉e[G] : ∀y
�
Even(y)→ Odd(11+ y)

�

The play hits (ends as) the true proposition ∀y
�
Even(y)→Odd(11+ y)

�

and hence is won by ⊤.

Before closing this section, we want to make the rather straightfor-

ward observation that the DeMorgan dualities hold for all of our sorts

of conjunctions, disjunctions and quantifiers, and so does the double

negation principle. That is, we always have:

¬¬A= A;

¬(A∧ B) = ¬A∨ ¬B; ¬(A∨ B) = ¬A∧ ¬B;

¬(A⊓ B) = ¬A⊔ ¬B; ¬(A⊔ B) = ¬A⊓ ¬B;

¬∀xA(x) = ∃x¬A(x); ¬∃xA(x) = ∀x¬A(x);

¬⊓xA(x) =⊔x¬A(x); ¬⊔xA(x) =⊓x¬A(x).

5. ALGORITHMIC STRATEGIES THROUGH INTERACTIVE MACHINES

In traditional game-semantical approaches, including Blass’s (1972;

1992) approach which is the closest precursor to ours, player’s strate-

gies are understood as functions — typically as functions from inter-

action histories (positions) to moves, or sometimes (Abramsky & Ja-

gadeesan 1994) as functions that only look at the latest move of the

history. This strategies-as-functions approach, however, is inapplicable
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in the context of computability logic, whose relaxed semantics, in striv-

ing to get rid of any “bureaucratic pollutants” and only deal with the

remaining true essence of games, does not impose any regulations on

which player can or should move in a given situation. Here, in many

cases, either player may have (legal) moves, and then it is unclear

whether the next move should be the one prescribed by ⊤’s strategy

function or the one prescribed by the strategy function of⊥. In fact, for

a game semantics whose ambition is to provide a comprehensive, natu-

ral and direct tool for modeling interaction, the strategies-as-functions

approach would be simply less than adequate, even if technically possi-

ble. This is so for the simple reason that the strategies that real comput-

ers follow are not functions. If the strategy of your personal computer

was a function from the history of interaction with you, then its perfor-

mance would keep noticeably worsening due to the need to read the

continuously lengthening — and, in fact, practically infinite — interac-

tion history every time before responding. Fully ignoring that history

and looking only at your latest keystroke in the spirit of Abramsky &

Jagadeesan (1994) is also certainly not what your computer does, ei-

ther.

In computability logic, (⊤’s effective) strategies are defined in terms

of interactive machines, where computation is one continuous process

interspersed with — and influenced by — multiple “input” (environ-

ment’s moves) and “output” (machine’s moves) events. Of several,

seemingly rather different yet equivalent, machine models of interac-

tive computation studied in CL, here we will employ the most basic,

HPM (“Hard-Play Machine”) model.

An HPM is nothing but a Turing machine with the additional capa-

bility of making moves. The adversary can also move at any time, with

such moves being the only nondeterministic events from the machine’s

perspective. Along with the ordinary work tape, the machine has two

additional tapes called the valuation tape and the run tape. The val-

uation tape, serving as a static input, spells some (arbitrary but fixed)

valuation applied to the game. And the run tape, serving as a dynamic

input, at any time spells the “current position” of the play. The role of

these two tapes is to make both the valuation and the run fully visible

to the machine.

In these terms, an algorithmic solution (⊤’s winning strategy) for a
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given game A is understood as an HPMM such that, no matter how the

environment acts during its interaction withM (what moves it makes

and when), and no matter what valuation e is spelled on the valuation

tape, the run incrementally spelled on the run tape is a ⊤-won run of

e[A].

As for ⊥’s strategies, there is no need to define them: all possible

behaviors by ⊥ are accounted for by the different possible nondeter-

ministic updates of the run tape of an HPM.

In the above outline, we described HPMs in a relaxed fashion, with-

out being specific about technical details such as, say, how, exactly,

moves are made by the machine, how many moves either player can

make at once, what happens if both players attempt to move “simul-

taneously”, etc. As it turns out, all reasonable design choices yield the

same class of winnable games as long as we consider a certain natural

subclass of games called static. Such games are obtained by impos-

ing a certain simple formal condition on games (see, e.g., Section 5

of Japaridze 2009a), which we do not reproduce here as nothing in

this paper relies on it. We shall only point out that, intuitively, static

games are interactive tasks where the relative speeds of the players

are irrelevant, as it never hurts a player to postpone making moves. In

other words, static games are games that are contests of intellect rather

than contests of speed. And one of the theses that computability logic

philosophically relies on is that static games present an adequate for-

mal counterpart of our intuitive concept of “pure”, speed-independent

interactive computational problems. Correspondingly, computability

logic restricts its attention (more specifically, possible interpretations

of the atoms of its formal language) to static games. All elementary

games turn out to be trivially static, and the class of static games turns

out to be closed under all game operations studied in computability

logic. More specifically, all games expressible in the language of the

later-defined logic CL3, or theory PTA, are static. And, in this paper,

we use the term “computational problem", or simply “problem", as a

synonym of “static game”.
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6. THE HPM MODEL IN GREATER DETAIL

As noted, computability of static games is rather robust with respect

to the technical details of the underlying model of interaction. And

the loose description of HPMs that we gave in the previous section

would be sufficient for most purposes, just as mankind had been rather

comfortably studying and using algorithms long before the Church-

Turing thesis in its precise form came around. Namely, relying on just

the intuitive concept of algorithmic strategies (believed in CL to be

adequately captured by the HPM model) would be sufficient if we only

needed to show existence of such strategies for various games. As it

happens, however, later sections of this paper need to arithmetize such

strategies in order to prove the promised extensional completeness of

ptarithmetic. The complexity-theoretic concepts defined in the next

section also require certain more specific details about HPMs, and in

this section we provide such details. It should be pointed out again

that most — if not all — of such details are “negotiable”, as different

reasonable arrangements would yield equivalent models.

Just like an ordinary Turing machine, an HPM has a finite set of

states, one of which has the special status of being the start state.

There are no accept, reject, or halt states, but there are specially desig-

nated states called move states. It is assumed that the start state is not

among the move states. As noted earlier, this is a three-tape machine,

with a read-only valuation tape, read-write work tape, and read-only

run tape. Each tape has a beginning but no end, and is divided into

infinitely many cells, arranged in the left-to-right order. At any time,

each cell will contain one symbol from a certain fixed finite set of tape

symbols. The blank symbol, as well as ⊤ and ⊥, are among the tape

symbols. We also assume that these three symbols are not among the

symbols that any (legal or illegal) move can ever contain. Each tape

has its own scanning head, at any given time looking (located) at

one of the cells of the tape. A transition from one computation step

(“clock cycle”) to another happens according to the fixed transition

function of the machine. The latter, depending on the current state,

and the symbols seen by the three heads on the corresponding tapes,

deterministically prescribes the next state, the tape symbol by which

the old symbol should be overwritten in the current cell (the cell cur-

rently scanned by the head) of the work tape, and, for each head, the
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direction — one cell left or one cell right — in which the head should

move. A constraint here is that the blank symbol, ⊤ or ⊥ can never

be written by the machine on the work tape. An attempt to move left

when the head of a given tape is looking at the first (leftmost) cell re-

sults in staying put. So does an attempt to move right when the head

is looking at the blank symbol.

When the machine starts working, it is in its start state, all three

scanning heads are looking at the first cells of the corresponding tapes,

the valuation tape spells some valuation e by listing the values of the

variables w0,w1,w2, . . . (in this precise order) separated by commas,

and (all cells of) the work and run tapes are blank (i.e., contain the

blank symbol). Whenever the machine enters a move state, the string

α spelled by (the contents of) its work tape cells, starting from the first

cell and ending with the cell immediately left of the work-tape scanning

head, will be automatically appended — at the beginning of the next

clock cycle — to the contents of the run tape in the ⊤-prefixed form

⊤α. And, on every transition, whether the machine is in a move state

or not, any finite sequence ⊥β1, . . . ,⊥βm of ⊥-labeled moves may be

nondeterministically appended to the content of the run tape. If the

above two events happen on the same clock cycle, then the moves will

be appended to the contents of the run tape in the following order:

⊤α⊥β1 . . .⊥βm (note the technicality that labmoves are listed on the

run tape without blanks or commas between them).

With each labmove that emerges on the run tape we associate its

timestamp, which is the number of the clock cycle immediately pre-

ceding the cycle on which the move first emerged on the run tape.

Intuitively, the timestamp indicates on which cycle the move was made

rather than appeared on the run tape; a move made during cycle #i

appears on the run tape on cycle #i +1 rather than #i. Also, we agree

that the count of clock cycles starts from 0, meaning that the very first

clock cycle is cycle #0 rather than #1.

A configuration is a full description of (the “current”) contents of

the work and run tapes, the locations of the three scanning heads,

and the state of the machine. An e-computation branch is an infi-

nite sequence C0, C1, C2, . . . of configurations, where C0 is the initial

configuration (as explained earlier), and every C i+1 is a configuration

that could have legally followed (again, in the sense explained earlier)
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C i when the valuation e is spelled on the valuation tape. For an e-

computation branch B, the run spelled by B is the run Γ incrementally

spelled on the run tape in the corresponding scenario of interaction.

We say that such a Γ is a run generated by the machine on valuation

e.

We say that a given HPMM wins (computes, solves) a given game

A on valuation e — and writeM |= eA — iff every run Γ generated by

M on valuation e is a ⊤-won run of e[A]. We say that A is computable

iff there is an HPMM such that, for every valuation e,M |= eA; such

an HPM is said to be an (algorithmic) solution, or winning strategy,

for A.

7. TOWARDS INTERACTIVE COMPLEXITY

At present, the theory of interactive computation is far from being well

developed, and even less so is the theory of interactive complexity. The

studies of interactive computation in the context of complexity, while

going on for some time now, have been relatively scattered, and in-

teraction has often been used for better understanding certain tradi-

tional, non-interactive complexity issues (examples would be alternat-

ing computation (Chandra et al. 1981), or interactive proof systems

and Arthur-Merlin games (Goldwasser et al. 1989; Babai & Shlomo

1988)) rather than being treated as an object of systematic studies in

its own rights. As if complexity theory was not “complex” enough al-

ready, taking it to the interactive level would most certainly generate,

by an order of magnitude, greater diversity of species from the com-

plexity zoo.

The present paper is the first modest attempt to bring complexity

issues into computability logic and the corresponding part of the under-

construction theory of interactive computation. Here we introduce one,

perhaps the simplest, way of measuring interactive complexity out of

the huge and interesting potential variety of complexity measures that

are meaningful and useful in the interactive context.

Games happen to be so expressive that most, if not all, ways of

measuring complexity will be meaningful and interesting only for cer-

tain (sub)classes of games and not quite so, or not so at all, for other

classes. Our present approach is no exception. The time complexity
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concept that we are going to introduce is meaningfully applicable only

to games that, in positive (winnable) cases, can be brought by ⊤ to

a successful end within a finite number of moves. In addition, every

instance of a game under consideration should be such that the length

of any move in any legal run of it never exceeds a certain bound which

only depends on the value of our special-status variable b. As men-

tioned earlier, it is exactly the value of this variable relative to which

the computational complexity of games will be measured.

The above class of games includes all games obtained by closing

elementary games (predicates) under the operations of Sections 3 and

4, which also happens to be the class of games expressible in the lan-

guage of the later-defined logic CL3. Indeed, consider any such game

A. Obviously the number of moves in any legal run — and hence any⊤-

won run — of any instance of A cannot exceed its ( ⊓ , ⊔ ,⊓,⊔)-depth;

the sizes of moves associated with ⊓ , ⊔ are constant; and the sizes of

moves associated with ⊓,⊔, in any given instance of the game, never

exceed a certain constant plus the value of the variable b.

Games for which our present complexity concepts are meaningful

also include the much wider class of games expressible in the language

of logic CL12 introduced in Japaridze (2010), if the quantifiers ⊓,⊔ of

the latter are understood (as they are in this paper) as their bounded

counterparts ⊓b,⊔b. While those games may have arbitrarily long or

even infinite legal runs, all runs won by ⊤ are still finite.

Bringing computability logic to a complexity-sensitive level also

naturally calls for considering only bounded valuations. By a bounded

valuation we mean a valuation e such that, for any variable x , the size

of the binary numeral e(x) does not exceed the value e(b) of b (note:

the value of b rather than the size of that value). This condition makes

it possible to treat free variables in the same way as if they were ⊓-

bounded.

The starting philosophical-motivational point of our present ap-

proach to time complexity is that it should be an indicator of “how

soon the game(s) can be won” in the worst case, with “how soon” re-

ferring to the number of computation steps (clock cycles) a given HPM

M takes to reach a final and winning position. There is a little cor-

rection to be made in this characterization though. The point is that

part of its time M may spend just waiting for its adversary to move,
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and it would be unfair to billM for the time for which it, probably, is

not responsible. Our solution is to subtract from the overall time the

moveless intervals preceding the adversary’s moves, i.e. the intervals

that intuitively correspond to the adversary’s “thinking periods”. These

intuitions are accounted for by the following definitions.

Let M be an HPM, e a bounded valuation, B any e-computation

branch ofM , and Γ the run spelled by B. For any labmove λ of Γ, we

define the thinking period for λ as m−n, where m is the timestamp of

λ and n is the timestamp of the labmove immediately preceding λ in

Γ, or is 0 if there are no such labmoves. Next, we define ⊤’s time in

B (or in Γ) as the sum of the thinking periods for all ⊤-labeled moves

of Γ. ⊥’s time is defined similarly. Note that, for either player ℘, ℘’s

time will be finite iff there are only finitely many moves made by ℘;

otherwise it will be infinite.

Definition 7.1 Let A be a game, h a function from natural numbers to

natural numbers, andM an HPM.

1. We say thatM runs in time h, or thatM is an h time machine,

iff, for any bounded valuation e and any e-computation branch B of

M , ⊤’s time in B is less than h
�
e(b)
�
.

2. We say thatM wins (computes, solves) A in time h, or thatM

is an h time solution for A, iffM is an h time machine and, for any

bounded valuation e,M |= eA.

3. We say that A is computable (winnable, solvable) in time h iff

it has an h time solution.

4. We say thatM runs in polynomial time, or thatM is a polyno-

mial time machine, iff it runs in time h for some polynomial function

h.

5. We say thatM wins (computes, solves) A in polynomial time,

or that M is a polynomial time solution for A, iff M is an h time

solution for A for some polynomial function h. Symbolically, this will

be written as

M |= PA.

6. We say that A is computable (winnable, solvable) in polyno-

mial time, or polynomial time computable (winnable, solvable), iff

it has a polynomial time solution.

Many concepts introduced within the framework of computability

Vol. 8: Games, Game Theory

and Game Semantics

http://www.thebalticyearbook.org/


29 Giorgi Japaridze

are generalizations — for the interactive context — of ordinary and

well-studied concepts of the traditional theory of computation. The

above-defined time complexity or polynomial time computability are

among such concepts. Let us look at the traditional notion of poly-

nomial time decidability of a predicate p(x) for instance. With a mo-

ment’s thought, it can be seen to be equivalent to polynomial time com-

putability (in the sense of Definition 7.1) of the game p(x) ⊔ ¬p(x), or

— if you prefer — the game ⊓x
�

p(x) ⊔ ¬p(x)
�

(these two games are

essentially the same, with the only difference being that, in one case,

the value of x will have to be read from the valuation tape, while in

the other case it must be read from the run tape).

8. THE LANGUAGE OF LOGIC CL3 AND ITS SEMANTICS

Logic CL3 will be axiomatically constructed in Section 10. The present

section is merely devoted to its language. The building blocks of this

formal language are:

• Nonlogical predicate letters, for which we use p,q (possibly in-

dexed) as metavariables. With each predicate letter is associated

a nonnegative integer called its arity. We assume that, for any n,

there are infinitely many n-ary predicate letters.

• Function letters, for which we use f , g as metavariables. Again,

each function letter comes with a fixed arity, and we assume

that, for any n, there are infinitely many n-ary function letters.

• The binary logical predicate letter = .

• Infinitely many variables. These are the same as the ones fixed

in Section 4.

• Technical symbols: the left parenthesis, the right parenthesis,

and the comma.

Terms, for which we use τ,θ ,ω,ψ,ξ (possibly indexed) as metavari-

ables, are defined as the elements of the smallest set of expressions

such that:

• Variables are terms.
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• If f is an n-ary function letter and τ1, . . . ,τn are terms, then

f (τ1, . . . ,τn) is a term. When f is 0-ary, we write f instead of

f ().

CL3-formulas, or, in most contexts simply formulas, are defined

as the elements of the smallest set of expressions such that:

• If p is an n-ary predicate letter and τ1, . . . ,τn are terms, then

p(τ1, . . . ,τn) is an (atomic) formula. We write τ1
=τ2 instead of

=(τ1,τ2). Also, when p is 0-ary, we write p instead of p().

• If E is an atomic formula, ¬(E) is a formula. We can write τ1
6=τ2

instead of ¬(τ1
=τ2).

• ⊥ and ⊤ are formulas.

• If E1, . . . , En (n≥2) are formulas, then so are (E1) ∧ . . . ∧ (En),

(E1) ∨ . . . ∨ (En), (E1) ⊓ . . . ⊓ (En), (E1) ⊔ . . . ⊔ (En).

• If E is a formula and x is a variable other than b, then ∀x(E),

∃x(E), ⊓x(E), ⊔x(E) are formulas.

Note that, terminologically, ⊤ and ⊥ do not count as atoms. For

us, atoms are formulas containing no logical operators. The formu-

las ⊤ and ⊥ do not qualify because they are (0-ary) logical operators

themselves.

Sometimes we can write E1 ∧ . . . ∧ En for an unspecified n≥1 (rather

than n≥2). Such a formula, in the case n= 1, should be understood as

simply E1. Similarly for ∨ , ⊓ , ⊔ .

Also, where S is a set of formulas, we may write

∧ S

for the ∧ -conjunction of the elements of S. Again, if S only has one

element F , then ∧ S is simply F . Similarly for ∨ , ⊓ , ⊔ . Furthermore,

we do not rule out the possibility of S being empty when using this

notation. It is our convention that, when S is empty, both ∧ S and ⊓ S

mean ⊤, and both ∨ S and ⊔ S mean ⊥.

¬E, where E is not atomic, will be understood as a standard abbre-

viation: ¬⊤ = ⊥, ¬¬E = E, ¬(A∧ B) = ¬A∨ ¬B, ¬⊓xE = ⊔x¬E, etc.
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And E→ F will be understood as an abbreviation of ¬E ∨ F . Also, if we

write

E1→ E2→ E3→ . . . → En,

this is to be understood as an abbreviation of

E1→ (E2→ (E3→ (. . . (En−1→ En) . . .))).

Parentheses will often be omitted — as we just did — if there

is no danger of ambiguity. When omitting parentheses, we assume

that ¬ and the quantifiers have the highest precedence, and →

has the lowest precedence. So, for instance, ¬⊓xE→ F ∨ G means

(¬(⊓x(E)))→ ((F) ∨ (G)).

The expressions ~x , ~y , . . . will usually stand for tuples of variables.

Similarly for ~τ, ~θ , . . . (for tuples of terms) or ~a,~b, . . . (for tuples of con-

stants).

The definitions of free and bound occurrences of variables are stan-

dard, with ⊓,⊔ acting as quantifiers along with ∀,∃. We will try to

use x , y, z for bound variables only, while using s, r, t,u, v, w for free

variables only. There may be some occasional violations of this com-

mitment though.

Convention 8.1 The present conventions apply not only to the lan-

guage of CL3 but also to the other formal languages that we deal with

later, such as those of CL4 and PTA.

1. For safety and simplicity, throughout the rest of this paper we

assume that no formula that we ever consider — unless strictly implied

otherwise by the context — may have both bound and free occurrences

of the same variable. This restriction, of course, does not yield any loss

of expressive power as variables can always be renamed so as to satisfy

this condition.

2. Sometimes a formula F will be represented as F(s1, . . . , sn),

where the si are variables. When doing so, we do not necessarily mean

that each si has a free occurrence in F , or that every variable occur-

ring free in F is among s1, . . . , sn. However, it will always be assumed

(usually only implicitly) that the si are pairwise distinct, and have no

bound occurrences in F . In the context set by the above representation,

F(τ1, . . . ,τn) will mean the result of replacing, in F , each occurrence

of each si by term τi. When writing F(τ1, . . . ,τn), it will always be

assumed (again, usually only implicitly) that the terms τ1, . . . ,τn con-
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tain no variables that have bound occurences in F , so that there are no

unpleasant collisions of variables when doing replacements.

3. Similar — well established in the literature — notational con-

ventions apply to terms.

An interpretation5 is a function ∗ that sends each n-ary predicate

letter p to an n-ary predicate (elementary game) p∗(s1, . . . , sn) which

does not depend on any variables other than s1, . . . , sn; it also sends

each n-ary function letter f to a function

f ∗ : {0,1,10,11,100, . . .}n→ {0,1,10,11,100, . . .};

the additional condition required to be satisfied by ∗ is that =
∗ is an

equivalence relation on {0,1,10, . . .} preserved by f ∗ for each function

symbol f , and respected by p∗ for each nonlogical predicate symbol p.6

The above uniquely extends to a mapping that sends each term τ
to a function τ∗, and each formula F to a game F∗, by stipulating that:

(1) s∗ = s (any variable s).

(2) Where f is an n-ary function letter and τ1, . . . ,τn are terms,
�

f (τ1, . . . ,τn)
�
∗ = f ∗(τ1

∗, . . . ,τn
∗).

(3) Where p is an n-ary predicate letter and τ1, . . . ,τn are terms,
�

p(τ1, . . . ,τn)
�
∗ = p∗(τ1

∗, . . . ,τn
∗).

(4) ∗ commutes with all logical operators, seeing them as the corre-

sponding game operations:

• ⊤∗ =⊤;

• ⊥∗ =⊥;

• (¬F)∗ = ¬F∗;

• (E1 ∧ . . . ∧ En)
∗ = E∗1 ∧ . . . ∧ E∗n;

• (E1 ∨ . . . ∨ En)
∗ = E∗1 ∨ . . . ∨ E∗n;

• (E1 ⊓ . . . ⊓ En)
∗ = E∗1 ⊓ . . . ⊓ E∗n;

• (E1 ⊔ . . . ⊔ En)
∗ = E∗1 ⊔ . . . ⊔ E∗n;

• (∀xE)∗ = ∀x(E∗);

• (∃xE)∗ = ∃x(E∗);
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• (⊓xE)∗ = ⊓x(E∗);

• (⊔xE)∗ = ⊔x(E∗).7

When O is a function symbol, a predicate symbol, or a formula, and

O∗ =W , we say that ∗ interprets O as W . We can also refer to such a

W as “O under interpretation ∗”.

When a given formula is represented as F(x1, . . . , xn), we will typ-

ically write F∗(x1, . . . , xn) instead of
�

F(x1, . . . , xn)
�
∗. A similar prac-

tice will be used for terms as well.

Definition 8.2 We say that an HPMM is a uniform polynomial time

solution for a formula F iff, for any interpretation ∗,M is a polynomial

time solution for F∗.

Intuitively, a uniform polynomial time solution is a “purely logical”

efficient solution. “Logical” in the sense that it does not depend on the

meanings of the nonlogical symbols (predicate and function letters) —

does not depend on a (the) interpretation ∗, that is. It is exactly these

kinds of solutions that we are interested in when seeing CL as a logical

basis for applied theories or knowledge base systems. As a universal-

utility tool, CL (or a CL-based compiler) would have no knowledge of

the meanings of those nonlogical symbols (the meanings that will be

changing from application to application and from theory to theory),

other than what is explicitly given by the target formula and the axioms

or the knowledge base of the system.

9. SOME CLOSURE PROPERTIES OF POLYNOMIAL TIME

COMPUTABILITY

In this section we establish certain important closure properties for

polynomial time computability of games. For simplicity we restrict

them to games expressible in the language of CL3, even though it

should be pointed out that these results can be stated and proven in

much more general forms than presented here.

By an (inference) rule we mean a binary relation R between se-

quences of formulas and formulas, instances of which are schematically

written as
X 1 . . . X n

X
, (4)
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where X 1, . . . , X n are (metavariables for) formulas called the premises,

and X is (a metavariable for) a formula called the conclusion. When-

ever R(〈X 1, . . . , X n〉, X ) holds, we say that X follows from X 1, . . . , X n

by R .

We say that such a rule R is uniform-constructively sound iff

there is an effective procedure that takes any instance (〈X 1, . . . , X n〉, X )

of the rule, any HPMsM 1, . . . ,M n and returns an HPMM such that,

for any interpretation ∗, whenever M 1 |=
PX 1
∗, . . . ,M n |=

PX n
∗, we

haveM |= PX ∗.

Our formulations of rules, as well as our later treatment, rely on

the following notational and terminological conventions.

(1) A positive occurrence of a subformula is an occurrence that is

not in the scope of ¬. Since officially only atoms may come with

a ¬, occurrences of non-atomic subformulas will always be posi-

tive.

(2) A surface occurrence of a subformula is an occurrence that is

not in the scope of any choice operators ( ⊓ , ⊔ ,⊓,⊔).

(3) A formula not containing choice operators — i.e., a formula of

the classical language — is said to be elementary.

(4) The elementarization

‖F‖

of a formula F is the result of replacing in F all surface occur-

rences of ⊔ - and ⊔-subformulas by ⊥, and all surface occur-

rences of ⊓ - and ⊓-subformulas by ⊤. Note that ‖F‖ is (indeed)

an elementary formula.

(5) We will be using the notation

F[E1, . . . , En]

to mean a formula F together with some (single) fixed positive

surface occurrences of each subformula E i. Here the formulas E i

are not required to be pairwise distinct, but their occurrences are.

Using this notation sets a context in which F[H1, . . . , Hn] will

mean the result of replacing in F[E1, . . . , En] the (fixed) occur-

rence of each E i by H i. Note again that here we are talking about

Vol. 8: Games, Game Theory

and Game Semantics

http://www.thebalticyearbook.org/


35 Giorgi Japaridze

some occurrences of E1, . . . , En. Only those occurrences get re-

placed when moving from F[E1, . . . , En] to F[H1, . . . , Hn], even

if the formula also had some other occurrences of E1, . . . , En.

(6) In any context where the notation of the previous clause is used

(specifically, in the formulations of the rules of ⊔ -Choose, ⊔-

Choose and Wait below), all formulas are assumed to be in nega-

tion normal form, meaning that they contain no → , and no ¬

applied to non-atomic subformulas.

Below we prove the uniform-constructive soundness of several rules.

Our proofs will be limited to showing how to construct an HPM M

from an arbitrary instance — in the form (4) — of the rule and ar-

bitrary HPMsM 1, . . . ,M n (purported solutions for the premises). In

each case it will be immediately clear from our description ofM that

it can be constructed effectively, that it runs in polynomial time as long

as so doM 1, . . . ,M n, and that its work in no way depends on an in-

terpretation ∗ applied to the games involved. Since an interpretation
∗ is typically irrelevant in such proofs, we will often omit it and write

simply F where, strictly speaking, F∗ is meant. That is, we identify

formulas with the games into which they turn once an interpretation

is applied to them. Likewise, we may omit a valuation e and write F

instead of e[F] or e[F∗].

9.1. ⊔ -Choose

⊔ -Choose is the following rule:

F[H i]

F[H0 ⊔ . . . ⊔ Hn]
,

where n≥ 1 and i ∈ {0, . . . , n}.

Whenever a formula F follows from a formula E by ⊔ -Choose, we

say that E is a ⊔ -Choose-premise of F .

Theorem 9.1 ⊔ -Choose is uniform-constructively sound.

Idea. This rule most directly encodes an action thatM should per-

form in order to successfully solve the conclusion. Namely,M should
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choose H i and then continue playing as the machine that (presumably)

solves the premise.

Proof. Let M 1 be an arbitrary HPM (a purported polynomial

time solution for the premise). We letM (the will-be polynomial time

solution for the conclusion) be the machine that works as follows.

At the beginning, without looking at its run tape or valuation tape,

M makes the move α that brings F[H0 ⊔ . . . ⊔ Hn] down to F[H i].

For instance, if F[H0 ⊔ . . . ⊔ Hn] is X ∧ (Y ∨ (Z ⊔ T )) and F[H i] is

X ∧ (Y ∨ Z), then 1.1.0 is such a move.

WhatM does after that can be characterized as “turning itself into

M 1” and playing the rest of the game asM 1 would. In more detail,

M starts simulating and mimicking M 1. During this simulation, M

“imagines” thatM 1 has the same valuation e on its valuation tape as

M itself has, and that the run tape of M 1 spells the same run as its

own run tape does, with the difference that the move α made byM at

the beginning is ignored (as if it was not there). To achieve the effect of

consistency between the real and imaginary valuation and run tapes,

what M does is that, every time the simulated M 1 reads a cell of its

valuation or run tape,M reads the content of the corresponding cell of

its own valuation or run tape, and feeds that content to the simulation

as the content of the cell thatM 1 was reading. And whenever, during

the simulation, M 1 makes a move, M makes the same move in the

real play.

The run generated by M in the real play will look like 〈⊤α,Γ〉.

It is not hard to see that then Γ will be a run generated by M 1.

So, if M 1 wins F[H i], implying that WnF[Hi]
e〈Γ〉 = ⊤, then M wins

F[H0 ⊔ . . . ⊔ Hn], because WnF[H0 ⊔ ... ⊔ Hn]
e〈⊤α,Γ〉 =WnF[Hi]

e〈Γ〉.

Simulation does impose a certain overhead, which makesM slower

than M 1. But, with some analysis, details of which are left to the

reader, it can be seen that the slowdown would be at most polynomial,

meaning that, ifM 1 runs in polynomial time, then so doesM .
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9.2. ⊔-Choose

⊔-Choose is the following rule:

F[H(s)]

F[⊔xH(x)]
,

where x is any non-b variable, s is a variable with no bound occur-

rences in the premise, and H(s) is the result of replacing by s all free

occurrences of x in H(x) (rather than vice versa).

Whenever a formula F follows from a formula E by ⊔-Choose, we

say that E is a ⊔-Choose-premise of F .

Theorem 9.2 ⊔-Choose is uniform-constructively sound.

Idea. Very similar to the previous case. M should specify x as

(the value of) s, and then continue playing as the machine that solves

the premise.

Proof. LetM 1 be an arbitrary HPM (a purported polynomial time

solution for the premise). We letM (the will-be polynomial time solu-

tion for the conclusion) be the machine that, with a valuation e spelled

on its valuation tape, works as follows. At the beginning, M makes

the move that brings F[⊔xH(x)] down to F[H(s)]. For instance, if

F[⊔xH(x)] is X ∧ (Y ∨⊔xZ(x)) and F[H(s)] is X ∧ (Y ∨ Z(s)), then

1.1.c is such a move, where c = e(s) (the machine will have to read

c from its valuation tape). After this move, M starts simulating and

mimicking M 1 in the same fashion as in the proof of Theorem 9.1.

And, again, as long asM 1 wins F[H(s)] in polynomial time,M wins

F[⊔xH(x)] in polynomial time.

9.3. Wait

Wait is the following rule:

‖F‖ F1 . . . Fn

F

(remember that ‖F‖ means the elementarization of F), where n ≥ 0

and the following two conditions are satisfied:
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(1) Whenever F has the form X[Y 0 ⊓ . . . ⊓ Y m], each formula X[Y i]

(0≤ i ≤ m) is among F1, . . . , Fn.

(2) Whenever F has the form X[⊓xY (x)], for some variable s differ-

ent from b and not occurring in F , the formula X[Y (s)] is among

F1, . . . , Fn. Here Y (s) is the result of replacing by s all free occur-

rences of x in Y (x) (rather than vice versa).

Whenever the above relation holds, we say that ‖F‖ is the special

Wait-premise of F , and that F1, . . . , Fn are ordinary Wait-premises of

F .

The following lemma, on which we are going to rely in this subsec-

tion, can be verified by a straightforward induction on the complexity

of F , which we omit. Remember that 〈〉 stands for the empty run.

Lemma 9.3 For any formula F, interpretation ∗ and valuation e,

WnF∗

e〈〉 =Wn‖F‖
∗

e〈〉.

Theorem 9.4 Wait is uniform-constructively sound.

Idea. M should wait (hence the name “Wait” for the rule) until

the adversary makes a move. If this never happens, in view of the

presence of the premise ‖F‖, a win forM is guaranteed by Lemma 9.3.

Otherwise, any (legal) move by the adversary essentially brings the

conclusion down to one of the premises F1, . . . , Fn; thenM continues

playing as the machine that wins that premise.

Proof. Assume M 0,M 1, . . . ,M n are polynomial time solutions

for ‖F‖, F1, . . . , Fn, respectively. We let M , the will-be solution for F ,

whose construction does not depend on the just-made assumption, be

a machine that, with a bounded valuation e spelled on its valuation

tape, works as follows.

At the beginning,M keeps waiting until the environment makes a

move. If such a move is never made, then the run that is generated is

empty. Since ‖F‖ is elementary andM 0 wins it, it is classically true (a

false elementary game would be automatically lost by any machine).

But then, in view of Lemma 9.3, M wins (the empty run of) F . And,

note, ⊤’s time in this case is 0.

Suppose now the environment makes a move. Note that the time

during which the machine was waiting does not contribute anything

Vol. 8: Games, Game Theory

and Game Semantics

http://www.thebalticyearbook.org/


39 Giorgi Japaridze

to ⊤’s time. We may assume that the move made by the environment

is legal, or else the machine immediately wins. With a little thought,

one can see that any legal move α by the environment brings the game

e[F] down to g[F i] for a certain bounded valuation g — with g(b) =

e(b) — and one of the premises F i of the rule. For example, if F is

(X ⊓ Y ) ∨⊓xZ(x), then a legal move α by the environment should be

either 0.0 or 0.1 or 1.c for some constant c (of size ≤e(b)). In the case

α = 0.0, the above-mentioned premise F i will be X ∨⊓xZ(x), and g

will be the same as e. In the case α = 0.1, F i will be Y ∨⊓xZ(x), and

g, again, will be the same as e. Finally, in the case α = 1.c, F i will be

(X ⊓ Y ) ∨ Z(s) for a variable s different from b and not occurring in F ,

and g will be the valuation that sends s to c and agrees with e on all

other variables, so that g[(X ⊓ Y ) ∨ Z(s)] is e[(X ⊓ Y ) ∨ Z(c)], with the

latter being the game to which e[F] is brought down by the labmove

⊥1.c.

After the above event,M starts simulating and mimicking the ma-

chineM i in the same fashion as in the proofs of Theorems 9.1 and 9.2,

with the only being difference that, if g 6= e, the imaginary valuation

tape of the simulated machine now spells g rather than e.

As in the earlier proofs, it can be seen that M , constructed as

above, is a polynomial time solution for F .

9.4. Modus Ponens (MP)

Modus Ponens is the following rule:

F0 . . . Fn F0 ∧ . . . ∧ Fn→ F

F
,

where n≥ 0.

Theorem 9.5 Modus Ponens is uniform-constructively sound.

Idea. Together with the real play of F ,M plays an imaginary game

for each of the premises, in which it mimics the machines that win

those premises. In addition, it applies copycat between each premise

F i and the corresponding conjunct of the antecedent of the rightmost

premise, as well as between (the real) F and the consequent of that

premise.
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Proof. AssumeM 0, . . . ,M n and N are HPMs that win F0, . . . , Fn

and F0 ∧ . . . ∧ Fn→ F in polynomial time, respectively (as in the previ-

ous proofs, our construction ofM does not depend on this assumption;

only the to-be-made conclusionM |= PF does). For simplicity, below

we reason under the assumption that n ≥ 1. Extending our reasoning

so as to also include the case n= 0 does not present a problem.

We letM be the following HPM. Its work on a valuation e consists

in simulating, in parallel, the machinesM 0, . . . ,M n,N with the same

e on their valuation tapes, and also continuously polling (in parallel

with simulation) its own valuation tape to see if the environment has

made a new move. These simulations proceed in the same fashion as in

the proofs of the earlier theorems, with the only difference that nowM

actually maintains records of the contents of the imaginary run tapes

of the simulated machines (in the proof of Theorem 9.1,M was simply

using its own run tape in the role of such a “record”).

As before, we may assume that the environment does not make

illegal moves, for then M immediately wins. We can also safely as-

sume that the simulated machines do not make illegal moves, or else

our assumptions about their winning the corresponding games would

be wrong.8 If so, in the process of the above simulation-polling rou-

tine, now and then, one of the following four types of events will be

happening (or rather detected):

Event 1. M i (0 ≤ i ≤ n) makes a move α. ThenM appends the

labmove ⊥0.i.α at the end of the position spelled on the imaginary run

tape of N in its simulation.9

Event 2. N makes a move 0.i.α (0 ≤ i ≤ n). Then M appends

the labmove ⊥α at the end of the imaginary run tape of M i in its

simulation.

Event 3. N makes a move 1.α. ThenM makes the move α in the

real play.

Event 4. The environment makes a move α in the real play. Then

M appends the labmove ⊥1.α at the end of the imaginary run tape of

N in its simulation.

What is going on here is thatM applies copycat between n+2 pairs

of (sub)games, real or imaginary. Namely, it mimics, in (the real play

of) F , N ’s moves made in the consequent of (the imaginary play of)

F0 ∧ . . . ∧ Fn→ F , and vice versa: uses (the real) environment’s moves
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made (in the real play of) F as (an imaginary) environment’s moves in

the consequent of F0 ∧ . . . ∧ Fn→ F . Also, for each i ∈ {0, . . . , n}, M

uses the moves made by M i in F i as environment’s moves in the F i

component of F0 ∧ . . . ∧ Fn→ F , and vice versa: uses the moves made

by N in that component as environment’s moves in F i. Therefore, the

final positions10 hit by the above imaginary and real plays will be

F ′0, . . . , F ′n, F ′1 ∧ . . . ∧ F ′n→ F ′ and F ′

for some F ′0, . . . , F ′n, F ′. Our assumption that the machines

M 0, . . . ,M n and N win the games F0, . . . , Fn and F1 ∧ . . . ∧ Fn→ F

implies that each G ∈ {F ′0, . . . , F ′n, F ′1 ∧ . . . ∧ F ′n→ F ′} is ⊤-won,

in the sense that WnG
e〈〉 = ⊤. It is then obvious that so should be F ′.

Thus, the (real) play of F brings it down to the ⊤-won F ′, meaning

thatM wins F .

With some thought, one can also see that M runs in polynomial

time. The only reason why M may spend “too much” time thinking

before making a move could be that it waited “too long” to see what

move was made by one (or several) of the simulated machines. But this

would not happen because, by our assumption, those machines run in

polynomial time, so, whenever they make a move, it never takes them

“too long” to do so.

10. LOGIC CL3

Before we get to our version of formal arithmetic, it would not hurt to

identify the (pure) logic on which it is based — based in the same sense

as the traditional Peano arithmetic is based on classical logic. This logic

is CL3. With minor technical differences not worth our attention and

not warranting a new name for the logic, our present version of CL3 is

the same as the same-name logic introduced and studied in Japaridze

(2006c).11

The language of CL3 has already been described in Section 8.

The axioms of this system are all classically valid elementary for-

mulas. Here by classical validity, in view of Gödel’s completeness the-

orem, we mean provability in classical first-order calculus. Specif-

ically, in classical first-order calculus with function letters and = ,
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where = is treated as the logical identity predicate (so that, say, x = x ,

x = y → (E(x)→ E(y)), etc. are valid/provable).

As for the rules of inference of CL3, they are the ⊔ -Choose, ⊔-

Choose and Wait rules of Section 9. As will be easily seen from the

forthcoming soundness and completeness theorem for CL3 (in conjunc-

tion with Theorem 9.5), CL3 is closed under Modus Ponens. So, there

is no need for officially including it among the rules of inference, doing

which would destroy the otherwise analytic property of the system.

A CL3-proof of a formula F is a sequence E1, . . . , En of formulas,

with En = F , such that each E i is either an axiom or follows from some

earlier formulas of the sequence by one of the rules of CL3. When

a CL3-proof of F exists, we say that F is provable in CL3, and write

CL3 ⊢ F . Otherwise we write CL3 6⊢ F . Similarly for any other formal

systems as well.

Example 10.1 The formula ∀xp(x)→⊓xp(x) is provable in CL3. It

follows by Wait from the axioms ∀xp(x)→⊤ (special Wait-premise)

and ∀xp(x)→ p(s) (ordinary Wait-premise).

On the other hand, the formula ⊓xp(x)→ ∀xp(x), i.e.

⊔x¬p(x) ∨ ∀xp(x), in not provable. Indeed, this formula has no

⊔ -Choose-premises because it does not contain ⊔ . Its elementa-

rization (special Wait-premise) is ⊥ ∨ ∀xp(x) which is not an axiom

nor the conclusion of any rules. Hence ⊔x¬p(x) ∨ ∀xp(x) cannot

be derived by Wait, either. This leaves us with ⊔-Choose. But if

⊔x¬p(x) ∨ ∀xp(x) is derived by ⊔-Choose, then the premise should

be ¬p(s) ∨ ∀xp(x) for some variable s. The latter, however, is neither

an axiom nor the conclusion of any of the three rules of CL3.

Example 10.2 The formula ⊓x⊔y
�

p(x)→ p(y)
�
, whose elementa-

rization is ⊤, is provable in CL3 as follows:

1. ⊤ Axiom

2. p(s)→ p(s) Axiom

3. ⊔y
�

p(s)→ p(y)
�
⊔-Choose: 2

4. ⊓x⊔y
�

p(x)→ p(y)
�

Wait: 1,3

On the other hand, the formula ⊔y⊓x
�

p(x)→ p(y)
�

can

be seen to be unprovable, even though its classical counterpart

∃y∀x
�

p(x)→ p(y)
�

is an axiom and hence provable.
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Example 10.3 While the formula ∃x
�

x = f (s)
�

is classically valid and

hence provable in CL3, its constructive counterpart ⊔x
�

x = f (s)
�

can

be easily seen to be unprovable. This is no surprise. In view of the ex-

pected soundness of CL3, provability of ⊔x
�

x = f (s)
�

would imply that

every function f is computable (worse yet: efficiently computable),

which, of course, is not the case.

Exercise 10.4 To see the resource-consciousness of CL3, show that it

does not prove p ⊓ q→ (p ⊓ q) ∧ (p ⊓ q), even though this formula has

the form F → F ∧ F of a classical tautology.

Theorem 10.5 CL3 ⊢ X iff X has a uniform polynomial time solution

(any formula X). Furthermore:

Uniform-constructive soundness: There is an effective procedure

that takes any CL3-proof of any formula X and constructs a uniform

polynomial time solution for X .

Completeness: If CL3 6⊢ X , then, for any HPMM , there is an inter-

pretation ∗ such thatM does not win X ∗ (let alone winning in polynomial

time).

Idea. The soundness of CL3 was, in fact, already established in

the preceding section. For completeness, assume CL3 6⊢ X and consider

any HPMM . If ‖X‖ is an axiom, a smart environment can always make

a move that brings X down to an unprovable ordinary Wait-premise of

X , or else X would be derivable by Wait; such a Wait-premise is less

complex than X and, by the induction hypothesis, M loses. If ‖X‖

is not an axiom, then it is false under a certain interpretation, and

therefore M will have to make a move to avoid an automatic loss.

But any (legal) move byM brings X down to an unprovable Choose-

premise of it (or else X would be derivable by a Choose rule) and, by

the induction hypothesis,M again loses.

Proof. Modulo the results of Section 9, the soundness (“only

if”) part of this theorem, in the strong “uniform-constructive” form, is

straightforward. Formally this fact can be proven by induction on the

lengths of CL3-proofs. All axioms of CL3 are obviously “solved” by a

machine that does nothing at all. Next, as an induction hypothesis, as-

sume X 1, . . . , X n are CL3-provable formulas,M 1, . . . ,M n are uniform

polynomial time solutions for them, and X follows from those formulas
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by one of the rules of CL3. Then, as immediately implied by the results

of Section 9, we can effectively construct a uniform polynomial time

solutionM for X .

The rest of this proof will be devoted to the completeness (“if”) part

of the theorem.

Consider an arbitrary formula X with CL3 6⊢ X , and an arbitrary

HPMM . Here we describe a scenario of the environment’s behavior in

interaction withM — call this “behavior” the counterstrategy — that

makesM lose F∗ on e for a certain appropriately selected interpreta-

tion ∗ and a certain appropriately selected bounded valuation e even if

the time ofM is not limited at all.

For a formula Y and valuation g, we say that g is Y -distinctive iff

g assigns different values to different free variables of Y . We select e to

be an X -distinctive bounded valuation. Here we let e(b) be “sufficiently

large” to allow certain flexibilities needed below.

How our counterstrategy acts depends on the current game (for-

mula, “position”) Y to which the original game X has been brought

down by the present time in the play. Initially, Y is X .

As an induction hypothesis, we assume that CL3 6⊢ Y and e is Y -

distinctive. We separately consider the following two cases.

Case 1: ‖Y‖ is classically valid. Then there should be a CL3-

unprovable formula Z — an ordinary Wait-premise of Y — satisfying

the conditions of one of the following two subcases, for otherwise Y

would be derivable by Wait. Our counterstrategy selects one such Z

(say, lexicographically the smallest one), and acts according to the cor-

responding prescription as given below.

Subcase 1.1: Y has the form F[G0 ⊓ . . . ⊓ Gm], and Z is F[Gi]

(i ∈ {0, . . . , m}). In this case, the counterstrategy makes the move that

brings Y down to Z , and calls itself on Z in the role of the “current”

formula Y .

Subcase 1.2: Y has the form F[⊓xG(x)], and Z is F[G(s)], where

s is a variable different from b and not occurring in Y . We may assume

here that e(s) is different from any e(r) where r is any other (6= s) free

variable of Y . Thus, e remains a Z-distinctive valuation. In this case,

our counterstrategy makes the move that brings Y down to Z (such a

move is the one that specifies the value of x as e(s) in the indicated

occurrence of ⊓xG(x)), and calls itself on Z in the role of Y .
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Case 2: ‖Y‖ is not classically valid. Then our counterstrategy inac-

tively waits untilM makes a move.

Subcase 2.1. If such a move is never made, then the run that is

generated is empty. Since e is a Y -distinctive valuation, of course, it

is also ‖Y‖-distinctive. It is a common knowledge from classical logic

that, whenever a formula F is invalid (as is ‖Y‖ in our present case)

and e is an F -distinctive valuation, e[F] is false in some model. So,

e[‖Y‖] is false in/under some model/interpretation ∗. This, in view of

Lemma 9.3, implies that WnY∗

e〈〉 = ⊥ and henceM is the loser in the

overall play of X ∗ on e.

Subcase 2.2. Now suppose M makes a move. We may assume

that such a move is legal, or else M immediately loses. With a lit-

tle thought, one can see that any legal move α by M will bring the

game down to Z for a certain formula Z such that Y follows from Z

by ⊔ -Choose or ⊔-Choose, and e remains — or, at least, can be safely

assumed to remain — Z-distinctive. But then, since CL3 6⊢ Y , we also

have CL3 6⊢ Z . In this case, our counterstrategy calls itself on Z in the

role of Y .

It is clear that, sooner or later, the interaction will end according to

the scenario of Subcase 2.1, in which case, as we observed,M will be

the loser in the overall play of X ∗ on e for a certain interpretation ∗.

11. CL4, THE METALOGIC OF CL3

In this section we present an auxiliary deductive system CL4. Syntacti-

cally, it is a conservative extension of CL3. Semantically, we treat CL4

as a metalogic of CL3, in the sense that the formulas of CL4 are seen

as schemata of CL3-formulas, and the theorems of CL4 as schemata of

theorems of CL3. System CL4 — in an unsubstantially different form

— was initially introduced and studied in Japaridze (2007b) where,

unlike our present treatment, it was seen as a logic (rather than met-

alogic) in its own rights, soundly and completely axiomatizing a more

expressive fragment of computability logic than CL3 does. Simplicity

is the only reason why we prefer to see CL4 as just a metalogic here.

The language of CL4 is obtained from that of CL3 by adding to it
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nonlogical general letters, on top of the predicate letters of the lan-

guage of CL3 that in this new context, following the terminological

tradition of computability logic, we rename as elementary letters. We

continue using the lowercase p,q (possibly indexed) as metavariables

for elementary letters, and will be using the uppercase P,Q (possibly

indexed) as metavariables for general letters. Just as this is the case

with the elementary letters, we have infinitely many n-ary general let-

ters for each arity (natural number) n. In our present approach, the

nonlogical elementary letters of the language of CL4 will be seen as

metavariables for elementary formulas of the language of CL3, the gen-

eral letters of the language of CL4 will be seen as metavariables for any,

not-necessarily-elementary, formulas of the language of CL3, and the

function letters of the language of CL4 will be seen as metavariables

for terms of the language of CL3.

Formulas of the language of CL4, to which we refer as CL4-formulas,

are built from atoms, terms, variables and operators in exactly the same

way as CL3-formulas are, with the only difference that now, along with

the old elementary atoms — atoms of the form p(τ1, . . . ,τn) where p

is an n-ary elementary letter and the τi are terms — we also have gen-

eral atoms, which are of the form P(τ1, . . . ,τn), where P is an n-ary

general letter and the τi are terms. An elementary literal is ⊤, ⊥, or

an elementary atom with or without negation ¬. And a general literal

is a general atom with or without negation. As before, we always as-

sume that negation can only occur in literals; ¬ applied to a non-atomic

formula, as well as → , are treated as abbreviations. The concepts of a

surface occurrence, positive occurrence etc. straightforwardly extend

from the language of CL3 to the language of CL4.

We say that a CL4-formula is elementary iff it does not contain

general atoms and choice operators. Thus, “elementary CL4-formula”,

“elementary CL3-formula” and “formula of classical logic” mean the

same. Note that we see the predicate letters of classical logic as ele-

mentary rather than general letters.

The elementarization ‖F‖ of a CL4-formula F is the result of re-

placing in it all surface occurrences of ⊓ - and ⊓-subformulas by ⊤, all

surface occurrences of ⊔ - and ⊔-subformulas by ⊥, and all positive

surface occurrences of general literals by ⊥.

CL4 has exactly the same axioms as CL3 does (all classically valid
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elementary formulas), and has four rules of inference. The first three

rules are nothing but the rules of ⊔ -Choose, ⊔-Choose and Wait of

CL3, only now applied to any CL4-formulas rather than just CL3-

formulas. The additional, fourth rule, which we call Match, is the

following:

F[p(~τ),¬p(~θ)]

F[P(~τ),¬P(~θ)]
,

where P is any n-ary general letter, p is any n-ary nonlogical ele-

mentary letter not occurring in the conclusion, and ~τ,~θ are any n-

tuples of terms; also, according to our earlier notational conventions,

F[P(~τ),¬P(~θ)] is a formula with two fixed positive occurrences of the

literals P(~τ) and ¬P(~θ ), and F[p(~τ),¬p(~θ)] is the result of replacing

in F[P(~τ),¬P(~θ)] the above two occurrences by p(~τ) and ¬p(~θ), re-

spectively.

It may help some readers to know that CL4 is an extension of

additive-multiplicative affine logic (classical linear logic with weaken-

ing), with the letters of the latter understood as our general letters.

This fact is an immediate consequence of the earlier-known soundness

of affine logic (proven in Japaridze 2009a) and completeness of CL4

(proven in Japaridze 2007b) with respect to the semantics of com-

putability logic. As seen from the following example, the extension,

however, is not conservative.

Example 11.1 Below is a CL4-proof of the formula

(P ∧ P) ∨ (P ∧ P)→ (P ∨ P) ∧ (P ∨ P). The latter was used by Blass

Blass (1992) as an example of a game-semantically valid principle not

provable in affine logic.

1. (p1 ∧ p2) ∨ (p3 ∧ p4)→ (p1 ∨ p3) ∧ (p2 ∨ p4) Axiom

2. (p1 ∧ p2) ∨ (p3 ∧ P)→ (p1 ∨ p3) ∧ (p2 ∨ P) Match: 1

3. (p1 ∧ p2) ∨ (P ∧ P)→ (p1 ∨ P) ∧ (p2 ∨ P) Match: 2

4. (p1 ∧ P) ∨ (P ∧ P)→ (p1 ∨ P) ∧ (P ∨ P) Match: 3

5. (P ∧ P) ∨ (P ∧ P)→ (P ∨ P) ∧ (P ∨ P) Match: 4
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Example 11.2 In Example 10.2 we saw a CL3-proof of

⊓x⊔y
�

p(x)→ p(y)
�
. The same proof, of course, is also a CL4-

proof. Below is a CL4-proof of the stronger version of this formula

where we have an uppercase rather than lowercase P:

1. ⊤ Axiom

2. p(s)→ p(s) Axiom

3. P(s)→ P(s) Match: 2

4. ⊔y
�

P(s)→ P(y)
�
⊔-Choose: 3

5. ⊓x⊔y
�

P(x)→ P(y)
�

Wait: 1,4

Example 11.3 While CL4 proves the elementary formula p→ p ∧ p,

it does not prove its general counterpart P → P ∧ P. Indeed,

‖P → P ∧ P‖ = ⊤→⊥ ∧⊥ and hence, obviously, P → P ∧ P cannot be

derived by Wait. This formula cannot be derived by Choose rules ei-

ther, because it contains no choice operators. Finally, if it is derived by

Match, the premise should be p→ P ∧ p or p→ p ∧ P. In either case,

such a premise cannot be proven, as it contains no choice operators

and its elementarization is p→⊥ ∧ p or p→ p ∧⊥.

Let F be a CL4-formula. A substitution for F is a function ♥ that

sends:

• each nonlogical n-ary elementary letter p of F to an elementary

CL3-formula p♥(x1, . . . , xn) — with here and below x1, . . . , xn

being a context-setting fixed n-tuple of pairwise distinct variables

— which does not contain any free variables that have bound

occurrences in F ;

• each n-ary general letter P of F to an (elementary or nonelemen-

tary) CL3- formula P♥(x1, . . . , xn) which does not contain any

free variables that have bound occurrences in F ;

• each n-ary function symbol f of F to a term f ♥(x1, . . . , xn)which

does not contain any variables that have bound occurrences in F .

The above uniquely extends to a mapping that sends each term τ
of F to a term τ♥, and each subformula H of F to a CL3-formula H♥

by stipulating that:
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(1) x♥ = x (any variable x).

(2) Where f is an n-ary function symbol and τ1, . . . ,τn are terms,
�

f (τ1, . . . ,τn)
�
♥ = f ♥(τ1

♥, . . . ,τn
♥).

(3) (τ1
=τ2)

♥ is τ1
♥
=τ2
♥.

(4) Where L is an n-ary nonlogical elementary or general letter and

τ1, . . . ,τn are terms,
�
L(τ1, . . . ,τn)
�
♥ = L

♥(τ1
♥, . . . ,τn

♥).

(5) ♥ commutes with all logical operators:

• ⊤♥ =⊤;

• ⊥♥ =⊥;

• (¬E)♥ = ¬E♥;

• (E1 ∧ . . . ∧ En)
♥ = E♥1 ∧ . . . ∧ E♥n;

• (E1 ∨ . . . ∨ En)
♥ = E♥1 ∨ . . . ∨ E♥n;

• (E1 ⊓ . . . ⊓ En)
♥ = E♥1 ⊓ . . . ⊓ E♥n;

• (E1 ⊔ . . . ⊔ En)
♥ = E♥1 ⊔ . . . ⊔ E♥n;

• (∀xE)♥ = ∀x(E♥);

• (∃xE)♥ = ∃x(E♥);

• (⊓xE)♥ =⊓x(E♥);

• (⊔xE)♥ =⊔x(E♥).

We say that a CL3-formula E is an instance of a CL4-formula F , or

that E matches F , iff E = F♥ for some substitution ♥ for F .

Theorem 11.4 A CL4-formula is provable in CL4 iff all of its instances

are provable in CL3.

Idea. The completeness part of this theorem is unnecessary for the

purposes of the present paper, and its proof is omitted. For the sound-

ness part, consider a CL4-provable formula F and an arbitrary instance

F♥ of it. We need to construct a CL3-proof of F♥. The idea here is to

let such a proof simulate the CL4-proof of F . Speaking very roughly,

simulating steps associated with ⊔ -Choose, ⊔-Choose and Wait is pos-

sible because these rules of CL4 are also present in CL3. As for the
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Match rule, it can be simulated by a certain “deductive counterpart”

of the earlier seen copycat strategy. Namely, in the bottom-up view

of the CL3-proof under construction, every application of Wait that

modifies a subformula originating from a matched (in the CL4-proof)

literal, should be followed by a symmetric application of ⊔ -Choose or

⊔-Choose in the subformula originating from the other matched lit-

eral — an application that evens out the two subformulas so that one

remains the negation of the other.

Proof. Our proof will be focused on the soundness (“only if”)

part of the theorem, as nothing in this paper relies on the complete-

ness (“if”) part. We only want to point out that, essentially, the latter

has been proven in Section 5 of Japaridze (2007b). Specifically, the

proof of Lemma 5.1 of Japaridze (2007b) proceeds by showing that, if

CL4 6⊢ F , then there is a CL3-formula ⌈F⌉ which is an instance of F such

that CL3 6⊢ ⌈F⌉. However, as noted earlier, the logics under the names

“CL3” and “CL4” are not exactly the same in Japaridze (2006c, 2007b)

as they are here. Namely, Japaridze (2006c, 2007b) allowed constants

in formulas while now we do not allow them. On the other hand, now

we have = and function symbols in the language whereas the approach

of Japaridze (2006c, 2007b) did not consider them, nor did it have the

special-status variable b. Also, as we remember, in our present treat-

ment ⊓,⊔ mean ⊓b,⊔b, whereas in Japaridze (2006c, 2007b) they

meant properly ⊓,⊔. Such technical differences, however, are minor,

and have no impact on the relevant proofs. So, the above-mentioned

proof from Japaridze (2007b), with just a few rather straightforward

adjustments, goes through as a proof of the completeness part of the

present theorem as well.

For the soundness part, we extend the language of CL4 by adding

to it a new sort of nonlogical letters called hybrid. Each n-ary hybrid

letter is a pair Pq, where P — called its general component — is an

n-ary general letter, and q — called its elementary component — is a

nonlogical n-ary elementary letter. And vice versa: for every pair (P,q)

of letters of the above sort, we have an n-ary hybrid letter Pq. Formulas

of this extended language, to which we will be referring as hyperfor-

mulas, are built in the same way as CL4-formulas, with the difference

that now atoms can be of any of the three — elementary, general or

hybrid — sorts. Surface occurrence, (elementary, general, hybrid)
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literal and similar concepts straightforwardly extend from CL3- and

CL4-formulas to hyperformulas. Furthermore, concepts such as sur-

face occurrence, positive occurrence, etc. extend from subformulas to

parts of subformulas, such as letters occurring in them, in the obvious

way.

We say that a hyperformula E is a CL4◦-formula iff, for every hybrid

letter Pq occurring in E, the following conditions are satisfied:

(1) E has exactly two occurrences of Pq, where one occurrence is

positive and the other occurrence is negative, and both occur-

rences are surface occurrences. We say that the corresponding

two literals — where one looks like Pq(~τ) and the other like

¬Pq(
~θ)— are matching.

(2) The elementary letter q does not occur in E, nor is it the elemen-

tary component of any hybrid letter occurring in E other than

Pq.

Of course, every CL4-formula is also a CL4◦-formula — one with

no hybrid letters.

The elementarization ‖E‖ of a CL4◦-formula E is the result of re-

placing, in E, each surface occurrence of the form G1 ⊓ . . . ⊓ Gn or

⊓xG by ⊤, each surface occurrence of the form G1 ⊔ . . . ⊔ Gn or ⊔xG

by ⊥, every positive surface occurrence of each general literal by ⊥,

and every surface occurrence of each hybrid letter by the elementary

component of that letter.

We are going to employ a “version” of CL4 called CL4◦. Unlike

CL4 whose language consists only of CL4-formulas, the language of

CL4◦ allows any CL4◦-formulas. The axioms and rules of CL4◦ are the

same as those of CL4 — only, now applied to any CL4◦-formulas rather

than just CL4-formulas — with the difference that the rule of Match is

replaced by the following rule that we call Match◦:

F[Pq(~τ),¬Pq(
~θ)]

F[P(~τ),¬P(~θ)]
,

where P is any n-ary general letter, q is any n-ary elementary letter

not occurring in the conclusion (neither independently nor as the ele-

mentary component of some hybrid letter), and ~τ,~θ are any n-tuples

of terms.
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Claim 1. For any CL4-formula E, if CL4 ⊢ E, then CL4◦ ⊢ E.

Proof. The idea that underlies our proof of this claim is very sim-

ple: every application of Match naturally turns into an application of

Match◦.

Indeed, consider any CL4-proof of E. It can be seen as a tree all of

the leaves of which are labeled with axioms and every non-leaf node of

which is labeled with a formula that follows by one of the rules of CL4

from (the labels of) its children, with E being the label of the root. By

abuse of terminology, here we identify the nodes of this tree with their

labels, even though, of course, it may be the case that different nodes

have the same label. For each node G of the tree that is derived from

its child H by Match — in particular, where H is the result of replacing

in G a positive and a negative surface occurrences of an n-ary general

letter P by an n-ary nonlogical elementary letter q — do the following:

replace q by the hybrid letter Pq in H as well as in all of its descendants

in the tree. It is not hard to see that this way we will get a CL4◦-proof

of E.

The concept of a substitution ♥ for a CL4◦-formula E, and the

corresponding CL3-formula E♥, are defined in the same ways as for

CL4-formulas, treating each hybrid letter Pq as a separate (not related

to P or any other Pp with p 6= q) general letter.

We say that a CL3-formula E is a TROW-premise of a CL3-formula

F (“TROW”=“Transitive Reflexive Ordinary Wait”) iff E is F , or an or-

dinary Wait-premise of F , or an ordinary Wait-premise of an ordinary

Wait-premise of F , or . . . .

Let E be a CL4◦-formula with exactly n positive surface occur-

rences of general literals, with those occurences being (not necessar-

ily pairwise distinct literals) G1, . . . , Gn. And let ♥ be a substitution

for E. Then E♥ can obviously be written as H[G1
♥, . . . , Gn

♥], where

G1
♥, . . . , Gn

♥ are surface occurrences originating from the occurrences

of G1, . . . , Gn in E. Under these conditions, by a ♥-quasiinstance of

E we will mean any TROW-premise of H[G1
♥, . . . , Gn

♥] that can be

written as H[J1, . . . , Jn]. To summarize in more intuitive terms, a ♥-

quasiinstance of E is a TROW-premise of E♥ where all (if any) changes

have taken place exclusively in subformulas (G1
♥, . . . , Gn

♥) that origi-

nate from positive occurrences of general literals (G1, . . . , Gn) in E. Of

Vol. 8: Games, Game Theory

and Game Semantics

http://www.thebalticyearbook.org/


53 Giorgi Japaridze

course, E♥ is one of the ♥-quasiinstances of E.

By a (simply) quasiinstance of a CL4◦-formula E we mean a ♥-

quasiinstance of E for some substitution ♥ for E. Note that every in-

stance is a quasiinstance but not necessarily vice versa.

Claim 2. For any CL4◦-formula E, if CL4◦ ⊢ E, then every quasiin-

stance of E is provable in CL3.

Proof. Consider any CL4◦-provable formula E. We want to show

that CL3 proves any quasiinstance of E. This will be done by induc-

tion on the length of the CL4◦-proof of E; within the inductive step

of this induction, we will use a second induction — induction on the

complexity (the number of logical connectives) of the quasiinstance of

E under consideration. Call the first induction primary and the sec-

ond induction secondary. These adjectives will also be applied to the

corresponding inductive hypotheses.

For the basis of the primary induction, assume E is an axiom of

CL4◦ (and hence of CL3 as well), i.e. E is a valid formula of classical

logic. Consider any substitution ♥ for E. The formula E♥ is an axiom of

(CL4◦ and) CL3, because classical validity is closed under applying sub-

stitutions. And, since E is elementary, E♥ is the only ♥-quasiinstance

of it. So, we are done.

Below comes the inductive step of the primary induction, divided

into three cases.

Case 1. Assume E is obtained from a premise G by ⊔ -Choose or

⊔-Choose. Consider any substitution ♥ for E. Obviously, E♥ follows

from G♥ by the same rule;12 and, by the primary induction hypothesis,

CL3 ⊢ G♥, so we have CL3 ⊢ E♥. Furthermore, what we just observed

extends to any other (other than E♥) ♥-quasiinstance H of E as well:

with some thought, one can see that such an H follows from a certain

(the corresponding) ♥-quasiinstance of G by the same rule ⊔ -Choose

or ⊔-Choose as E follows from G.

Case 2. Assume E is obtained from premises ‖E‖, G1, . . . , Gn by Wait.

Consider any substitution ♥ for E and any ♥-quasiinstance H of E. We

want to show that H can be derived in CL3 by Wait.

The provability of the elementary formula ‖E‖ obviously means that

it is an axiom, i.e., a valid formula of classical logic. Let J1, . . . , Jk be all
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positive surface occurrences of general literals in E, and let E′ be the

formula obtained from E by replacing those occurrences by q1, . . . ,qk,

where the qi are pairwise distinct 0-ary elementary letters not occurring

in E. Observe that then ‖E′‖ differs from ‖E‖ in that, where the former

has k positive occurrences of ⊥ (originating from J1, . . . , Jk when ele-

mentarizing E), the latter has the k atoms q1, . . . ,qk. It is known from

classical logic that replacing positive occurrences of ⊥ by whatever for-

mulas does not destroy validity. Hence, as ‖E‖ is valid, so is ‖E′‖. Now,

with some analysis, details of which are left to the reader, one can see

that the formula ‖H‖ is a substitutional instance — in both our present

sense as well as in the classical sense — of ‖E′‖. So, as an instance of

a classically valid formula, ‖H‖ is classically valid, i.e. is an axiom of

CL3, and we thus have

CL3 ⊢ ‖H‖. (5)

We now want to show that:

Whenever H = H[K1 ⊓ . . . ⊓ Km] and 1≤ i ≤ m, we have CL3 ⊢ H[K i]. (6)

Indeed, assuming the conditions of (6), one of the following should be

the case:

(1) The occurrence of K1 ⊓ . . . ⊓ Km in H originates from a (surface)

occurrence of a subformula L1 ⊓ . . . ⊓ Lm in E (so that K1 = L1
♥,

. . ., Km = Lm
♥). Then, obviously, H[K i] is a ♥-quasiinstance of

one of the ordinary Wait-premises Gj (1≤ j ≤ n) of E. But then,

by the primary induction hypothesis, we have CL3 ⊢ H[K i].

(2) The occurrence of K1 ⊓ . . . ⊓ Km in H originates from a (posi-

tive surface) occurrence of some general literal L in E (so that

K1 ⊓ . . . ⊓ Km has a surface occurrence in a TROW-premise of

L♥). Note that then H[K i], just like H, is a ♥-quasiinstance of E.

By the secondary induction hypothesis, the formula H[K i], as a

quasiinstance of E less complex than H itself, is provable in CL3.

(3) The occurrence of K1 ⊓ . . . ⊓ Km in H originates from a (posi-

tive surface) occurrence of some hybrid literal L in E (so that

K1 ⊓ . . . ⊓ Km has a surface occurrence in L♥). Then H[K i] con-

tains a surface occurrence of the subformula ¬K1 ⊔ . . . ⊔ ¬Km,

originating from the occurrence of the matching hybrid literal L′
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in E. Let H ′ be the result of replacing that ¬K1 ⊔ . . . ⊔ ¬Km by

¬K i in H[K i]. Obviously H ′, just like H, is a quasiinstance of E,

but it is less complex than H. Hence, by the secondary induction

hypothesis, CL3 ⊢ H ′. But H[K i] follows from H ′ by ⊔ -Choose.

So, CL3 ⊢ H[K i].

In all cases we thus get CL3 ⊢ H[K i], as desired.

In a very similar way, we can further show that

Whenever H = H[⊓xK(x)], we have CL3 ⊢ H[K(s)]

for some variable s not occurring in H. (7)

Now, from (5), (6) and (7), by Wait, we find the desired CL3 ⊢ H.

Case 3. Suppose P is a k-ary general letter, q is a k-ary nonlogical

elementary letter, τ1, . . . ,τk, θ 1, . . . ,θ k are terms,

E = E[P(τ1, . . . ,τk), ¬P(θ 1, . . . ,θ k)]

and it is obtained from the premise

E[Pq(τ1, . . . ,τk), ¬Pq(θ 1, . . . ,θ k)] (8)

by Match◦. Consider any substitution ♥ for E, and any ♥-quasiinstance

of E. Obviously such a quasiinstance can be written in the form

H[K1(τ1
♥, . . . ,τk

♥), ¬K2(θ 1
♥, . . . ,θ k

♥)], (9)

where H inherits the logical structure of E (but probably adds

some extra complexity to it), K1(τ1
♥, . . . ,τk

♥) is a TROW-premise

of P♥(τ1
♥, . . . ,τk

♥) and ¬K2(θ 1
♥, . . . ,θ k

♥) is a TROW-premise of

¬P♥(θ 1
♥, . . . ,θ k

♥). With a little thought, one can see that there is

a series of ⊔ -Chooses and ⊔-Chooses that we can apply — in the

bottom-up sense — to (9) to “even out” the K1(τ1
♥, . . . ,τk

♥) and

¬K2(θ 1
♥, . . . ,θ k

♥) subformulas and bring (9) to

H[K(τ1
♥, . . . ,τk

♥), ¬K(θ 1
♥, . . . ,θ k

♥)] (10)

for a certain formula K(x1, . . . , xn). Let ♦ be the substitution for E

which sends Pq to K(x1, . . . , xn) and agrees with ♥ on everything else.
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With a little thought, we can see that (10) is a ♦-quasiinstance of (8).

Hence, by the primary induction hypothesis, CL3 ⊢ (10). Now, as we

already know, (9) is obtained from (10) using a series of ⊔ -Chooses

and⊔-Chooses. Hence (9) — which, as we remember, was an arbitrary

quasiinstance of E — is provable in CL3.

The above Cases 1,2,3 complete the inductive step of our primary

induction, and we conclude that, whenever E is a CL4◦-provable for-

mula, every quasiinstance of it is provable in CL3.

To complete our proof of (the soundness part of) Theorem 11.4, as-

sume CL4 ⊢ F . Then, by Claim 1, CL4◦ ⊢ F . Consider any substitution
♥ for F . F♥ is a (quasi)instance of F and hence, by Claim 2, CL3 ⊢ F♥.

Since both F and ♥ are arbitrary, we conclude that every instance of

every CL4-provable formula is provable in CL3.

12. THE BASIC SYSTEM OF PTARITHMETIC INTRODUCED

There can be various interesting systems of arithmetic based on com-

putability logic (“clarithmetics”), depending on what language we

consider, what fragment of CL is taken as a logical basis, and what

extra-logical rules and axioms are employed. Japaridze (2010) intro-

duced three systems of clarithmetic, named CLA1, CLA2 and CLA3,

all based on the fragment CL12 (also introduced in Japaridze 2010)

of computability logic. The basic one of them is CLA1, with the other

two systems being straightforward modifications of it through slightly

extending (CLA2) or limiting (CLA3) the underlying nonlogical lan-

guage. Unlike our present treatment, the underlying semantical con-

cept for the systems of Japaridze (2010) was computability-in-principle

rather than efficient computability.

The new system of clarithmetic introduced in this section, meant to

axiomatize efficient computability of number-theoretic computational

problems, is named PTA. The term “ptarithmetic” is meant to be a

generic name for systems in this style, even though we often use it to

refer to our present particular system PTA of ptarithmetic.

The language of PTA, whose formulas we refer to as PTA-formulas,

is obtained from the language of CL3 by removing all nonlogical pred-
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icate letters (thus only leaving the logical predicate letter =), and also

removing all but four function letters, which are:

• zero, 0-ary. We will write 0 for zero.

• successor, unary. We will write τ ′ for successor(τ).

• sum, binary. We will write τ1
+τ2 for sum(τ1,τ2).

• product, binary. We will write τ1
×τ2 for product(τ1,τ2).

From now on, when we just say “formula”, we mean “PTA-formula”,

unless otherwise specified or suggested by the context.

Formulas that have no free occurrences of variables are said to be

sentences.

The concept of an interpretation explained earlier can now be re-

stricted to interpretations that are only defined on 0, ′, + , × and = ,

as the present language has no other nonlogical function or predicate

letters. Of such interpretations, the standard interpretation † is the

one that interprets 0 as (the 0-ary function whose value is) 0, inter-

prets ′ as the standard successor (x +1) function, interprets + as the

sum function, interprets × as the product function, and interprets = as

the identity relation. Where F is a PTA-formula, the standard inter-

pretation of F is the game F †, which we typically write simply as F

unless doing so may cause ambiguity.

The axioms of PTA are grouped into logical and nonlogical.

The logical axioms of PTA are all elementary PTA-formulas prov-

able in classical first-order logic. That is, all axioms of CL3 that are

PTA-formulas.

As for the nonlogical axioms, they are divided into what we call

“Peano” and “extra-Peano” axioms.

The Peano axioms of PTA are all sentences matching the follow-

ing seven schemes,13 with x , y, y1, . . . , yn being any pairwise distinct

variables other than b:

Axiom 1: ∀x(0 6= x ′)

Axiom 2: ∀x∀y(x ′ = y ′→ x = y)

Axiom 3: ∀x(x +0= x)
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Axiom 4: ∀x∀y
�

x + y ′ =(x + y) ′
�

Axiom 5: ∀x(x ×0=0)

Axiom 6: ∀x∀y
�

x × y ′ =(x × y)+ x
�

Axiom 7: ∀y1 . . .∀yn

�

F(0) ∧ ∀x
�

F(x)→ F(x ′)
�
→ ∀xF(x)
�

, where

F(x) is any elementary formula and y1, . . . , yn are all of the vari-

ables occurring free in it and different from b, x .

Before we present the extra-Peano axioms of PTA, we need to agree

on some notational matters. The language of PTA extends that of

Peano Arithmetic PA (see, for example, Hajek & Pudlak 1993) through

adding to it ⊓ , ⊔ ,⊔,⊓. And the language of PA is known to be very

expressive, despite its nonlogical vocabulary officially being limited to

only 0, ′, + , × . Specifically, it allows us to express, in a certain reason-

able and standard way, all recursive functions and relations, and be-

yond. Relying on the common knowledge of the power of the language

of PA, we will be using standard expressions such as x ≤ y , y > x , etc. in

formulas as abbreviations of the corresponding proper expressions of

the language. Namely, in our metalanguage, |x | will refer to the length

of (the binary numeral for the number represented by) x .14 So, when

we write, say, “|x |≤b”, it is to be understood as an abbreviation of a

standard formula of PA saying that the size of x does not exceed b.

Where τ is a term, we will be using τ0 and τ1 as abbreviations for

the terms 0 ′ ′ ×τ and (0 ′ ′ ×τ) ′, respectively. The choice of this notation

is related to the fact that, given any natural number a, the binary repre-

sentation of 0 ′ ′ ×a (i.e., of 2a) is nothing but the binary representation

of a with a “0” added on its right. Similarly, the binary representation

of (0 ′ ′ ×a) ′ is nothing but the binary representation of a with a “1”

added to it. Of course, here an exception is the case a =0. It can be

made an ordinary case by assuming that adding any number of 0s at

the beginning of a binary numeral b results in a legitimate numeral

representing the same number as b.

The number a0 (i.e. 2a) will be said to be the binary 0-successor

of a, and a1 (i.e. 2a + 1) said to be the binary 1-successor of a; in

turn, we can refer to a as the binary predecessor of a0 and a1. As for

a ′, we can refer to it as the unary successor of a, and refer to a as the

unary predecessor of a ′. Every number has a binary predecessor, and
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every number except 0 has a unary predecessor. Note that the binary

predecessor of a number is the result of deleting the last digit in its

binary representation. Two exceptions are the numbers 0 and 1, both

having 0 as their binary predecessor.

Below and elsewhere, by a b-term we mean a term of the official

language of PTA containing no variables other than b. That is, a term

exclusively built from b, 0, ′, + , × .

Now, the extra-Peano axioms of PTA are all formulas matching

the following six schemes, where s is any variable and x is any variable

other than b, s:

Axiom 8: ⊔x(x =0)

Axiom 9: s =0 ⊔ s 6=0

Axiom 10: |s ′|≤b→⊔x(x =s ′)

Axiom 11: |s0|≤b→⊔x(x =s0)

Axiom 12: ⊔x(s = x0 ⊔ s = x1)

Axiom 13: |s|≤b

The rules of inference are also divided into two groups: logical

and nonlogical.

The logical rules of PTA are the rules ⊔ -Choose, ⊔-Choose, Wait

and Modus Ponens of Section 9.

And there is a single nonlogical rule of inference, that we call

Polynomial Time Induction (PTI), in which τ is any b-term, s is any

non-b variable, and E(s), F(s) are any formulas:

PTI

E(0) ∧ F(0) E(s) ∧ F(s)→ E(s ′) ⊓
�

F(s ′) ∧ E(s)
�

s ≤τ→ E(s) ∧ F(s)

Here the left premise is called the basis of induction, and the right

premise called the inductive step.
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A formula F is considered provable in PTA iff there is a sequence

of formulas, called a PTA-proof of F , where each formula is either a

(logical or nonlogical) axiom, or follows from some previous formulas

by one of the (logical or nonlogical) rules of inference, and where the

last formula is F . We write PTA ⊢ F to say that F is provable (has a

proof) in PTA, and PTA 6⊢ F to say the opposite.

In view of the following fact, an alternative way to present PTA

would be to delete Axioms 1-7 together with all logical axioms and,

instead, declare all theorems of PA to be axioms of PTA along with

Axioms 8-13:

Fact 12.1 Every (elementary PTA-) formula provable in PA is also prov-

able in PTA.

Proof. Suppose (the classical-logic-based) PA proves F . By the de-

duction theorem for classical logic this means that, for some nonlogical

axioms H1, . . . , Hn of PA, the formula H1 ∧ . . . ∧ Hn→ F is provable in

classical first order logic. Hence H1 ∧ . . . ∧ Hn→ F is a logical axiom

of PTA and is thus provable in PTA. But the nonlogical axioms of PA

are nothing but the Peano axioms of PTA. So, PTA proves each of the

formulas H1, . . . , Hn. Now, in view of the presence of the rule of Modus

Ponens in PTA, we find that PTA ⊢ F .

The above fact, on which we will be implicitly relying in the sequel,

allows us to construct “lazy” PTA-proofs where some steps can be jus-

tified by simply indicating their provability in PA. That is, we will treat

theorems of PA as if they were axioms of PTA. As PA is well known

and studied, we safely assume that the reader has a good feel of what

it can prove, so we do not usually further justify PA-provability claims

that we make. A reader less familiar with PA, can take it as a rule of

thumb that, despite Gödel’s incompleteness theorems, PA proves every

true number-theoretic fact that a contemporary high school student

can establish, or that mankind was or could be aware of before 1931.

Definition 12.2

1. By an arithmetical problem in this paper we mean a game A

such that, for some formula F of the language of PTA, A= F † (remem-

ber that † is the standard interpretation). Such a formula F is said to

be a representation of A.
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2. We say that an arithmetical problem A is provable in PTA iff it

has a PTA-provable representation.

In these terms, the central result of the present paper sounds as

follows:

Theorem 12.3 An arithmetical problem has a polynomial time solution

iff it is provable in PTA.

Furthermore, there is an effective procedure that takes an arbitrary

PTA-proof of an arbitrary formula X and constructs a polynomial time

solution for X (for X †, that is).

Proof. The soundness (“if”) part of this theorem will be proven in

Section 15, and the completeness (“only if”) part in Section 21.

13. ON THE EXTRA-PEANO AXIOMS OF PTA

While the well known Peano axioms hardly require any explanations

as their traditional meanings are fully preserved in our treatment, the

extra-Peano axioms of PTA may be worth briefly commenting on. Be-

low we do so with the soundness of PTA (the “if” part of Theorem 12.3)

in mind, according to which every PTA-provable formula expresses an

efficiently (i.e. polynomial time) computable number-theoretic prob-

lem.

13.1. Axiom 8

⊔x(x =0)

This axiom expresses our ability to efficiently name the number (con-

stant) 0. Nothing — even such a “trivial” thing — can be taken for

granted when it comes to formal systems!

13.2. Axiom 9

s =0 ⊔ s 6=0
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This axiom expresses our ability to efficiently tell whether any given

number is 0 or not. Yet another “trivial” thing that still has to be ex-

plicitly stated in the formal system.

13.3. Axiom 10

|s ′|≤b→⊔x(x =s ′)

This axiom establishes the efficient computability of the unary succes-

sor function (as long as the size of the value of the function does not ex-

ceed the bound b). Note that its classical counterpart |s ′|≤b→ ∃x(x =s ′)

is simply a valid formula of classical first-order logic (because so is its

consequent) and, as such, carries no information. Axiom 10, on the

other hand, is not at all a logically valid formula, and does carry cer-

tain nontrivial information about the standard meaning of the succes-

sor function. A nonstandard meaning (interpretation) of s ′ could be

an intractable or even incomputable function.

13.4. Axiom 11

|s0|≤b→⊔x(x =s0)

Likewise, Axiom 11 establishes the efficient computability of the binary

0-successor function. There is no need to state a similar axiom for the

binary 1-successor function, as can be seen from the following lemma:

Lemma 13.1 PTA ⊢ |s1|≤b→⊔x(x =s1).

Proof. Informally, a proof of |s1|≤b→⊔x(x =s1) would be based

on the fact (known from PA) that the binary 1-successor of s is nothing

but the unary successor of the binary 0-successor of s; the binary 0-

successor r of s can be found using Axiom 11; and the unary successor

u of that r can be further found using Axiom 10.

Here is a (“lazy” in the earlier-mentioned sense) PTA-proof formal-

izing the above argument:

1. ⊤ ∧
�
|s0|≤b→⊥
�
→
�
|s1|≤b→⊥
�

PA

2. ⊤ Logical axiom
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3. |s ′|≤b→⊔x(x =s ′) Axiom 10

4. ⊓y
�
|y ′|≤b→⊔x(x = y ′)

�
Wait: 2,3

5. |s0|≤b→⊔x(x =s0) Axiom 11

6.
�
|t ′|≤b→⊥
�
∧
�
|s0|≤b→ (t =s0)

�
→
�
|s1|≤b→⊥
�

PA

7.
�
|t ′|≤b→ r = t ′
�
∧
�
|s0|≤b→ (t =s0)

�
→
�
|s1|≤b→ r =s1
�

PA

8.

�
|t ′|≤b→ r = t ′
�
∧

�
|s0|≤b→ (t =s0)

�
→
�
|s1|≤b→⊔x(x =s1)

� ⊔-Choose: 7

9.

�
|t ′|≤b→⊔x(x = t ′)

�
∧

�
|s0|≤b→ (t =s0)

�
→
�
|s1|≤b→⊔x(x =s1)

� Wait: 6,8

10.
⊓y
�
|y ′|≤b→⊔x(x = y ′)

�
∧
�
|s0|≤b→

(t =s0)
�
→
�
|s1|≤b→⊔x(x =s1)

� ⊔-Choose: 9

11.
⊓y
�
|y ′|≤b→⊔x(x = y ′)

�
∧

�
|s0|≤b→⊔x(x =s0)

�
→
�
|s1|≤b→⊔x(x =s1)

� Wait: 1,10

12. |s1|≤b→⊔x(x =s1) MP: 4,5,11

This was our first experience with generating a formal PTA-proof.

We will do a good deal more exercising with PTA-proofs later in order

to make it apparent that behind every informal argument in the style of

the one given at the beginning of the proof of Lemma 13.1 is a “real”,

formal proof.

13.5. Axiom 12

⊔x(s = x0 ⊔ s = x1) (11)

Let us compare the above with three other, “similar” formulas:

∃x(s = x0 ⊔ s = x1) (12)

⊔x(s = x0 ∨ s = x1) (13)

∃x(s = x0 ∨ s = x1) (14)

All four formulas “say the same” about the arbitrary number repre-

sented by s, but in different ways. (14) is the weakest, least informa-

tive, of the four. It says that s has a binary predecessor x , and that
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s is even (i.e., is the binary 0-successor of its binary predecessor) or

odd (i.e., is the binary 1-successor of its binary predecessor). This is

an almost trivial piece of information. (13) and (12) carry stronger

information. According to (13), s not only has a binary predecessor

x , but such a predecessor can be actually and efficiently found. (12)

strengthens (14) in another way. It says that s can be efficiently de-

termined to be even or odd. As for (11), which is Axiom 12 proper,

it is the strongest. It carries two pieces of good news at once: we can

efficiently find the binary predecessor x of s and, simultaneously, tell

whether s is even or odd.

13.6. Axiom 13

|s|≤b

Remember that our semantics considers only bounded valuations, mean-

ing that the size of the number represented by a (free) variable s will

never exceed the bound represented by the variable b. Axiom 13 sim-

ply states this fact. Note that this is the only elementary formula among

the extra-Peano axioms.

In view of the above-said, whenever we say “an arbitrary s” in an

informal argument, unless otherwise suggested by the context, it is

always to be understood as an arbitrary s whose size does not exceed

the bound b.

Due to Axiom 13, PTA proves that the bound is nonzero:

Lemma 13.2 PTA ⊢ b 6=0.

Proof. No binary numeral is of length 0 and, of course, PA knows this.

Hence PA ⊢ |s|≤b→ b 6=0. From here and Axiom 13, by Modus Ponens,

PTA ⊢ b 6=0.

The formula of the following lemma is similar to Axiom 8, only it is

about 0 ′ instead of 0.

Lemma 13.3 PTA ⊢⊔x(x =0 ′).

Proof.
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1. b 6=0 Lemma 13.2

2. ⊔x(x =0) Axiom 8

3. ⊤ Logical axiom

4. |s ′|≤b→⊔x(x =s ′) Axiom 10

5. ⊓y
�
|y ′|≤b→⊔x(x = y ′)

�
Wait: 3,4

6. b 6=0 ∧⊥ ∧⊤→⊥ Logical axiom

7. b 6=0 ∧ w =0 ∧ (|w ′|≤b→⊥)→⊥ PA

8. b 6=0 ∧ w =0 ∧ (|w ′|≤b→ v =w ′)→ v =0 ′ PA

9. b 6=0 ∧ w =0 ∧ (|w ′|≤b→ v =w ′)→⊔x(x =0 ′) ⊔-Choose: 8

10. b 6=0 ∧ w =0 ∧
�
|w ′|≤b→⊔x(x =w ′)

�
→⊔x(x =0 ′) Wait: 7,9

11.
b 6=0 ∧ w =0 ∧⊓y

�
|y ′|≤b→

⊔x(x = y ′)
�
→⊔x(x =0 ′)

⊔-Choose: 10

12.
b 6=0 ∧⊔x(x =0) ∧⊓y

�
|y ′|≤b→⊔x(x = y ′)

�

→⊔x(x =0 ′)
Wait: 6,11

13. ⊔x(x =0 ′) MP: 1,2,5,12

14. ON THE POLYNOMIAL TIME INDUCTION RULE

E(0) ∧ F(0) E(s) ∧ F(s)→ E(s ′) ⊓
�

F(s ′) ∧ E(s)
�

s ≤τ→ E(s) ∧ F(s)

Induction is the cornerstone of every system of arithmetic. The

many versions of formal arithmetic studied in the literature (see Hajek

& Pudlak 1993) mainly differ in varying — typically weakening — the

unrestricted induction of the basic PA, which is nothing but our Axiom

7. In PTA, induction comes in two forms: Axiom 7, and the above-

displayed PTI rule. Axiom 7, along with the other axioms of PA, is

taken to preserve the full power of PA. But it is limited to elementary

formulas and offers no inductive mechanism applicable to computa-

tional problems in general. The role of PTI is to provide such a missing

mechanism.
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A naive attempt to widen the induction of PA would be to remove,

from Axiom 7, the condition requiring that F(x) be an elementary

formula. This would be a terribly wrong idea though. The resulting

scheme would not even be a scheme of computable problems, let alone

efficiently computable problems. Weakening the resulting scheme by

additionally replacing the blind quantifiers with choice quantifiers, re-

sulting in (a scheme equivalent to)

F(0) ∧⊓x
�

F(x)→ F(x ′)
�
→⊓xF(x), (15)

would not fix the problem, either. The intuitive reason why (15) is

unsound with respect to the semantics of computability logic, even if

the underlying concept of interest is computability-in-principle with-

out any regard for efficiency, is the following. In order to solve F(s)

for an arbitrary s (i.e., solve the problem ⊓xF(x)), one would need

to “modus-ponens” F(x)→ F(x ′) with F(0) to compute F(1), then fur-

ther “modus-ponens” F(x)→ F(x ′)with F(1) to compute F(2), etc. up

to F(s). This would thus require s “copies” of the resource F(x)→ F(x ′).

But the trouble is that only one copy of this resource is available in the

antecedent of (15)!

The problem that we just pointed out can be neutralized by taking

the following rule instead of the formula (scheme) (15):

F(0) ⊓x
�

F(x)→ F(x ′)
�

⊓xF(x)
.

Taking into account that both semantically and syntactically ⊓xY (x)

(in isolation) is equivalent to just Y (s), we prefer to rewrite the above

in the following form:

F(0) F(s)→ F(s′)

F(s)
. (16)

Unlike the situation with (15), the resource F(s)→ F(s′) comes in an

unlimited supply in (16). As a rule, (16) assumes that the premise

F(s)→ F(s′) has already been proven. If proven, we know how to solve

it. And if we know how to solve it, we can solve it as many times

as needed. In contrast, in the case of (15) we do not really know

how to solve the corresponding problem of the antecedent, but rather
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we rely on the environment to demonstrate such a solution; and the

environment is obligated to do so only once.

(16) can indeed be shown to be a computability-preserving rule. As

we remember, however, we are concerned with efficient computability

rather than computability-in-principle. And, in this respect, (16) is not

sound. Roughly, the reason is the following: the way of computing F(s)

offered by (16) would require performing at least as many MP-style

steps as the numeric value of s (rather than the dramatically smaller

size of s). This would yield a computational complexity exponential

in the size of s. (16) can be made sound by limiting s to “sufficiently

small” numbers as done below, where τ is an arbitrary b-term:

F(0) F(s)→ F(s′)

s ≤τ→ F(s)
. (17)

Here the value of τ, being a (b, 0, ′, + , ×)-combination, is guaranteed

to be polynomial in (the value of) b. Hence, we are no longer getting

an exponential complexity of computation. This, by the way, explains

the presence of “s ≤τ” in the conclusion of PTI. Unlike (15) and (16),

(17) is indeed sound with respect to our present semantics of efficient

computability.

A problem with (17), however, is that it is not strong enough —

namely, not as strong as PTI, and with (17) instead of PTI, we cannot

achieve the earlier promised extensional completeness of PTA. What

makes PTI stronger than (17) is that its right premise is weaker. Specif-

ically, while the right premise of (17) requires the ability to compute

F(s ′) only using F(s) as a computational resource, the right premise of

PTI allows using the additional resource E(s) in such a computation.

Note that, in a classical context, identifying the two sorts of con-

junction, there would be no difference between (17) and PTI. First of

all, the (sub)conjunct E(s) in the consequent of the right premise of

PTI would be meaningless and hence could be deleted, as it is already

present in the antecedent. Second, the conjunction of E(s) and F(s)

could be thought of as one single formula of induction, and thus PTI

would become simply (17).

Our context is not classical though, and the difference between

PTI and (17) is huge. First of all, we cannot think of “the con-

junction” of E(s) and F(s) as a single formula of induction, for that
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“conjunction” is ⊓ in the consequent of the right premise while ∧

elsewhere. For simplicity, consider the case E(s) = F(s). Also, let

us ignore the technicality imposed by the presence of “E(s)” in the

consequent of the right premise of PTI. Then that premise would

look like F(s) ∧ F(s)→ F(s ′) ⊓ F(s ′) which, taking into account that

X ⊓ X is equivalent to X , would be essentially the same as simply

F(s) ∧ F(s)→ F(s ′). This is a much weaker premise than the premise

F(s)→ F(s ′) of (17). It signifies that computing a single copy of F(s ′)

requires computing two copies of F(s). By back-propagating this effect,

it would eventually mean that computing F(s) requires computing an

exponential number of copies of F(0), even when s is “small enough”

such as s ≤τ.

The above sort of an explosion is avoided in PTI due to the presence

of E(s) in the consequent of the right premise — the “technical detail”

that we have ignored so far. The reemergence of E(s) in the consequent

of that premise makes this resource “recyclable”. Even though comput-

ing F(s ′) still requires computing both E(s) and F(s), a new copy of

E(s) comes “for free” as a side-product of this computation, and hence

can be directly passed to another, parallel computation of F(s ′). Such

and all other parallel computations would thus require a new copy of

F(s) but not a new copy of E(s), as they get the required resource E(s)

from the neighboring computation. So, a group of n parallel compu-

tations of F(s ′) would require n copies of F(s) and only one copy of

E(s). This essentially cuts the demand on resources at each step (for

each s) by half, and the eventual number of copies of E(0) ∧ F(0) to be

computed will be of the order of s rather than 2s. How this effect is

exactly achieved will be clear after reading the following section.

15. THE SOUNDNESS OF PTA

This section is devoted to proving the soundness part of Theorem 12.3.

It means showing that any PTA-provable formula X (identified with its

standard interpretation X †) has a polynomial time solution, and that,

furthermore, such a solution for X can be effectively extracted from

any PTA-proof of X .

We prove the above by induction on the lengths of PTA-proofs.

Consider any PTA-provable formula X .
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For the basis of induction, assume X is an axiom of PTA. Let us say

that an elementary PTA-formula G is true iff, for any bounded valua-

tion e, e[G] is true in the standard arithmetical sense, i.e., WnG†

e〈〉 =

⊤.

If X is a logical axiom or a Peano axiom, then it is a true elemen-

tary formula and therefore is “computed” by a machine that makes no

moves at all. The same holds for the case when X is Axiom 13, remem-

bering that, for any bounded valuation e, the size of e(s) (whatever

variable s) never exceeds e(b).

If X is ⊔x(x =0) (Axiom 8), then it is computed by a machine that

makes the move 0 and never makes any moves after that.

If X is s =0 ⊔ s 6=0 (Axiom 9), then it is computed by a machine that

reads the value e(s) of s from the valuation tape and, depending on

whether that value is 0 or not, makes the move 0 or 1, respectively.

If X is |s ′|≤b→⊔x(x =s ′) (Axiom 10), it is computed by a machine

that reads the value e(s) of s from the valuation tape, then finds (the

binary numeral) c with c = e(s)+1, compares its size with e(b) (the latter

also read from the valuation tape) and, if |c|≤ e(b), makes 1.c as its only

move in the game.

Similarly, if X is |s0|≤b→⊔x(x =s0) (Axiom 11), it is computed by

a machine that reads the value e(s) of s from the valuation tape, then

finds (the binary numeral) c with c = e(s)0, compares its size with e(b)

and, if |c|≤ e(b), makes 1.c as its only move in the game.

Finally, if X is ⊔x(s = x0 ⊔ s = x1) (Axiom 12), it is computed by a

machine that reads the value e(s) of s from the valuation tape, then

finds the binary predecessor c of e(s), and makes the two moves c

and 0 or c and 1, depending whether the last digit of e(s) is 0 or 1,

respectively.

Needless to point out that, in all of the above cases, the machines

that solve the axioms run in polynomial time. And, of course, such

machines can be constructed effectively.

For the inductive step, suppose X is obtained from premises

X 1, . . . , X k by one of the four logical rules. By the induction hypothesis,

we know how to (effectively) construct a polynomial time solution for

each X i. Then, by the results of Section 9 on the uniform-constructive

soundness of the four logical rules, we also know how to construct a

polynomial time solution for X .
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Finally, suppose X is s ≤τ→ E(s) ∧ F(s), where τ is a b-term, and X

is obtained by PTI as follows:

E(0) ∧ F(0) E(s) ∧ F(s)→ E(s ′) ⊓
�

F(s ′) ∧ E(s)
�

s ≤τ→ E(s) ∧ F(s)
.

By the induction hypothesis, the following two problems have poly-

nomial time solutions — and, furthermore, we know how to construct

such solutions:

E(0) ∧ F(0); (18)

E(s) ∧ F(s)→ E(s ′) ⊓
�

F(s ′) ∧ E(s)
�
. (19)

Then the same holds for the following four problems:

E(0); (20)

F(0); (21)

E(s) ∧ F(s)→ E(s ′); (22)

E(s) ∧ F(s)→ E(s) ∧ F(s ′). (23)

For (20) and (21), this is so because CL4 ⊢ P1 ∧ P2→ P i (i = 1,2),

whence CL3 proves both E(0) ∧ F(0) → E(0) and E(0) ∧ F(0)→ F(0),

whence — by the uniform-constructive soundness of CL3 — we know

how to construct polynomial time solutions for these two problems,

whence — by the polynomial time solvability of (18) and the closure

of this property (in the strong sense of Theorem 9.5) under Modus

Ponens — we also know how to construct polynomial time solutions

for E(0) and F(0). With (19) instead of (18), the arguments for (22)

and (23) are similar, the first one relying on the fact that CL4 proves

(P1→ P2 ⊓Q)→ (P1→ P2), and the second one relying on the fact that

CL4 proves
�

P1→ P2 ⊓ (Q1 ∧Q2)
�
→ (P1→Q2 ∧Q1).

Throughout the rest of this proof, assume some arbitrary bounded

valuation e to be fixed. Correspondingly, when we write b or τ, they

are to be understood as e(b) or e(τ). As always, saying “polynomial”

means “polynomial in b”.

For a formula G and a positive integer n, we will be using the ab-

breviation

∧
| nG
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for the ∧ -conjunction G ∧ . . . ∧ G of n copies of G. If here n = 1, ∧
| nG

simply means G.

Claim 1.For any integer k ∈ {1, . . . ,τ}, the following problem has a

polynomial time solution which, in turn, can be constructed in polynomial

time:

E(s) ∧ ∧
| k+1F(s)→ E(s ′) ∧ ∧

| kF(s ′). (24)

Proof. In this proof and later, we use the term “synchronizing” to

mean applying copycat between two (sub)games of the form A and ¬A.

This means copying one player’s moves made in A as the other player’s

moves in ¬A, and vice versa. The effect achieved this way is that the

games to which A and ¬A eventually evolve (the final positions hit by

them, that is) will be of the form A′ and ¬A′, that is, one will remain

the negation of the other, so that one will be won by a given player iff

the other is lost by the same player. We already saw an application of

this idea/technique in the proof of Theorem 9.5. Partly for this reason

and partly because now we are dealing with a more complicated case,

our present proof will be given in less detail than the proof of Theorem

9.5 was.

Here is a solution/strategy for (24). While playing the real play

of (24) on valuation e, also play, in parallel, one imaginary copy of

(22) and k imaginary copies of (23) on the same valuation e, using the

strategies for (22) and (23) whose existence we already know. In this

mixture of the real and imaginary plays, do the following:

• Synchronize the F(s) of the antecedent of each ith copy of (23)

with the ith conjunct of the ∧
| k+1F(s) part of the antecedent of

(24).

• Synchronize the E(s) of the antecedent of the first copy of (23)

with the E(s) of the antecedent of (24).

• Synchronize the E(s) of the antecedent of each copy #(i +1) of

(23) with the E(s) of the consequent of copy #i of (23).

• Synchronize the E(s) of the antecedent of (the single copy of)

(22) with the E(s) of the consequent of copy #k of (23).

• Synchronize the F(s) of the antecedent of (22) with the last con-

junct of the ∧
| k+1F(s) part of the antecedent of (24).

www.thebalticyearbook.org

Ptarithmetic 72

• Synchronize the E(s ′) of the consequent of (22) with the E(s ′)

of the consequent of (24).

• Synchronize the F(s ′) of the consequent of each copy #i of (23)

with the ith conjunct of the ∧
| kF(s ′) part of the consequent of

(24).

Below is an illustration of such synchronization arrangements —

indicated by arcs — for the case k = 3:

(24): E(s) ∧ F(s) ∧ F(s) ∧ F(s) ∧ F(s)→ E(s ′) ∧ F(s ′) ∧ F(s ′) ∧ F(s ′)

(23)1: E(s) ∧ F(s)→ E(s) ∧ F(s ′)

(23)2: E(s) ∧ F(s)→ E(s) ∧ F(s ′)

(23)3: E(s) ∧ F(s)→ E(s) ∧ F(s ′)

(22): E(s) ∧ F(s)→ E(s ′)

✜
✜

✜✜

�
�

�
�

�
�

�
�

�
�

�
�

�
��

✭✭✭✭✭✭

✭✭✭✭✭✭

✭✭✭✭✭✭

Of course, the strategy that we have just described can be con-

structed effectively and, in fact, in polynomial time, from the strategies

for (22) and (23). Furthermore, since the latter run in polynomial

time, obviously so does our present one. It is left to the reader to verify

that our strategy indeed wins (24).

Now, the sought polynomial time solution for

s ≤τ→ E(s) ∧ F(s) (25)

on valuation e will go like this. Read the value d = e(s) of s from

the valuation tape. Also read the value of b and, using it, compute the

value c of τ. Since τ is a (0, ′, + ,×)-combination of b, computing c only

takes a polynomial amount of steps. If d > c, do nothing — you are the

winner (again, comparing d with c, of course, takes only a polynomial

amount of steps). Otherwise, using the strategy from Claim 1, for each

a ∈ {0, . . . , d − 1}, play (a single copy of) the imaginary game Ga on

Vol. 8: Games, Game Theory

and Game Semantics

http://www.thebalticyearbook.org/


73 Giorgi Japaridze

valuation e, defined by

Ga = E(a) ∧ ∧
| d−a+1F(a)→ E(a ′) ∧ ∧

| d−aF(a ′).

Namely, the effect of playing Ga on valuation e is achieved by playing

E(s) ∧ ∧
| d−a+1F(s)→ E(s ′) ∧ ∧

| d−aF(s ′) on the valuation e′ which sends

s to a and agrees with e on all other variables. In addition, using the

strategy for (20), play a single imaginary copy of E(0) on e, and, using

the strategy for (21), play d +1 imaginary copies of F(0) on e. In this

mixture of imaginary plays and the real play of (25), do the following:

• Synchronize the above E(0) and F(0)s with the corresponding

conjuncts of the antecedent of G0.

• Synchronize the antecedent of each Gi+1 with the consequent of

Gi.

• Synchronize the consequent of Gd−1 with the consequent of (25).

Below is an illustration of these synchronization arrangements for the

case d = 11 (decimal 3):

11≤τ → E(11) ∧ F(11)
︸ ︷︷ ︸

E(10) ∧ F(10) ∧ F(10)
︸ ︷︷ ︸

→

︷ ︸︸ ︷

E(11) ∧ F(11)

E(1) ∧ F(1) ∧ F(1) ∧ F(1)
︸ ︷︷ ︸

→

︷ ︸︸ ︷

E(10) ∧ F(10) ∧ F(10)

E(0) ∧ F(0) ∧ F(0) ∧ F(0) ∧ F(0) →
︷ ︸︸ ︷

E(1) ∧ F(1) ∧ F(1) ∧ F(1)

E(0) F(0) F(0) F(0) F(0)

(25):

G10:

G1:

G0:

❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤

❤❤❤❤❤❤❤❤❤❤❤❤❤❤

❵❵❵❵❵❵❵❵
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Again, with some thought, one can see that our strategy — which,

of course, can be constructed effectively — runs in polynomial time,

and it indeed wins (25), as desired.

16. SOME ADMISSIBLE LOGICAL RULES OF PTA

When we say that a given rule is admissible in PTA, we mean that,

whenever all premises of any given instance of the rule are provable in

PTA, so is the conclusion.

This section is devoted to observing the admissibility of a number of

rules. From our admissibility proofs it can be seen that these rules are

admissible not only in PTA but also in any CL3-based applied theory

in general. This is the reason why these rules can be called “logical”.

Such rules can and will be used as shortcuts in PTA-proofs. Many of

such rules can be further strengthened, but in this paper — for the sake

of simplicity and at the expense of (here) unnecessary generality — we

present them only in forms that (and as much as they) will be actually

used in our further treatment.

In the formulations of some of the rules we use the expression

E∨[F].

It means the same as the earlier-used E[F], i.e., a formula E with a

fixed positive surface occurrence of a subformula F ; only, in E∨[F],

the additional (to being a positive surface occurrence) condition on

the occurrence of F is that this occurrence is not in the scope of any

operator other than ∨ .

16.1. CL4-Instantiation

F
,

where F is any PTA-formula which is an instance of some CL4-provable

formula E.

Unlike all other rules given in the present section, this one, as we

see, takes no premises. It is a “rule” that simply allows us to jump to a

formula F as long as it is an instance of a CL4-provable formula.
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Fact 16.1 CL4-Instantiation is admissible in PTA.

Proof. Assume a PTA-formula F is an instance of some CL4-

provable formula. Then, by Theorem 11.4, CL3 ⊢ F . CL3 is an an-

alytic system, in the sense that it never introduces into premises any

function or predicate letters that are not present in the conclusion. So,

all formulas involved in the CL3-proof of F will be PTA-formulas. This

includes the axioms used in the proof. But such axioms are also axioms

of PTA. And PTA has all inference rules that CL3 does. Hence, the

above CL3-proof of F will be a PTA-proof of F as well.

16.2. Transitivity (TR)

E1→ F F → E2

E1→ E2

Fact 16.2 Transitivity is admissible in PTA.

Proof. Assume

PTA ⊢ E1→ F and PTA ⊢ F → E2. (26)

CL4 proves (P1→Q) ∧ (Q→ P2)→ (P1→ P2) (it is derived from the

classical tautology (p1→ q) ∧ (q→ p2)→ (p1→ p2) by Match applied

three times). Hence, by CL4-Instantiation,

PTA ⊢ (E1→ F) ∧ (F → E2)→ (E1→ E2). (27)

Now, from (26) and (27), by Modus Ponens, we get the desired PTA ⊢

E1→ E2.

16.3. ⊓-Elimination

⊓xF(x)

F(s)
,
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where x is any variable, F(x) is any formula, s is any variable not

bound in the premise, and F(s) is the result of replacing all free occur-

rences of x by s in F(x).

Fact 16.3 ⊓-Elimination is admissible in PTA.

Proof. Assume PTA ⊢ ⊓xF(x). p(s)→ p(s) is classically valid and

hence, by Match, CL4 ⊢ P(s)→ P(s). From here, by ⊔-Choose, CL4 ⊢

⊓xP(x)→ P(s). Then, by CL4-Instantiation, PTA ⊢ ⊓xF(x)→ F(s).

Now, by Modus Ponens, PTA ⊢ F(s).

16.4. ⊔ -Elimination

F1 ⊔ . . . ⊔ Fn F1→ E . . . Fn→ E

E

Fact 16.4 ⊔ -Elimination is admissible in PTA.

Proof. Assume PTA proves all premises. For each i ∈ {1, . . . , n},

the formula

pi ∧ (⊥→⊤) ∧ . . . ∧ (⊥→⊤) ∧ (pi→ q) ∧ (⊥→⊤) ∧ . . . ∧ (⊥→⊤)→ q

is a classical tautology and hence an axiom of CL4. By Wait from the

above, we have

CL4 ⊢ pi ∧ (P1→Q) ∧ . . . ∧ (P i−1→Q) ∧ (pi→ q) ∧ (P i+1→Q)

∧ . . . ∧ (Pn→Q)→ q.

Now, by Match applied twice, we get

CL4 ⊢ P i ∧ (P1→Q) ∧ . . . ∧ (Pn→Q)→Q.

We also have

CL4 ⊢ ⊥ ∧ (⊥→⊤) ∧ . . . ∧ (⊥→⊤)→⊥

because the above formula is a classical tautology. From the last two

facts, by Wait, we find

CL4 ⊢ (P1 ⊔ . . . ⊔ Pn) ∧ (P1→Q) ∧ . . . ∧ (Pn→Q)→Q
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and hence, by CL4-Instantiation,

PTA ⊢ (F1 ⊔ . . . ⊔ Fn) ∧ (F1→ E) ∧ . . . ∧ (Fn→ E)→ E.

As all of the conjuncts of the antecedent of the above formula are PTA-

provable by our original assumption, Modus Ponens yields PTA ⊢ E.

As an aside, one could show that the present rule with ∨ instead

of ⊔ , while admissible in classical logic, is not admissible in PTA or

CL3-based applied theories in general.

16.5. Weakening

E∨[G1 ∨ . . . ∨ Gm ∨ H1 ∨ . . . ∨ Hn]

E∨[G1 ∨ . . . ∨ Gm ∨ F ∨ H1 ∨ . . . ∨ Hn]
,

where m, n≥ 0 and m+ n 6= 0.

Fact 16.5 Weakening is admissible in PTA.

Proof. Assume PTA proves the premise. It is not hard to see that

Premise→ Conclusion can be obtained by CL4-Instantiation, so it is also

provable in PTA. Hence, by Modus Ponens, PTA proves the conclusion.

16.6. ⊓ -Introduction

E∨[F1] . . . E∨[Fn]

E∨[F1 ⊓ . . . ⊓ Fn]

Fact 16.6 ⊓ -Introduction is admissible in PTA.

Proof. Assume PTA proves each of the n premises. Let G be the ∨ -

disjunction of all subformulas of E∨[F1 ⊓ . . . ⊓ Fn], other than the indi-

cated occurrence of F1 ⊓ . . . ⊓ Fn, that do not occur in the scope of any

operators other than ∨ and whose main operator (if nonatomic) is not
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∨ . We want to first verify the rather expected fact that PTA ⊢ F i ∨ G for

each i (expected, because, modulo the associativity of ∨ , the formu-

las E∨[F i] and F i ∨ G are the same). Indeed, E∨[F i]→ F i ∨ G can be

easily seen to be obtainable by CL4-Instantiation. Then, F i ∨ G follows

by Modus Ponens. In a similar manner one can show that whenever

PTA ⊢ (F1 ⊓ . . . ⊓ Fn) ∨ G, we also have PTA ⊢ E∨[F1 ⊓ . . . ⊓ Fn]. So,

in order to complete our proof of Fact 16.6, it would suffice to show

that

PTA ⊢ (F1 ⊓ . . . ⊓ Fn) ∨ G. (28)

From PTA ⊢ F1 ∨ G, . . . , PTA ⊢ F1 ∨ G and the obvious fact that

PTA ⊢ ⊤, by Wait, we get

PTA ⊢ (F1 ∨ G) ⊓ . . . ⊓ (Fn ∨ G). (29)

Next, p ∨ q→ p ∨ q is an axiom of CL4. From it, by Match applied

twice, we get CL4 ⊢ P i ∨Q→ P i ∨Q (any i ∈ {1, . . . , n}). Now, by ⊔ -

Choose, we get

CL4 ⊢ (P1 ∨Q) ⊓ . . . ⊓ (Pn ∨Q)→ P i ∨Q.

From here and from (the obvious) CL4 ⊢ ⊤→⊤ ∨⊥, by Wait, we get

CL4 ⊢ (P1 ∨Q) ⊓ . . . ⊓ (Pn ∨Q)→ (P1 ⊓ . . . ⊓ Pn) ∨Q.

The above, by CL4-Instantiation, yields

PTA ⊢ (F1 ∨ G) ⊓ . . . ⊓ (Fn ∨ G)→ (F1 ⊓ . . . ⊓ Fn) ∨ G. (30)

Now, the desired (28) follows from (29) and (30) by Modus Ponens.

It is worth pointing out that the present rule with ∧ instead of

⊓ , while admissible in classical logic, is not admissible in PTA or CL3-

based applied theories in general.

16.7. ⊓-Introduction

E∨[F(s)]

E∨[⊓xF(x)]
,
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where x is any (non-b) variable, F(x) is any formula, s is any non-

b variable not occurring in the conclusion, and F(s) is the result of

replacing all free occurrences of x by s in F(x).

Fact 16.7 ⊓-Introduction is admissible in PTA.

Proof. Assume PTA ⊢ E∨[F(s)]. Let G be the ∨ -disjunction of all

subformulas of E∨[⊓xF(x)], other than the indicated occurrence of

⊓xF(x), that do not occur in the scope of any operators other than ∨

and whose main operator (if nonatomic) is not ∨ . As in the previous

subsection, we can easily find that PTA ⊢ F(s) ∨ G, and that whenever

PTA ⊢ ⊓xF(x) ∨ G, we also have PTA ⊢ E∨[⊓xF(x)]. So, in order to

complete our proof of Fact 16.7, it would suffice to show that

PTA ⊢⊓xF(x) ∨ G. (31)

From PTA ⊢ F(s) ∨ G and the obvious fact that PTA ⊢ ⊤, by Wait,

we get

PTA ⊢⊓y
�

F(y) ∨ G
�
, (32)

where y is a “fresh” variable — a variable not occurring in F(s) ∨ G.

Next, p(t) ∨ q→ p(t) ∨ q is an axiom of CL4. From it, by Match

applied twice, we find that CL4 proves P(t) ∨Q→ P(t) ∨Q. Now,

by ⊔-Choose, we get CL4 ⊢ ⊓y
�

P(y) ∨Q
�
→ P(t) ∨Q. From here

and from (the obvious) CL4 ⊢ ⊤→⊤ ∨⊥, by Wait, we get CL4 ⊢

⊓y
�

P(y) ∨Q
�
→⊓xP(x) ∨Q. This, by CL4-Instantiation, yields

PTA ⊢⊓y
�

F(y) ∨ G
�
→⊓xF(x) ∨ G. (33)

Now, the desired (31) follows from (32) and (33) by Modus Ponens.

We must again point out that the present rule with ∀ instead of

⊓, while admissible in classical logic, is not admissible in PTA or CL3-

based applied theories in general.

17. FORMAL VERSUS INFORMAL ARGUMENTS IN PTA

We have already seen a couple of nontrivial formal PTA-proofs, and will

see more later. However, continuing forever in this style will be hardly
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possible. Little by little, we will need to start trusting and relying on

informal arguments in the style of the argument found at the beginning

of the proof of Lemma 13.1, or the arguments that we employed when

discussing the PTI rule in Section 14. Just as in PA, formal proofs in

PTA tend to be long, and generating them in every case can be an ar-

duous job. The practice of dealing with informal proofs or descriptions

instead of detailed formal ones is familiar not only from the metatheory

of PA or similar systems. The same practice is adopted, say, when deal-

ing with Turing machines, where full transition diagrams are typically

replaced by high-level informal descriptions, relying on the reader’s

understanding that, if necessary, every such description can be turned

into a real Turing machine.

In the nearest few sections we will continue generating formal

proofs, often accompanied with underlying informal arguments to get

used to such arguments and see that they are always translatable into

formal ones. As we advance, however, our reliance on informal argu-

ments and the degree of our “laziness” will gradually increase, and in

later sections we may stop producing formal proofs altogether.

The informal language and methods of reasoning induced by com-

putability logic and clarithmetic or ptarithmetic in particular, are in the

painful initial process of forming and, at this point, can be character-

ized as “experimental”. They cannot be concisely or fully explained, but

rather they should be learned through experience and practice, not un-

like the way one learns a foreign language. A reader who initially does

not find some of our informal PTA-arguments very clear or helpful,

should not feel disappointed. Both the readers and the author should

simply keep trying their best. Greater fluency and better understanding

will come gradually and inevitably.

At this point we only want to make one general remark on the in-

formal PTA-arguments that will be employed. Those arguments will

often proceed in terms of game-playing and problem-solving instead of

theorem-proving, or will be some kind of a mixture of these two. That

is, a way to show how to prove a formula F will often be to show how to

win/solve the game/problem F . The legitimacy of this approach is re-

lated to the fact that the logic CL3 underlying PTA is a logic of problem-

solving and, as such, is complete (Theorem 10.5). That is, whenever

a problem F can be solved in a way that relies merely on the logical
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structure of F — and perhaps also those of some axioms of PTA — then

we have a guarantee that F can also be proven. Basic problem-solving

steps are very directly simulated (translated through) the rules of CL3

or some derivative rules in the style of the rules of the previous section,

with those rules seen bottom-up (in the “from conclusion to premises”

direction). For instance, a step such as “choose the ith disjunct in the

subformula/subgame F1 ⊔ . . . ⊔ Fn” translates as a bottom-up applica-

tion of ⊔ -Choose which replaces F1 ⊔ . . . ⊔ Fn by F i; a step such as

“specify x as s in ⊔xF(x)” translates as a bottom-up application of ⊔-

Choose; a step such as “wait till the environment specifies a value s for

x in ⊓xF(x)” translates as a bottom-up application of ⊓-Introduction;

etc. Correspondingly, an informally described winning/solution strat-

egy for F can usually be seen as a relaxed, bottom-up description of a

formal proof of F .

18. SOME ADMISSIBLE INDUCTION RULES OF PTA

The present section introduces a few new admissible rules of induction.

These rules are weaker than PTI, but are still useful in that, in many

cases, they may offer greater convenience than PTI does.

18.1. WPTI

Here we reproduce rule (17) discussed in Section 14, and baptize it as

“WPTI” (“W” for “Weak”):

F(0) F(s)→ F(s ′)

s ≤τ→ F(s)
,

where s is any non-b variable, F(s) is any formula, and τ is any b-term.

Theorem 18.1 WPTI is admissible in PTA.

Idea. WPTI is essentially nothing but PTI with ⊤ in the role of

E(s).

Proof. Assume s, F(s), τ are as stipulated in the rule, and PTA

proves both F(0) and F(s)→ F(s ′). The following formula matches the
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CL4-provable (P →Q)→
�
⊤ ∧ P →⊤ ⊓ (Q ∧⊤)

�
and hence, by CL4-

Instantiation, is provable in PTA:

�
F(s)→ F(s ′)
�
→

�

⊤ ∧ F(s)→⊤ ⊓
�

F(s ′) ∧⊤
�
�

. (34)

By Modus Ponens from F(s)→ F(s ′) and (34), we find that PTA proves

⊤ ∧ F(s)→⊤ ⊓
�

F(s ′) ∧⊤
�
. (35)

Similarly, F(0)→⊤ ∧ F(0) is obviously provable in PTA by CL4-

Instantiation. Modus-ponensing this with our assumption PTA ⊢ F(0)

yields PTA ⊢ ⊤ ∧ F(0). From here and (35), by PTI with ⊤ in the

role of E(s), we find that PTA proves s ≤τ→⊤ ∧ F(s). But PTA also

proves ⊤ ∧ F(s)→ F(s) because this is an instance of the CL4-provable

⊤ ∧ P → P. Hence, by Transitivity, PTA ⊢ s ≤τ→ F(s), as desired.

18.2. BSI

What we call BSI (Binary-Successor-based Induction) is the following

rule, where s is any non-b variable and F(s) is any formula:

F(0) F(s) → F(s0) ⊓ F(s1)

F(s)
.

Theorem 18.2 BSI is admissible in PTA.

Idea. We manage to reduce BSI to WPTI with ⊓x
�
|x |≤ s→ F(x)
�

in the role of F(s) of the latter.

Proof. Assume s, F(s) are as stipulated in the rule,

PTA ⊢ F(0) (36)

and

PTA ⊢ F(s)→ F(s0) ⊓ F(s1). (37)

Let us observe right now that, by ⊓-Introduction, (37) immediately

implies

PTA ⊢⊓x
�

F(x)→ F(x0) ⊓ F(x1)
�
. (38)
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The goal is to verify that PTA ⊢ F(s).

An outline of our strategy for achieving this goal is that we take

the formula ⊓x
�
|x |≤ t → F(x)
�

— let us denote it by G(t) — and

show that both G(0) and G(t)→ G(t ′) are provable. This, by (the

already shown to be admissible) WPTI, allows us to immediately con-

clude that t ≤b→ G(t) is also provable, which, in turn, implies that so

is ⊓y
�

y ≤b→ G(y)
�
, and hence b≤b→ G(b), and hence G(b). G(b)

asserts that, for any (⊓) given x whose length does not exceed b, we

can solve F(x). But the length of no x that we consider exceeds b, so

that G(b), in fact, simply says that (we can solve) F(x). Formalizing

this argument in PTA and taking s for x yields the desired conclusion

PTA ⊢ F(s).

In following the above outline, we first claim that PTA ⊢ G(0), i.e.,

PTA ⊢⊓x
�
|x |≤0→ F(x)
�
. (39)

An informal argument here is that, since no constant is of length 0,

|x |≤0 is false, and hence the problem |x |≤0→ F(x) is automatically

“solved” (i.e., won without any moves by ⊤) no matter what F(x)

is. Formally, PA and hence PTA proves the true fact ¬|v|≤0. PTA

also proves ¬|v|≤0→
�
|v|≤0→ F(v)
�
, as this is an instance of the CL4-

provable ¬p→ (p→Q). Then, by Modus Ponens, PTA ⊢ |v|≤0→ F(v),

whence, by ⊓-Introduction, PTA ⊢⊓x
�
|x |≤0→ F(x)
�
, as desired.

Our next goal is to show that PTA ⊢ G(t)→ G(t ′), i.e.,

PTA ⊢⊓x
�
|x |≤ t → F(x)
�
→⊓x
�
|x |≤ t ′→ F(x)
�
. (40)

This can be done by showing the PTA-provability of

⊓x
�
|x |≤ t → F(x)
�
→ |v|≤ t ′→ F(v), (41)

from which (40) follows by ⊓-Introduction.

Let us first try to justify (41) informally. Consider any t, v

with |v|≤ t ′, and also assume that (a single copy of) the resource

⊓x
�
|x |≤ t → F(x)
�

is at our disposal. The goal is to establish F(v).

F(0) is immediate by (36). In turn, by (37), F(0) easily implies F(1).

Thus, we are done for the case v ≤1. Suppose now v >1. Then (un-

like the case v ≤1), remembering that |v|≤ t ′, v must have a binary

predecessor r with |r|≤ t. By Axiom 12, we can actually find such
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an r and, furthermore, tell whether v = r0 or v = r1. Specifying x as

r in the antecedent of (41), we can bring it down to the resource

|r|≤ t → F(r) and — as we already know that |r|≤ t — essentially to

the resource F(r). By (38), the resource ⊓x
�

F(x)→ F(x0) ⊓ F(x1)
�

and hence F(r)→ F(r0) ⊓ F(r1) is also available. This is a resource

that consumes F(r) and generates F(r0) ⊓ F(r1). Feeding to its con-

sumption needs15 our earlier-obtained F(r), we thus get the resource

F(r0) ⊓ F(r1). As noted earlier, we know precisely whether v = r0 or

v = r1. So, by choosing the corresponding ⊓ -conjunct, we can further

turn F(r0) ⊓ F(r1) into the sought F(v).

Strictly verifying (41) is quite some task, and we break it into sev-

eral subtasks/subgoals.

Our first subgoal is to show that PTA proves the following:

v =0 ⊔ v =0 ′ ⊔ v >0 ′, (42)

implying our ability to (efficiently) tell whether v is 0, 1, or greater

than 1. For simplicity considerations, in our earlier informal justifica-

tion of (41), we, in a sense, cheated by taking this ability for granted

— or, rather, by not really mentioning the need for it at all. Some addi-

tional evidence of such “cheating” can be discovered after reading the

later parts of the present proof as well.

Informally, an argument for (42) goes like this. Due to Axiom 12,

we can find the binary predecessor r of v. Moreover, due to the same

axiom, we can tell whether v = r0 or v = r1. Using Axiom 9, we can fur-

ther tell whether r =0 or r 6=0. So, we will know precisely which of the

four combinations v = r0 ∧ r =0, v = r1 ∧ r =0, v = r0 ∧ r 6=0, v = r1 ∧ r 6=0 is

the case. From PA, we also know that in the first case we have v =0,

in the second case we have v =1, and in the third and the fourth cases

we have v >1. So, one of v =0, v =1, v >1 will be true and, moreover, we

will be able to actually tell which one is true.

Below is a full formalization of this argument:

1. s =0 ⊔ s 6=0 Axiom 9

2. ⊓x(x =0 ⊔ x 6=0) ⊓-Introduction: 1

3. ⊔x(v = x0 ⊔ v = x1) Axiom 12

4. r =0 ∧ v = r0 → v =0 PA

5. r =0 ∧ v = r0 → v =0 ⊔ v =0 ′ ⊔ v >0 ′ ⊔ -Choose: 4
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6. r 6=0 ∧ v = r0 → v >0 ′ PA

7. r 6=0 ∧ v = r0 → v =0 ⊔ v =0 ′ ⊔ v >0 ′ ⊔ -Choose: 6

8. (r =0 ⊔ r 6=0) ∧ v = r0 → v =0 ⊔ v =0 ′ ⊔ v >0 ′ ⊓ -Introduction: 5,7

9. ⊓x(x =0 ⊔ x 6=0) ∧ v = r0 → v =0 ⊔ v =0 ′ ⊔ v >0 ′ ⊔-Choose: 8

10. r =0 ∧ v = r1 → v =0 ′ PA

11. r =0 ∧ v = r1 → v =0 ⊔ v =0 ′ ⊔ v >0 ′ ⊔ -Choose: 10

12. r 6=0 ∧ v = r1 → v >0 ′ PA

13. r 6=0 ∧ v = r1 → v =0 ⊔ v =0 ′ ⊔ v >0 ′ ⊔ -Choose: 12

14.
(r =0 ⊔ r 6=0) ∧ v = r1 →

v =0 ⊔ v =0 ′ ⊔ v >0 ′
⊓ -Introduction: 11,13

15. ⊓x(x =0 ⊔ x 6=0) ∧ v = r1 → v =0 ⊔ v =0 ′ ⊔ v >0 ′ ⊔-Choose: 14

16.
⊓x(x =0 ⊔ x 6=0) ∧ (v = r0 ⊔ v = r1) →

v =0 ⊔ v =0 ′ ⊔ v >0 ′
⊓ -Introduction: 9,15

17.
⊓x(x =0 ⊔ x 6=0) ∧⊔x(v = x0 ⊔ v = x1) →

v =0 ⊔ v =0 ′ ⊔ v >0 ′
⊓-Introduction: 16

18. v =0 ⊔ v =0 ′ ⊔ v >0 ′ MP: 2,3,17

The theoremhood of (42) thus has been verified.

Our next subgoal is to show that each disjunct of (42) implies (41),

that is, that each of the following formulas is provable in PTA:

v =0→⊓x
�
|x |≤ t → F(x)
�
→ |v|≤ t ′→ F(v) (43)

v =0 ′→⊓x
�
|x |≤ t → F(x)
�
→ |v|≤ t ′→ F(v) (44)

v >0 ′→⊓x
�
|x |≤ t → F(x)
�
→ |v|≤ t ′→ F(v) (45)

To see the provability of (43), observe that CL4 proves the formula

P( f )→ g = f → P(g). (46)

The formula F(0)→ v =0→ F(v) is an instance of (46) and therefore

is provable in PTA. By (36), F(0) is also provable. Hence, by Modus

Ponens, PTA ⊢ v =0→ F(v). From here, by Weakening applied twice,

we find the desired PTA ⊢ (43).

The PTA-provability of (44) is established as follows:
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1. ⊔x(x =0) Axiom 8

2. F(0)→ s =0→ F(s) CL4-Instantiation, matches (46)

3. s =0→ F(s) MP: (36),2

4. s =0→ F(s0) ⊓ F(s1) TR: 3, (37)

5. F(s0) ⊓ F(s1)→ F(s1) CL4-Instantiation, matches P ⊓Q→Q

6. s =0→ F(s1) TR: 4,5

7.
�
s =0→ F(s1)
�
→
�
s =0→ F(01)
�

CL4-Instantiation,

matches (s = f → P(g(s)))→ (s = f → P(g( f )))

8. s =0→ F(01) MP: 6,7

9. ⊔x(x =0)→ F(01) ⊓-Introduction: 8

10. F(01) MP: 1,9

11. 01=0 ′ PA

12. F(01) ∧ 01=0 ′→ F(0 ′) CL4-Instantiation, matches

P( f ) ∧ f = g → P(g)

13. F(0 ′) MP: 10,11,12

14. F(0 ′)→ v =0 ′→ F(v) CL4-Instantiation, matches (46)

15. v =0 ′→ F(v) MP: 13,14

16. v =0 ′→⊓x
�
|x |≤ t → F(x)
�
→ |v|≤ t ′→ F(v) Weakening

(twice): 15

Finally, to construct a proof of (45), observe that the following for-

mula is valid in classical logic:
�

p1( f ) ∧ p2( f )→ p3

�
→
�

p4→ p5( f )
�
∧ v = f → p2(v)

→
�

p3→ p4

�
→ p1(v)→ p5(v).

Hence, by Match applied twice, CL4 proves

�
p1( f ) ∧ p2( f )→ p3

�
→
�

P →Q( f )
�
∧ v = f → p2(v) →�

p3→ P
�
→ p1(v)→ Q(v).

(47)

The following two formulas are instances of (47), and are therefore

provable in PTA:

�
|r0|≤ t ′ ∧ r0>0 ′→ |r|≤ t

�
→
�

F(r)→ F(r0)
�
∧ v = r0→ v >0 ′

→
�
|r|≤ t → F(r)
�
→ |v|≤ t ′→ F(v). (48)

Vol. 8: Games, Game Theory

and Game Semantics

http://www.thebalticyearbook.org/


87 Giorgi Japaridze

�
|r1|≤ t ′ ∧ r1>0 ′→ |r|≤ t

�
→
�

F(r)→ F(r1)
�
∧ v = r1→ v >0 ′

→
�
|r|≤ t → F(r)
�
→ |v|≤ t ′→ F(v). (49)

Now, the following sequence is a PTA-proof of (45):

1. ⊔x(v = x0 ⊔ v = x1) Axiom 12

2. |r0|≤ t ′ ∧ r0>0 ′→ |r|≤ t PA

3.

�
F(r)→ F(r0)
�
∧ v = r0→ v >0 ′

→
�
|r|≤ t → F(r)
�
→ |v|≤ t ′→ F(v)

MP: (48),2

4.

�
F(r)→ F(r0) ⊓ F(r1)

�
∧ v = r0→ v >0 ′

→
�
|r|≤ t → F(r)
�
→ |v|≤ t ′→ F(v)

⊔ -Choose: 3

5. |r1|≤ t ′ ∧ r1>0 ′→ |r|≤ t PA

6.

�
F(r)→ F(r1)
�
∧ v = r1→ v >0 ′

→
�
|r|≤ t → F(r)
�
→ |v|≤ t ′→ F(v)

MP: (49),5

7.

�
F(r)→ F(r0) ⊓ F(r1)

�
∧ v = r1→ v >0 ′

→
�
|r|≤ t → F(r)
�
→ |v|≤ t ′→ F(v)

⊔ -Choose: 8

8.

�
F(r)→ F(r0) ⊓ F(r1)

�
∧ (v = r0 ⊔ v = r1)→ v >0 ′

→
�
|r|≤ t → F(r)
�
→ |v|≤ t ′→ F(v)

⊓ -Intro: 4,7

9.
⊓x
�

F(x)→ F(x0) ⊓ F(x1)
�
∧ (v = r0 ⊔ v = r1)

→ v >0 ′→⊓x
�
|x |≤ t → F(x)
�
→ |v|≤ t ′→ F(v)

⊔-Chooses: 8

10.
⊓x
�

F(x)→ F(x0) ⊓ F(x1)
�
∧⊔x(v = x0 ⊔ v = x1)

→ v >0 ′→⊓x
�
|x |≤ t → F(x)
�
→ |v|≤ t ′→ F(v)

⊓-Intro: 9

11. v >0 ′→⊓x
�
|x |≤ t → F(x)
�
→ |v|≤ t ′→ F(v) MP: (38),1,10

The provability of each of the three formulas (43), (44) and (43)

has now been verified. From these three facts and the provability of

(42), by ⊔ -Elimination, we find that PTA proves (41). This, in turn, as

noted earlier, implies (40). Now, from (39) and (40), by WPTI, we find

that

PTA ⊢ t ≤b→⊓x
�
|x |≤ t → F(x)
�
.

The above, by ⊓-Introduction, yields PTA ⊢

⊓y
�

y ≤b→⊓x
�
|x |≤ y → F(x)
�
�

, from which, by ⊓-Elimination,

PTA ⊢ b≤b→⊓x
�
|x |≤b→ F(x)
�
. But PA ⊢ b≤b. So, by Modus

Ponens, PTA ⊢ ⊓x
�
|x |≤b→ F(x)
�
, from which, by ⊓-Elimination,
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PTA ⊢ |s|≤b→ F(s). This, together with Axiom 13, by Modus ponens,

yields the desired conclusion PTA ⊢ F(s).

18.3. An illustration of BSI in work

In this section we prove one PTA-provability fact which, with the sound-

ness of PTA in mind, formally establishes the efficient decidability of

the equality predicate. The proof of this fact presents a good exercise

on using BSI, and may help the reader appreciate the convenience of-

fered by this rule, which is often a more direct and intuitive tool for

efficiency-preserving inductive reasoning than PTI is.

Lemma 18.3 PTA ⊢⊓x⊓y(y = x ⊔ y 6= x).

Idea. Using BSI, prove ⊓y(y =s ⊔ y 6=s), from which the target

formula follows by ⊓-Introduction.

Proof.

Let us first give an informal justification for ⊓x⊓y(y = x ⊔ y 6= x).

We proceed by BSI-induction on s, where the formula F(s) of induction

is ⊓y(y =s ⊔ y 6=s). By Axiom 9, for an arbitrary y , we can tell whether

y =0 or y 6=0. This takes care of the basis (left premise)

⊓y(y =0 ⊔ y 6=0) (50)

of induction. For the inductive step (right premise)

⊓y(y =s ⊔ y 6=s)→⊓y(y =s0 ⊔ y 6=s0) ⊓⊓y(y =s1 ⊔ y 6=s1), (51)

assume the resource ⊓y(y =s ⊔ y 6=s) is at our disposal. We need to

show that we can solve

⊓y(y =s0 ⊔ y 6=s0) ⊓⊓y(y =s1 ⊔ y 6=s1),

i.e., either one of the problems ⊓y(y =s0 ⊔ y 6=s0) and

⊓y(y =s1 ⊔ y 6=s1). Let us for now look at the first problem. Consider

an arbitrary y . Axiom 12 allows us to find the binary predecessor r of

y and also tell whether y = r0 or y = r1. If y = r1, then we already know
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that y 6=s0 (because s0 is even while r1 is odd). And if y = r0, then y =s0

— i.e. r0=s0 — iff r =s. But whether r =s we can figure out using (the

available single copy of) the resource ⊓y(y =s ⊔ y 6=s). To summarize,

in any case we can tell whether y =s0 or y 6=s0, meaning that we can

solve ⊓y(y =s0 ⊔ y 6=s0). The case of ⊓y(y =s1 ⊔ y 6=s1) is handled in a

similar way. Then, by BSI, (50) and (51) imply ⊓y(s = y ⊔ s 6= y), which,

in turn (by ⊓-Introduction), implies ⊓x⊓y(x = y ⊔ x 6= y).

The above informal argument can be formalized as follows:

1. s =0 ⊔ s 6=0 Axiom 9

2. ⊓y(y =0 ⊔ y 6=0) ⊓-Introduction: 1

3. ⊔x(t = x0 ⊔ t = x1) Axiom 12

4. t = r0→ r =s→ t =s0 Logical axiom

5. t = r0→ r =s→ t =s0 ⊔ t 6=s0 ⊔ -Choose: 4

6. t = r0→ r 6=s→ t 6=s0 PA

7. t = r0→ r 6=s→ t =s0 ⊔ t 6=s0 ⊔ -Choose: 6

8. t = r0→ r =s ⊔ r 6=s→ t =s0 ⊔ t 6=s0 ⊓ -Introduction: 5,7

9. t = r0→⊓y(y =s ⊔ y 6=s)→ t =s0 ⊔ t 6=s0 ⊔-Choose: 8

10. t = r1→ t 6=s0 PA

11. t = r1→⊓y(y =s ⊔ y 6=s)→ t 6=s0 Wakening: 10

12. t = r1→⊓y(y =s ⊔ y 6=s)→ t =s0 ⊔ t 6=s0 ⊔ -Choose: 11

13. t = r0 ⊔ t = r1→⊓y(y =s ⊔ y 6=s)→ t =s0 ⊔ t 6=s0 ⊓ -Introduction: 9,12

14. ⊔x(t = x0 ⊔ t = x1)→⊓y(y =s ⊔ y 6=s)→ t =s0 ⊔ t 6=s0 ⊓-Introduction: 13

15. ⊓y(y =s ⊔ y 6=s)→ t =s0 ⊔ t 6=s0 MP: 3,14

16. ⊓y(y =s ⊔ y 6=s)→⊓y(y =s0 ⊔ y 6=s0) ⊓-Introduction: 15

17. t = r1→ r =s→ t =s1 Logical axiom

18. t = r1→ r =s→ t =s1 ⊔ t 6=s1 ⊔ -Choose: 17

19. t = r1→ r 6=s→ t 6=s1 PA

20. t = r1→ r 6=s→ t =s1 ⊔ t 6=s1 ⊔ -Choose: 19

21. t = r1→ r =s ⊔ r 6=s→ t =s1 ⊔ t 6=s1 ⊓ -Introduction: 18,20
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22. t = r1→⊓y(y =s ⊔ y 6=s)→ t =s1 ⊔ t 6=s1 ⊔-Choose: 21

23. t = r0→ t 6=s1 PA

24. t = r0→⊓y(y =s ⊔ y 6=s)→ t 6=s1 Weakening: 23

25. t = r0→⊓y(y =s ⊔ y 6=s)→ t =s1 ⊔ t 6=s1 ⊔ -Choose: 24

26. t = r0 ⊔ t = r1→⊓y(y =s ⊔ y 6=s)→ t =s1 ⊔ t 6=s1 ⊓ -Introduction: 25,22

27. ⊔x(t = x0 ⊔ t = x1)→⊓y(y =s ⊔ y 6=s)→ t =s1 ⊔ t 6=s1 ⊓-Introduction: 26

28. ⊓y(y =s ⊔ y 6=s)→ t =s1 ⊔ t 6=s1 MP: 3,27

29. ⊓y(y =s ⊔ y 6=s)→⊓y(y =s1 ⊔ y 6=s1) ⊓-Introduction: 28

30.
⊓y(y =s ⊔ y 6=s)→⊓y(y =s0 ⊔ y 6=s0) ⊓⊓
y(y =s1 ⊔ y 6=s1)

⊓ -Introduction: 16,29

31. ⊓y(y =s ⊔ y 6=s) BSI: 2,30

32. ⊓x⊓y(y = x ⊔ y 6= x) ⊓-Introduction: 31

18.4. PTI+, WPTI+ and BSI+

The conclusion of PTI limits s to “very small” values — those that do

not exceed (the value of) some b-term τ. On the other hand, the right

premise of the rule does not impose the corresponding restriction s <τ
on s, and appears to be stronger than necessary. Imposing the addi-

tional condition |s ′|≤b on s in that premise also seems reasonable, be-

cause the size of s in the conclusion cannot exceed b anyway, and hence

there is no need to prove the induction hypothesis for the cases with

|s ′|>b.16 So, one might ask why we did not state PTI in the following,

seemingly stronger, form — call it “PTI+”:

E(0) ∧ F(0) s <τ ∧ |s ′|≤b ∧ E(s) ∧ F(s)→ E(s ′) ⊓
�

F(s ′) ∧ E(s)
�

s ≤τ→ E(s) ∧ F(s)

(with the same additional conditions as in PTI.)

The answer is very simple: PTI+, while being aesthetically (or from

the point of view of simplicity) inferior to PTI, does not really offer any

greater deductive power, as implied by the forthcoming Theorem 18.6.
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The following two rules — call them WPTI+ (left) and BSI+ (right)

— are pseudostrengthenings of WPTI and BSI in the same sense as

PTI+ is a pseudostrengthening of PTI:

F(0) s <τ ∧ |s ′|≤b ∧ F(s)→ F(s ′)

s ≤τ→ F(s)

F(0) |s0|≤b ∧ F(s)→ F(s0) ⊓ F(s1)

F(s)

where s is any variable different from b, F(s) is any formula, and τ is

any b-term.

Theorem 18.4 WPTI+ is admissible in PTA.

Idea. WPTI+ is essentially a special case of WPTI with |s|≤b→ s ≤τ→ F(s)

in the role of F(s).

Proof. Assume s, F(s), τ are as stipulated in the rule,

PTA ⊢ F(0) (52)

and

PTA ⊢ s <τ ∧ |s ′|≤b ∧ F(s)→ F(s ′). (53)

Our goal is to verify that PTA ⊢ s ≤τ→ F(s).

From (52), by Weakening applied twice, we get

PTA ⊢ |0|≤b→ 0≤τ→ F(0). (54)

Next, observe that

CL4⊢
�
q1 ∧ q2→ p1 ∧ p2 ∧ p3

�
∧
�

p1 ∧ q2 ∧ P →Q
�

→
�

p3→ p2→ P
�
→
�
q2→ q1→Q
�
.

Hence, by CL4-Instantiation, we have

PTA ⊢
�
s ′ ≤τ ∧ |s ′|≤b→ s <τ ∧ s ≤τ ∧ |s|≤b

�
∧

�
s <τ ∧ |s ′|≤b ∧ F(s)→ F(s ′)

�
→

�
|s|≤b→ s ≤τ→ F(s)

�
→
�
|s ′|≤b→ s ′ ≤τ→ F(s ′)

�
.

(55)

We also have PA ⊢ s ′ ≤τ ∧ |s ′|≤b→ s <τ ∧ s ≤τ ∧ |s|≤b. This, together

with (53) and (55), by Modus Ponens, yields

PTA ⊢
�
|s|≤b→ s ≤τ→ F(s)

�
→
�
|s ′|≤b→ s ′ ≤τ→ F(s ′)

�
. (56)
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From (54) and (56), by WPTI, we get

PTA ⊢ s ≤τ→
�
|s|≤b→ s ≤τ→ F(s)

�
. (57)

But CL4 ⊢
�

p→ (q→ p→Q)
�
→ (q→ p→Q) and hence, by CL4-

Instantiation,

PTA ⊢
�

s ≤τ→
�
|s|≤b→ s ≤τ→ F(s)

�
�

→
�
|s|≤b→ s ≤τ→ F(s)

�
.

Modus-ponensing the above with (57) yields PTA ⊢ |s|≤b→ s ≤τ→ F(s).

Now, remembering Axiom 13, by Modus Ponens, we get the desired

PTA ⊢ s ≤τ→ F(s).

Note that the above proof established something stronger than what

Theorem 18.4 states. Namely, our proof of the admissibility of WPTI+

relied on WPTI without appealing to PTI. This means that WPTI+

would remain admissible even if PTA had WPTI instead of PTI. It is

exactly this fact that justifies the qualification “pseudostrengthening

of WPTI” that we gave to WPTI+. The same applies to the other two

pseudostrengthening rules PTI+ and BSI+ discussed in this subsection.

Theorem 18.5 BSI+ is admissible in PTA.

Idea. BSI+ reduces to BSI with |s|≤b→ F(s) in the role of F(s).

Proof. Assume s, F(s) are as stipulated in the rule,

PTA ⊢ F(0) (58)

and

PTA ⊢ |s0|≤b ∧ F(s)→ F(s0) ⊓ F(s1). (59)

Our goal is to verify that PTA ⊢ F(s).

From (58), by Weakening, we have

PTA ⊢ |0|≤b→ F(0). (60)

Next, in a routine (analytic) syntactic exercise, one can show that

CL4 ⊢
�

p0 ∨ p1→ p0 ∧ q
�
∧
�

p0 ∧Q→ P0 ⊓ P1

�
→
�
q→Q
�
→

�
p0→ P0

�
⊓
�

p1→ P1

�
.
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Hence, by CL4-Instantiation,

PTA ⊢
�
|s0|≤b ∨ |s1|≤b→ |s0|≤b ∧ |s|≤b

�
∧
�
|s0|≤b ∧ F(s)→

F(s0) ⊓ F(s1)
�
→
�
|s|≤b→ F(s)
�
→
�
|s0|≤b→

F(s0)
�
⊓
�
|s1|≤b→ F(s1)
�
.

(61)

But PA ⊢ |s0|≤b ∨ |s1|≤b→ |s0|≤b ∧ |s|≤b. This, together with (59) and

(61), by Modus Ponens, yields

PTA ⊢
�
|s|≤b→ F(s)
�
→
�
|s0|≤b→ F(s0)
�
⊓
�
|s1|≤b→ F(s1)
�
.

The above and (60), by BSI, yield PTA ⊢ |s|≤b→ F(s). Finally, modus-

ponensing the latter with Axiom 13, we get the desired PTA ⊢ F(s).

Theorem 18.6 PTI+ is admissible in PTA.

Idea. PTI+ reduces to PTI with |s|≤b→ s ≤τ→ E(s) and

|s|≤b→ s ≤τ→ F(s) in the roles of E(s) and F(s), respectively.

The present theorem will not be relied upon later, so, a reader sat-

isfied with this explanation can safely omit the technical proof given

below.

Proof. Assume s, E(s), F(s), τ are as stipulated in the rule,

PTA ⊢ E(0) ∧ F(0) (62)

and

PTA ⊢ s <τ ∧ |s ′|≤b ∧ E(s) ∧ F(s)→ E(s ′) ⊓
�

F(s ′) ∧ E(s)
�
. (63)

Our goal is to show that PTA ⊢ s ≤τ→ E(s) ∧ F(s).

CL4 proves P ∧Q→
�

p→ q→ P) ∧ (p→ q→Q) and hence, by CL4-

Instantiation,

PTA ⊢ E(0) ∧ F(0)→
�
|0|≤b→ 0≤τ→ E(0)

�
∧
�
|0|≤b→ 0≤τ→ F(0)

�
.

Modus-ponensing the above with (62) yields

PTA ⊢
�
|0|≤b→ 0≤τ→ E(0)

�
∧
�
|0|≤b→ 0≤τ→ F(0)

�
. (64)
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Next, in a routine syntactic exercise we observe that

CL4 ⊢ ¬(p ∧ q)→Q ∧ P1→ (q→ p→ P2) ⊓
�
(q→ p→ P3) ∧Q

�
.

Hence, by CL4-Instantiation,

PTA ⊢ ¬(s ′ ≤τ ∧ |s ′|≤b)→
�
|s|≤b→ s ≤τ→ E(s)

�
∧

�
|s|≤b→ s ≤τ→ F(s)

�
→
�
|s ′|≤b→ s ′ ≤τ→ E(s ′)

�
⊓

�
�
|s ′|≤b→ s ′ ≤τ→ F(s ′)

�
∧
�
|s|≤b→ s ≤τ→ E(s)

�
�

.

(65)

In another syntactic exercise we find that

CL4 ⊢ (p2 ∧ q2→ p1 ∧ q1 ∧ p0) ∧
�

p0 ∧ q2 ∧ P1 ∧Q1→ P2 ⊓ (Q2 ⊓ P1)
�
→

p2 ∧ q2→ (q1→ p1→ P1) ∧ (q1→ p1→Q1)→ (q2→ p2→ P2) ⊓�
(q2→ p2→Q2) ⊓ (q1→ p1→ P1)

�
.

(66)

Since this “exercise” is longer than the previous one, below we provide

a full proof of (66):

1.
(p2 ∧ q2→ p1 ∧ q1 ∧ p0) ∧ (p0 ∧ q2 ∧ p3 ∧ q3→⊤)→

p2 ∧ q2→ (q1→ p1→ p3) ∧ (q1→ p1→ q3)→⊤
Tautology

2.

(p2 ∧ q2→ p1 ∧ q1 ∧ p0) ∧ (p0 ∧ q2 ∧ p3 ∧ q3→ p4)→

p2 ∧ q2→ (q1→ p1→ p3) ∧ (q1→ p1→ q3)→

(q2→ p2→ p4)

Tautology

3.
(p2 ∧ q2→ p1 ∧ q1 ∧ p0) ∧ (p0 ∧ q2 ∧ p3 ∧ q3→ P2)→

p2 ∧ q2→ (q1→ p1→ p3) ∧ (q1→ p1→ q3)→ (q2→ p2→ P2)
Match: 2

4.

(p2 ∧ q2→ p1 ∧ q1 ∧ p0) ∧
�

p0 ∧ q2 ∧ p3 ∧ q3→ P2 ⊓ (Q2 ∧ P1)
�

→ p2 ∧ q2→ (q1→ p1→ p3) ∧ (q1→ p1→ q3)→

(q2→ p2→ P2)

⊔ -Choose: 3

5.

(p2 ∧ q2→ p1 ∧ q1 ∧ p0) ∧ (p0 ∧ q2 ∧ p3 ∧ q3→ q4 ∧ p4)→

p2 ∧ q2→ (q1→ p1→ p3) ∧ (q1→ p1→ q3)→

(q2→ p2→ q4) ∧ (q1→ p1→ p4)

Tautology

6.

(p2 ∧ q2→ p1 ∧ q1 ∧ p0) ∧ (p0 ∧ q2 ∧ p3 ∧ q3→Q2 ∧ P1)→

p2 ∧ q2→ (q1→ p1→ p3) ∧ (q1→ p1→ q3)→

(q2→ p2→Q2) ∧ (q1→ p1→ P1)

Match (twice): 5

7.

(p2 ∧ q2→ p1 ∧ q1 ∧ p0) ∧
�

p0 ∧ q2 ∧ p3 ∧ q3→ P2 ⊓ (Q2 ∧ P1)
�

→ p2 ∧ q2→ (q1→ p1→ p3) ∧ (q1→ p1→ q3)→

(q2→ p2→Q2) ∧ (q1→ p1→ P1)

⊔ -Choose:6
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8.

(p2 ∧ q2→ p1 ∧ q1 ∧ p0) ∧
�

p0 ∧ q2 ∧ p3 ∧ q3→ P2 ⊓ (Q2 ∧ P1)
�

→ p2 ∧ q2→ (q1→ p1→ p3) ∧ (q1→ p1→ q3)→

(q2→ p2→ P2) ⊓
�
(q2→ p2→Q2) ∧ (q1→ p1→ P1)

�
Wait: 1,4,7

9.

(p2 ∧ q2→ p1 ∧ q1 ∧ p0) ∧
�

p0 ∧ q2 ∧ P1 ∧Q1→ P2 ⊓ (Q2 ∧ P1)
�

→ p2 ∧ q2→ (q1→ p1→ P1) ∧ (q1→ p1→Q1)→

(q2→ p2→ P2) ⊓
�
(q2→ p2→Q2) ∧ (q1→ p1→ P1)

�
Match (twice): 8

The formula below matches the formula of (66) and therefore, by

CL4-Instantiation,

PTA ⊢ (s ′ ≤τ ∧ |s ′|≤b→ s ≤τ ∧ |s|≤b ∧ s <τ) ∧
�

s <τ ∧ |s ′|≤b ∧ E(s) ∧ F(s)→ E(s ′) ⊓
�

F(s ′) ∧ E(s)
�
�

→

s ′ ≤τ ∧ |s ′|≤b→
�
|s|≤b→ s ≤τ→ E(s)

�
∧
�
|s|≤b→ s ≤τ→ F(s)

�
→

�
|s ′|≤b→ s ′ ≤τ→ E(s ′)

�
⊓

�
�
|s ′|≤b→ s ′ ≤τ→ F(s ′)

�

∧
�
|s|≤b→ s ≤τ→ E(s)

�
�

.

(67)

Obviously we have PA ⊢ s ′ ≤τ ∧ |s ′|≤b→ s ≤τ ∧ |s|≤b ∧ s <τ. This

fact, together with (63) and (67), by Modus Ponens, implies

PTA ⊢ s ′ ≤τ ∧ |s ′|≤b→
�
|s|≤b→ s ≤τ→ E(s)

�
∧
�
|s|≤b→ s ≤τ→ F(s)

�
→

�
|s ′|≤b→ s ′ ≤τ→ E(s ′)

�
⊓

�
�
|s ′|≤b→ s ′ ≤τ→ F(s ′)

�
∧

�
|s|≤b→ s ≤τ→ E(s)

�
�

.

(68)

According to the forthcoming Lemmas 19.8 and 19.9, whose proofs

(as any other proofs in this paper) do not rely on PTI+, we have:

For any term θ , PTA ⊢ ¬|θ |≤b ⊔⊔z(z =θ); (69)

PTA ⊢⊓x⊓y⊔z(x = y +z ⊔ y = x +z). (70)

Below is a proof of the fact that

PTA ⊢ ¬(s ′ ≤τ ∧ |s ′|≤b) ⊔ (s ′ ≤τ ∧ |s ′|≤b) : (71)

1. ¬|s ′|≤b ⊔⊔z(z =s ′) (69) with θ = s ′

2. ¬|s ′|≤b→¬(s ′ ≤τ ∧ |s ′|≤b) Logical axiom

3. ¬|s ′|≤b→¬(s ′ ≤τ ∧ |s ′|≤b) ⊔ (s ′ ≤τ ∧ |s ′|≤b) ⊔ -Choose: 2
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4. ¬|τ|≤b ⊔⊔z(z =τ) (69) with θ = τ

5. |r|≤b Axiom 13

6. |r|≤b→¬|τ|≤b→ r =s ′→ s ′ ≤τ ∧ |s ′|≤b PA

7. ¬|τ|≤b→ r =s ′→ s ′ ≤τ ∧ |s ′|≤b MP: 5,6

8. ¬|τ|≤b→ r =s ′→¬(s ′ ≤τ ∧ |s ′|≤b) ⊔ (s ′ ≤τ ∧ |s ′|≤b) ⊔ -Choose: 7

9. ⊔z(t = r +z ⊔ r = t +z) ⊓ -Elimination (twice): (70)

10. |r|≤b ∧ t = r + v→ t =τ→ r =s ′→ s ′ ≤τ ∧ |s ′|≤b PA

11.
|r|≤b ∧ t = r + v→ t =τ→ r =s ′→

¬(s ′ ≤τ ∧ |s ′|≤b) ⊔ (s ′ ≤τ ∧ |s ′|≤b)
⊔ -Choose: 10

12. v =0 ⊔ v 6=0 Axiom 8

13. v =0→ |r|≤b ∧ r = t +v→ t =τ→ r =s ′→ s ′ ≤τ ∧ |s ′|≤b PA

14.
v =0→ |r|≤b ∧ r = t +v→ t =τ→ r =s ′→

¬(s ′ ≤τ ∧ |s ′|≤b) ⊔ (s ′ ≤τ ∧ |s ′|≤b)
⊔ -Choose: 13

15. v 6=0→ |r|≤b ∧ r = t +v→ t =τ→ r =s ′→¬(s ′ ≤τ ∧ |s ′|≤b) PA

16.
v 6=0→ |r|≤b ∧ r = t +v→ t =τ→ r =s ′→

¬(s ′ ≤τ ∧ |s ′|≤b) ⊔ (s ′ ≤τ ∧ |s ′|≤b)
⊔ -Choose: 15

17.
|r|≤b ∧ r = t + v→ t =τ→ r =s ′→

¬(s ′ ≤τ ∧ |s ′|≤b) ⊔ (s ′ ≤τ ∧ |s ′|≤b)
⊔ -Elimination: 12,14,16

18.
|r|≤b ∧ (t = r + v ⊔ r = t + v)→ t =τ→ r =s ′→

¬(s ′ ≤τ ∧ |s ′|≤b) ⊔ (s ′ ≤τ ∧ |s ′|≤b)
⊓ -Introduction: 11,17

19.
|r|≤b ∧⊔z(t = r +z ⊔ r = t +z)→ t =τ→ r =s ′→

¬(s ′ ≤τ ∧ |s ′|≤b) ⊔ (s ′ ≤τ ∧ |s ′|≤b)
⊓-Introduction: 18

20. t =τ→ r =s ′→¬(s ′ ≤τ ∧ |s ′|≤b) ⊔ (s ′ ≤τ ∧ |s ′|≤b) MP: 5,9,19

21. ⊔z(z =τ)→ r =s ′ →¬(s ′ ≤τ ∧ |s ′|≤b) ⊔ (s ′ ≤τ ∧ |s ′|≤b) ⊓-Introduction: 20

22. r =s ′→¬(s ′ ≤τ ∧ |s ′|≤b) ⊔ (s ′ ≤τ ∧ |s ′|≤b) ⊔ -Elimination: 4,8,21

23. ⊔z(z =s ′)→¬(s ′ ≤τ ∧ |s ′|≤b) ⊔ (s ′ ≤τ ∧ |s ′|≤b) ⊓-Introduction: 22

24. ¬(s ′ ≤τ ∧ |s ′|≤b) ⊔ (s ′ ≤τ ∧ |s ′|≤b) ⊔ -Elimination: 1,3,23
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Now, from (71), (65) and (68), by ⊔ -Elimination, we get

PTA ⊢
�
|s|≤b→ s ≤τ→ E(s)

�
∧
�
|s|≤b→ s ≤τ→ F(s)

�
→

�
|s ′|≤b→ s ′ ≤τ→ E(s ′)

�
⊓

�
�
|s ′|≤b→ s ′ ≤τ→ F(s ′)

�
∧

�
|s|≤b→ s ≤τ→ E(s)

�
�

.

(72)

From (64) and (72), by PTI, we get

PTA ⊢ s ≤τ→
�
|s|≤b→ s ≤τ→ E(s)

�
∧
�
|s|≤b→ s ≤τ→ F(s)

�
. (73)

But CL4 obviously proves
�

p→ (q→ p→ P) ∧ (q→ p→Q)
�
→ (q→ p→ P ∧Q)

and hence, by CL4-Instantiation,

PTA ⊢
�

s ≤τ→
�
|s|≤b→ s ≤τ→ E(s)

�
∧
�
|s|≤b→ s ≤τ→ F(s)

�
�

→
�
|s|≤b→ s ≤τ→ E(s) ∧ F(s)

�
.

Modus-ponensing the above with (73) yields PTA ⊢

|s|≤b→ s ≤τ→ E(s) ∧ F(s), further modus-ponensing which with

Axiom 13 yields the desired PTA ⊢ s ≤τ→ E(s) ∧ F(s).

18.5. BPI

For any formula E(s), we let E(⌊s/2⌋) stand for the formula

∀z
�
s =z0 ∨ s =z1→ E(z)

�
, asserting that E holds for the binary prede-

cessor of s.

One last rule of induction that we are going to look at is what we

call BPI (Binary-Predecessor-based Induction):

F(0) F(⌊s/2⌋)→ F(s)

F(s)
,

where s is any non-b variable and F(s) is any formula.17

This rule could be characterized as an “alternative formulation of

BSI+”, and is apparently equivalent to the latter in the sense that re-

placing PTI with BSI+ in ptarithmetic yields the same class of provable

formulas as replacing PTI with BPI. One direction of this equivalence is

immediately implied by our proof of the following theorem.
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Theorem 18.7 BPI is admissible in PTA.

Idea. As noted, BPI is essentially the same as BSI+.

Proof. Assume s, F(s) are as stipulated in the rule,

PTA ⊢ F(0) (74)

and

PTA ⊢ F(⌊s/2⌋)→ F(s). (75)

Our goal is to verify that PTA ⊢ F(s).

We observe that

CL4⊢
�

p→ t = f (s)
�
∧

�

∀z
�

t = f (z) ∨ q→ P(z)
�
→Q(t)
�

→ p ∧ P(s)→Q
�
( f (s)
�

(bottom-up, apply Match twice and you will hit a classically valid for-

mula). By ⊔-Choose, this yields

CL4⊢
�

p→ t = f (s)
�
∧⊓x
�

∀z
�

x = f (z) ∨ q→ P(z)
�
→Q(x)
�

→ p ∧ P(s)→Q
�
( f (s)
�
.

The above, together with the obvious fact CL4 ⊢
�

p→⊥
�
∧⊤→ p ∧⊤→⊥,

by Wait, yields

CL4 ⊢
�

p→⊔x
�

x = f (s)
�
�

∧⊓x
�

∀z
�

x = f (z) ∨ q→ P(z)
�
→Q(x)
�

→ p ∧ P(s)→Q
�
( f (s)
�
.

Hence, by CL4-Instantiation, we have

PTA ⊢
�
|s0|≤b→⊔x(x =s0)

�
∧⊓x
�

∀z
�

x =z0 ∨ x =z1→ F(z)
�

→ F(x)
�

→ |s0|≤b ∧ F(s)→ F(s0),

which we abbreviate as

PTA ⊢
�
|s0|≤b→⊔x(x =s0)

�
∧⊓x
�

F(⌊x/2⌋)→ F(x)
�

→ |s0|≤b ∧ F(s)→ F(s0). (76)
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In a similar way we find that

PTA ⊢
�
|s0|≤b→⊔x(x =s1)

�
∧⊓x
�

F(⌊x/2⌋)→ F(x)
�

→ |s0|≤b ∧ F(s)→ F(s1). (77)

Now, we construct a sought PTA-proof of F(s) as follows:

1. ⊓x
�

F(⌊x/2⌋)→ F(x)
�
⊓-Introduction: (75)

2. |s0|≤b→⊔x(x =s0) Axiom 11

3. |s0|≤b ∧ F(s)→ F(s0) MP: 2,1,(76)

4. |s0|≤b→ |s1|≤b PA

5. |s1|≤b→⊔x(x =s1) Lemma 13.1

6. |s0|≤b→⊔x(x =s1) TR: 4,5

7. |s0|≤b ∧ F(s)→ F(s1) MP: 6,1,(77)

8. |s0|≤b ∧ F(s)→ F(s0) ⊓ F(s1) ⊓ -Introduction: 3,7

9. F(s) BSI+: (74),8

19. EFFICIENT COMPUTABILITY THROUGH PTA-PROVABILITY

In this section we establish several PTA-provability facts. In view of the

soundness of PTA, each such fact tells us about the efficient solvability

of the associated number-theoretic computational problem.

19.1. The efficient computability of logarithm

The term “logarithm” in the title of this subsection refers to the size of

the binary numeral for a given number, which happens to be an integer

approximation of the (real) base-2 logarithm of that number.

Lemma 19.1 PTA ⊢⊓x⊔y(y = |x |).

Proof. An outline of our proof is that ⊓x⊔y(y = |x |) follows by

⊓-Introduction from ⊔y(y = |s|), and the latter will be proven by BPI.

Let us first try to justify the two premises of BPI informally.
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From PA, we know that the size of 0 is 0 ′, and the value of 0 ′ can be

found using Lemma 13.3. This allows us to resolve ⊔y(y = |0|), which

is the basis of our BPI-induction.

The inductive step looks like

⊔y(y = |⌊s/2⌋|)→⊔y(y = |s|).

Resolving it means telling the size of s (in the consequent) while know-

ing (from the antecedental resource) the size r of the binary predeces-

sor ⌊s/2⌋ of s. As was established earlier in the proof of Theorem 18.2,

we can tell whether s equals 0, 0 ′, or neither. If s =0 or s =0 ′, then its

size is the value of 0 ′ which, as pointed out in the previous paragraph,

we know how to compute. Otherwise, the size of s is r ′, which we can

compute using Axiom 10. In all cases we thus can tell the size of s, and

thus we can resolve the consequent of the above-displayed inductive

step.

Below is a formal counterpart of the above argument.

1. ⊔x(x =0 ′) Lemma 13.3

2. v =0 ′→ v = |0| PA

3. v =0 ′→⊔y(y = |0|) ⊔-Choose: 2

4. ⊔x(x =0 ′)→⊔y(y = |0|) ⊓-Introduction: 3

5. ⊔y(y = |0|) MP: 1,4

6. s =0 ⊔ s =0 ′ ⊔ s >0 ′ (42), established in the proof of Theorem 18.2

7. v =0 ′→ s =0→ v = |s| PA

8. v =0 ′→ s =0→⊔y(y = |s|) ⊔-Choose: 7

9. ⊔x(x =0 ′)→ s =0→⊔y(y = |s|) ⊓-Introduction: 8

10. s =0→⊔y(y = |s|) MP: 1,9

11. s =0→⊔y(y = |⌊s/2⌋|)→⊔y(y = |s|) Weakening: 10

12. v =0 ′→ s =0 ′→ v = |s| PA

13. v =0 ′→ s =0 ′→⊔y(y = |s|) ⊔-Choose: 12

14. ⊔x(x =0 ′)→ s =0 ′→⊔y(y = |s|) ⊓-Introduction: 13

15. s =0 ′→⊔y(y = |s|) MP: 1,14

16. s =0 ′→⊔y(y = |⌊s/2⌋|)→⊔y(y = |s|) Weakening: 15

17. |s|≤b Axiom 13
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18. |s ′|≤b→⊔x(x =s ′) Axiom 10

19. ⊓y
�
|y ′|≤b→⊔x(x = y ′)

�
⊓-Introduction: 18

20. |s|≤b ∧
�
|r ′|≤b→⊥
�
→ s >0 ′→ r = |⌊s/2⌋|→⊥ PA

21. |s|≤b ∧ (|r ′|≤b→ w = r ′)→ s >0 ′→ r = |⌊s/2⌋|→ w = |s| PA

22.
|s|≤b ∧ (|r ′|≤b→ w = r ′)→ s >0 ′→ r = |⌊s/2⌋|
→⊔y(y = |s|)

⊔-Choose: 21

23.
|s|≤b ∧
�
|r ′|≤b→⊔x(x = r ′)

�
→ s >0 ′→ r = |⌊s/2⌋|

→⊔y(y = |s|)
Wait: 20,22

24.
|s|≤b ∧⊓y
�
|y ′|≤b→⊔x(x = y ′)

�
→ s >0 ′

→ r = |⌊s/2⌋|→⊔y(y = |s|)
⊔-Choose: 23

25.
|s|≤b ∧⊓y
�
|y ′|≤b→⊔x(x = y ′)

�
→ s >0 ′

→⊔y(y = |⌊s/2⌋|)→⊔y(y = |s|)
⊓-Introduction: 24

26. s >0 ′→⊔y(y = |⌊s/2⌋|)→⊔y(y = |s|) MP: 17,19,25

27. ⊔y(y = |⌊s/2⌋|)→⊔y(y = |s|) ⊔ -Elimination: 6,11,16,26

28. ⊔y(y = |s|) BPI: 5,27

Lemma 19.2 PTA ⊢⊓x(|x |=b ⊔ |x |<b).

Proof. An informal argument for ⊓x(|x |=b ⊔ |x |<b) is the follow-

ing. Given an arbitrary x , we can find a t with t = |x | using Lemma

19.1. Lemma 18.3 allows us to tell whether t =b or t 6=b. In the second

case, in view of Axiom 13, we have t <b. Thus, we can tell whether t =b

or t <b, i.e., whether |x |=b or |x |<b. This means that we can resolve

|x |=b ⊔ |x |<b. Formally, we have:

1. ⊓x⊔y(y = |x |) Lemma 19.1

2. ⊓x⊓y(y = x ⊔ y 6= x) Lemma 18.3

3. t = |s| ∧ t =b→ |s|=b Logical axiom

4. t = |s| ∧ t =b→ |s|=b ⊔ |s|<b ⊔ -Choose: 3

5. |s|≤b Axiom 13

6. |s|≤b→ t = |s| ∧ t 6=b→ |s|<b PA

7. t = |s| ∧ t 6=b→ |s|<b MP: 5,6

8. t = |s| ∧ t 6=b→ |s|=b ⊔ |s|<b ⊓ -Choose: 7
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9. t = |s| ∧ (t =b ⊔ t 6=b)→ |s|=b ⊔ |s|<b ⊓ -Introduction: 4,8

10. t = |s| ∧⊓x⊓y(y = x ⊔ y 6= x)→ |s|=b ⊔ |s|<b ⊔-Choose (twice): 9

11.
⊔y(y = |s|) ∧⊓x⊓y(y = x ⊔ y 6= x)

→ |s|=b ⊔ |s|<b
⊓-Introduction: 10

12.
⊓x⊔y(y = |x |) ∧⊓x⊓y(y = x ⊔ y 6= x)

→ |s|=b ⊔ |s|<b
⊔-Choose: 11

13. |s|=b ⊔ |s|<b MP: 1,2,12

14. ⊓x(|x |=b ⊔ |x |<b) ⊓-Introduction: 13

19.2. The efficient computability of unary successor

In our subsequent treatment we will be using the abbreviation

E ⊐ F

for the expression ¬E ⊔ F . The operator ⊐ thus can be called choice

implication.

When omitting parentheses, ⊐ will have the same precedence level

as ⊔ , so that, say, E ⊐ F → G should be understood as (E ⊐ F)→ G

rather than E ⊐ (F → G).

The following lemma strengthens (the ⊓-closure of) Axiom 10 by

replacing → with ⊐ .

Lemma 19.3 PTA ⊢⊓x
�
|x ′|≤b⊐⊔y(y = x ′)

�
.

Proof. An informal argument for ⊓x
�
|x ′|≤b⊐⊔y(y = x ′)

�
goes

like this. Given an arbitrary x , using Lemma 19.2, we can figure out

whether |x |=b or |x |<b.

If |x |<b, then (by PA) |x ′|≤b. Then, using Axiom 10, we can find

a t with t = x ′. In this case, |x ′|≤b⊐⊔y(y = x ′) will be resolved by

choosing its right component ⊔y(y = x ′) and then specifying y as t in

it.

Suppose now |x |=b. Then, by PA, |x ′|≤b if and only if x is even.

And Axiom 12 allows us to tell whether x is even or odd. If x is even,

we resolve |x ′|≤b⊐⊔y(y = x ′) as in the previous case. And if x is

odd, then |x ′|≤b⊐⊔y(y = x ′), i.e. ¬|x ′|≤b ⊔⊔y(y = x ′), is resolved by

choosing its left component ¬|x ′|≤b.
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The following is a formalization of the above argument.

1. ⊓x(|x |=b ⊔ |x |<b) Lemma 19.2

2. |s|=b ⊔ |s|<b ⊓-Elimination: 1

3. ⊔x(s = x0 ⊔ s = x1) Axiom 12

4. |s ′|≤b→⊔x(x =s ′) Axiom 10

5.
�
|s ′|≤b→⊥
�
→ s = r0→ |s|=b→⊥ PA

6.
�
|s ′|≤b→ t =s ′
�
→ s = r0→ |s|=b→ t =s ′ PA

7.
�
|s ′|≤b→ t =s ′
�
→ s = r0→ |s|=b→⊔y(y =s ′) ⊔-Choose: 6

8.
�
|s ′|≤b→⊔x(x =s ′)

�
→ s = r0→ |s|=b→⊔y(y =s ′) Wait: 5,7

9. s = r0→ |s|=b→⊔y(y =s ′) MP: 4,8

10. s = r0→ |s|=b→ |s ′|≤b⊐⊔y(y =s ′) ⊔ -Choose: 9

11. s = r1→ |s|=b→¬|s ′|≤b PA

12. s = r1→ |s|=b→ |s ′|≤b⊐⊔y(y =s ′) ⊔ -Choose: 11

13.
s = r0 ⊔ s = r1→ |s|=b→ |s ′|
≤b⊐⊔y(y =s ′)

⊓ -Introduction: 10,12

14.
⊔x(s = x0 ⊔ s = x1)→ |s|=b→ |s ′|
≤b⊐⊔y(y =s ′)

⊓-Introduction: 13

15. |s|=b→ |s ′|≤b⊐⊔y(y =s ′) MP: 3,14

16.
�
|s ′|≤b→⊥
�
→ |s|<b→⊥ PA

17.
�
|s ′|≤b→ t =s ′
�
→ |s|<b→ t =s ′ PA

18.
�
|s ′|≤b→ t =s ′
�
→ |s|<b→⊔y(y =s ′) ⊔-Choose: 17

19.
�
|s ′|≤b→⊔x(x =s ′)

�
→ |s|<b→⊔y(y =s ′) Wait: 16,18

20. |s|<b→⊔y(y =s ′) MP: 4,19

21. |s|<b→ |s ′|≤b⊐⊔y(y =s ′) ⊔ -Choose: 20

22. |s ′|≤b⊐⊔y(y =s ′) ⊔ -Elimination: 2,15,21

23. ⊓x
�
|x ′|≤b⊐⊔y(y = x ′)

�
⊓-Introduction: 22
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19.3. The efficient computability of binary 0-successor

The following lemma strengthens Axiom 11 in the same way as Lemma

19.3 strengthens Axiom 10.

Lemma 19.4 PTA ⊢⊓x(|x0|≤b⊐⊔y(y = x0)
�
.

Proof. Informally, the argument underlying our formal proof of

⊓x(|x0|≤b⊐⊔y(y = x0)
�

is the following. Consider an arbitrary x .

Using Lemma 19.2, we can tell whether |x |=b or |x |<b. If |x |<b, then

|x0|≤b and, using Axiom 11, we can find a t with t = x0. We then

resolve |x0|≤b⊐⊔y(y = x0) by choosing its right ⊐ -component and

specifying y as t in it. Suppose now |x |=b. Using Axiom 9, we can tell

whether x is 0 or not. If x is 0, then |x0|≤b⊐⊔y(y = x0) is resolved

by choosing its right ⊐ -component and specifying y as x in it. Oth-

erwise, if x 6=0, then the size of x0 exceeds b. So, |x0|≤b⊐⊔y(y = x0)

is resolved by choosing its left ⊐ -component ¬|x0|≤b. Formally, we

have:

1. ⊓x(|x |=b ⊔ |x |<b) Lemma 19.2

2. |s|=b ⊔ |s|<b ⊓-Elimination: 1

3. s =0 ⊔ s 6=0 Axiom 9

4. s =0→ |s|=b→ s =s0 PA

5. s =0→ |s|=b→⊔y(y =s0) ⊔-Choose: 4

6. s =0→ |s|=b→ |s0|≤b⊐⊔y(y =s0) ⊔ -Choose: 5

7. s 6=0→ |s|=b→¬|s0|≤b PA

8. s 6=0→ |s|=b→ |s0|≤b⊐⊔y(y =s0) ⊔ -Choose: 7

9. |s|=b→ |s0|≤b⊐⊔y(y =s0) ⊔ -Elimination: 3,6,8

10. |s0|≤b→⊔x(x =s0) Axiom 11

11.
�
|s0|≤b→⊥
�
→ |s|<b→⊥ PA

12.
�
|s0|≤b→ t =s0
�
→ |s|<b→ t =s0 PA

13.
�
|s0|≤b→ t =s0
�
→ |s|<b→⊔y(y =s0) ⊔-Choose: 12

14.
�
|s0|≤b→⊔x(x =s0)

�
→ |s|<b→⊔y(y =s0) Wait: 11,13

15. |s|<b→⊔y(y =s0) MP: 10,14

16. |s|<b→ |s0|≤b⊐⊔y(y =s0) ⊔ -Choose: 15
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17. |s0|≤b⊐⊔y(y =s0) ⊔ -Elimination: 2,9,16

18. ⊓x(|x0|≤b⊐⊔y(y = x0)
�
⊓-Introduction: 17

19.4. The efficient computability of binary 1-successor

The following lemma is the same to Lemma 13.1 as Lemma 19.4 is to

Axiom 11.

Lemma 19.5 PTA ⊢⊓x(|x1|≤b⊐⊔y(y = x1)
�
.

Proof. The argument underlying our formal proof of

⊓x(|x1|≤b⊐⊔y(y = x1)
�

is the following. Consider an arbitrary x . Us-

ing Lemma 19.4, we can tell whether the size of x0 exceeds b, or else

find a t with t = x0. In the first case we resolve |x1|≤b⊐⊔y(y = x1) by

choosing its left component ¬|x1|≤b, because (we know from PA that)

|x0| = |x1|. In the second case, using Axiom 10, we find an r with

r = t ′. This axiom is applicable here because |t ′|≤b; |t ′|≤b, in turn, is

true because |t|≤b (by Axiom 13) and t is even, so the unary successor

of t is of the same size as t itself. Note that (as PA can help us to figure

out), in the present case, r = x1. So, we can resolve |x1|≤b⊐⊔y(y = x1)

by choosing its right component and then specifying y as r in it. For-

mally, we have:

1. ⊓x(¬|x0|≤b ⊔⊔y(y = x0)
�

Lemma 19.4

2. ¬|s0|≤b ⊔⊔y(y =s0) ⊓-Elimination: 1

3. ¬|s0|≤b→¬|s1|≤b PA

4. ¬|s0|≤b→ |s1|≤b⊐⊔y(y =s1) ⊔ -Choose: 3

5. |t|≤b Axiom 13

6. |t ′|≤b→⊔x(x = t ′) Axiom 10

7. |t|≤b ∧
�
|t ′|≤b→⊥
�
→ t =s0→⊥ PA

8. |t|≤b ∧
�
|t ′|≤b→ r = t ′
�
→ t =s0→ r =s1 PA

9. |t|≤b ∧
�
|t ′|≤b→ r = t ′
�
→ t =s0→⊔y(y =s1) ⊔-Choose: 8

10. |t|≤b ∧
�
|t ′|≤b→⊔x(x = t ′)

�
→ t =s0→⊔y(y =s1) Wait: 7,9

11. t =s0→⊔y(y =s1) MP: 5,6,10
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12. ⊔y(y =s0)→⊔y(y =s1) ⊓-Introduction: 11

13. ⊔y(y =s0)→ |s1|≤b⊐⊔y(y =s1) ⊔ -Choose: 12

14. |s1|≤b⊐⊔y(y =s1) ⊔ -Elimination: 2,4,1

15. ⊓x(|x1|≤b⊐⊔y(y = x1)
�
⊓-Introduction: 14

19.5. The efficient computability of addition

Lemma 19.6 PTA ⊢⊓x⊓y
�
|x + y |≤b⊐⊔z(z = x + y)

�
.

Proof. The main idea behind our proof of

⊓x⊓y
�
|x + y |≤b⊐⊔z(z = x + y)

�
, which proceeds by BSI induc-

tion, is the fact — known from PA — that the sum of two numbers

can be “easily” found from the sum of the binary predecessors of those

numbers. Specifically, observe that we have:

(i) s0+ r0=(s + r)0, because 2s +2r =2(s + r);

(ii) s0+ r1=(s + r)1, because 2s + (2r +1)=2(s + r)+1;

(iii) s1+ r0=(s + r)1, because (2s +1)+2r =2(s + r)+1;

(iv) s1+ r1=
�
(s + r)1
�
′, because (2s +1)+(2r +1)=

�
2(s + r)+1
�
+1.

The formula of induction is ⊓y
�
|s + y |≤b⊐⊔z(z =s + y)

�
(from

which the target formula immediately follows by ⊓-Introduction).

The basis ⊓y
�
|0+ y |≤b⊐⊔z(z =0+ y)

�
of induction can be estab-

lished/resolved rather easily, by choosing the right component of the
⊐ combination and selecting the value of z to be the same as the value

of y .

In resolving the inductive step

⊓y
�
|s + y |≤b⊐⊔z(z =s + y)

�
→⊓y
�
|s0+ y |≤b⊐⊔z(z =s0+ y)

�

⊓⊓y
�
|s1+ y |≤b⊐⊔z(z =s1+ y)

�
,

we wait for the environment to select a ⊓ -conjunct in the conse-

quent (bottom-up ⊓ -Introduction) and then select a value t for y

in it (bottom-up ⊓-Introduction). Let us say the left conjunct is se-

lected, meaning that the inductive step will be brought down to (i.e.

Vol. 8: Games, Game Theory

and Game Semantics

http://www.thebalticyearbook.org/


107 Giorgi Japaridze

the premise we are talking about will be)

⊓y
�
|s + y |≤b⊐⊔z(z =s + y)

�
→
�
|s0+ t|≤b⊐⊔z(z =s0+ t)

�
.

Using Axiom 12, we can find the binary predecessor r of t, and also

figure out whether t is r0 or r1. Let us say t = r0. Then we specify y as

r in the antecedent of the above formula, after which the problem we

need to resolve is, in fact,

�
|s + r|≤b⊐⊔z(z =s + r)

�
→
�
|s0+ r0|≤b⊐⊔z(z =s0+ r0)

�
.

Here we can wait till the environment selects one of the ⊐ -components

in the antecedent. If the left component is selected, we can resolve

the problem by selecting the left ⊐ -component in the consequent, be-

cause, if |s + r| exceeds b, then “even more so” does |s0+ r0|. Otherwise,

if the right component is selected, then we further wait till the envi-

ronment also selects a value u for z there, after which the problem will

be brought down to

u=s + r →
�
|s0+ r0|≤b⊐⊔z(z =s0+ r0)

�
.

But from the earlier observation (i) we know that s0+ r0= (s + r)0. So,

the above problem is, in fact, nothing but

u=s + r →
�
|u0|≤b⊐⊔z(z =u0)

�
,

which — whose consequent, that is — we can resolve using Lemma

19.4.

The remaining three possibilities of the above scenario are similar,

but will rely on observation (ii), (iii) or (iv) instead of (i), and Lemma

19.5 instead of 19.4. The case corresponding to (iv), in addition, will

also use Lemma 19.3.

Below is a formal counterpart of the above argument in full detail:

1. s =0+s PA

2. ⊔z(z =0+s) ⊔-Choose: 1

3. |0+s|≤b⊐⊔z(z =0+s) ⊔ -Choose: 2

4. ⊓y
�
|0+ y |≤b⊐⊔z(z =0+ y)

�
⊓-Introduction: 3

5. t = r0→¬|s + r|≤b→¬|s0+ t|≤b PA
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6. t = r1→¬|s + r|≤b→¬|s0+ t|≤b PA

7. t = r0 ⊔ t = r1→¬|s + r|≤b→¬|s0+ t|≤b ⊓ -Introduction: 5,6

8. t = r0 ⊔ t = r1→¬|s + r|≤b→ |s0+ t|≤b⊐⊔z(z =s0+ t) ⊔ -Choose: 7

9. ⊓x(|x0|≤b⊐⊔y(y = x0)
�

Lemma 19.4

10. |u0|≤b⊐⊔y(y =u0) ⊓-Elimination: 9

11. ¬|u0|≤b→ t = r0→ u=s + r →¬|s0+ t|≤b PA (observation (i))

12.
¬|u0|≤b→ t = r0→ u=s + r → |s0+ t|≤b
⊐⊔z(z =s0+ t)

⊔ -Choose: 11

13. w =u0→ t = r0→ u=s + r → w =s0+ t PA (observation (i))

14. w =u0→ t = r0→ u=s + r →⊔z(z =s0+ t) ⊔-Choose: 13

15.
⊔y(y =u0)→ t = r0→ u=s + r

→⊔z(z =s0+ t)
⊓-Introduction: 14

16.
⊔y(y =u0)→ t = r0→ u=s + r → |s0+ t|≤b
⊐⊔z(z =s0+ t)

⊔ -Choose: 15

17.
|u0|≤b⊐⊔y(y =u0)→ t = r0→ u=s + r

→ |s0+ t|≤b⊐⊔z(z =s0+ t)
⊓ -Introduction: 12,16

18. t = r0→ u=s + r → |s0+ t|≤b⊐⊔z(z =s0+ t) MP: 10,17

19. ⊓x(|x1|≤b⊐⊔y(y = x1)
�

Lemma 19.5

20. |u1|≤b⊐⊔y(y =u1) ⊓ -Elimination: 19

21. ¬|u1|≤b→ t = r1→ u=s + r →¬|s0+ t|≤b PA (observation (ii))

22.
¬|u1|≤b→ t = r1→ u=s + r → |s0+ t|≤b
⊐⊔z(z =s0+ t)

⊔ -Choose: 21

23. w =u1→ t = r1→ u=s + r → w =s0+ t PA (observation (ii))

24. w =u1→ t = r1→ u=s + r →⊔z(z =s0+ t) ⊔-Choose: 23

25.
⊔y(y =u1)→ t = r1→ u=s + r →

⊔z(z =s0+ t)
⊓-Introduction: 24

26.
⊔y(y =u1)→ t = r1→ u=s + r → |s0+ t|≤b
⊐⊔z(z =s0+ t)

⊔ -Choose: 25

27.
|u1|≤b⊐⊔y(y =u1)→ t = r1→ u=s + r

→ |s0+ t|≤b⊐⊔z(z =s0+ t)
⊓ -Introduction: 22,26

28. t = r1→ u=s + r → |s0+ t|≤b⊐⊔z(z =s0+ t) MP: 20,27
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29.
t = r0 ⊔ t = r1→ u= s + r → |s0+ t|≤b
⊐⊔z(z =s0+ t)

⊓ -Introduction: 18,28

30.
t = r0 ⊔ t = r1→⊔z(z =s + r)→ |s0+ t|≤b
⊐⊔z(z =s0+ t)

⊓-Introduction: 29

31.
t = r0 ⊔ t = r1→ |s + r|≤b⊐⊔z(z =s + r)→

|s0+ t|≤b⊐⊔z(z =s0+ t)
⊓ -Introduction: 8,30

32.
t = r0 ⊔ t = r1→⊓y

�
|s + y |≤b⊐⊔z(z =s + y)

�
→

|s0+ t|≤b⊐⊔z(z =s0+ t)
⊔-Choose: 31

33.
⊔x(t = x0 ⊔ t = x1)→⊓y

�
|s + y |≤

b⊐⊔z(z =s + y)
�
→ |s0+ t|≤b⊐⊔z(z =s0+ t)

⊓-Introduction: 32

34. ⊔x(t = x0 ⊔ t = x1) Axiom 12

35. ⊓y
�
|s + y |≤b⊐⊔z(z =s + y)

�
→ |s0+ t|≤b⊐⊔z(z =s0+ t) MP: 34,33

36.
⊓y
�
|s + y |≤b⊐⊔z(z =s + y)

�
→⊓y
�
|s0+ y |≤

b⊐⊔z(z =s0+ y)
� ⊓-Introduction: 35

37. t = r0→¬|s + r|≤b→¬|s1+ t|≤b PA

38. t = r1→¬|s + r|≤b→¬|s1+ t|≤b PA

39. t = r0 ⊔ t = r1→¬|s + r|≤b→¬|s1+ t|≤b ⊓ -Introduction: 37,38

40.
t = r0 ⊔ t = r1→¬|s + r|≤b→ |s1+ t|≤

b⊐⊔z(z =s1+ t)
⊔ -Choose: 39

41. ¬|u1|≤b→ t = r0→ u=s + r →¬|s1+ t|≤b PA (observation (iii))

42.
¬|u1|≤b→ t = r0→ u=s + r → |s1+ t|≤

b⊐⊔z(z =s1+ t)
⊔ -Choose: 41

43. w =u1→ t = r0→ u=s + r → w =s1+ t PA (observation (iii))

44. w =u1→ t = r0→ u=s + r →⊔z(z =s1+ t) ⊔-Choose: 43

45. ⊔y(y =u1)→ t = r0→ u=s + r →⊔z(z =s1+ t) ⊓-Introduction: 44

46.
⊔y(y =u1)→ t = r0→ u=s + r

→ |s1+ t|≤b⊐⊔z(z =s1+ t)
⊔ -Choose: 45

47.
|u1|≤b⊐⊔y(y =u1)→ t = r0→

u=s + r → |s1+ t|≤b⊐⊔z(z =s1+ t)
⊓ -Introduction: 42,46

48. t = r0→ u=s + r → |s1+ t|≤b⊐⊔z(z =s1+ t) MP: 20,47
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49. ¬|u1|≤b→ t = r1→ u=s + r →¬|s1+ t|≤b PA (observation (iv))

50.
¬|u1|≤b→ t = r1→ u=s + r

→ |s1+ t|≤b⊐⊔z(z =s1+ t)
⊔ -Choose: 49

51. ⊓x
�
|x ′|≤b⊐⊔y(y = x ′)

�
Lemma 19.3

52. |w ′|≤b⊐⊔y(y =w ′) ⊓-Elimination: 51

53.
¬|w ′|≤b→ w =u1→ t = r1→ u=s + r

→¬|s1+ t|≤b
PA (observation (iv))

54.
¬|w ′|≤b→ w =u1→ t = r1→

u=s + r → |s1+ t|≤b⊐⊔z(z =s1+ t)
⊔ -Choose: 53

55. v =w ′→ w =u1→ t = r1→ u=s + r → v =s1+ t PA (observation (iv))

56. v =w ′→ w =u1→ t = r1→ u=s + r →⊔z(z =s1+ t) ⊔-Choose: 55

57.
⊔y(y =w ′)→ w =u1→ t = r1→

u=s + r →⊔z(z =s1+ t)
⊓-Introduction: 56

58.
⊔y(y =w ′)→ w =u1→ t = r1→

u=s + r → |s1+ t|≤b⊐⊔z(z =s1+ t)
⊔ -Choose: 57

59.
|w ′|≤b⊐⊔y(y =w ′)→ w =u1→ t = r1→

u=s + r → |s1+ t|≤b⊐⊔z(z =s1+ t)
⊓ -Introduction: 54,58

60. w =u1→ t = r1→ u=s + r → |s1+ t|≤b⊐⊔z(z =s1+ t) MP: 52,59

61.
⊔y(y =u1)→ t = r1→ u=s + r →

|s1+ t|≤b⊐⊔z(z =s1+ t)
⊓-Introduction: 60

62.
|u1|≤b⊐⊔y(y =u1)→ t = r1→ u=s + r →

|s1+ t|≤b⊐⊔z(z =s1+ t)
⊓ -Introduction: 50,61

63. t = r1→ u=s + r → |s1+ t|≤b⊐⊔z(z =s1+ t) MP: 20,62

64.
t = r0 ⊔ t = r1→ u= s + r → |s1+ t|≤b
⊐⊔z(z =s1+ t)

⊓ -Introduction: 48,63

65.
t = r0 ⊔ t = r1→⊔z(z =s + r)→

|s1+ t|≤b⊐⊔z(z =s1+ t)
⊓-Introduction: 64

66.
t = r0 ⊔ t = r1→ |s + r|≤b⊐⊔z(z =s + r)→

|s1+ t|≤b⊐⊔z(z =s1+ t)
⊓ -Introduction: 40,65

67.
t = r0 ⊔ t = r1→⊓y

�
|s + y |≤b⊐⊔z(z =s + y)

�
→

|s1+ t|≤b⊐⊔z(z =s1+ t)
⊓-Choose: 66
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68.
⊔x(t = x0 ⊔ t = x1)→⊓y

�
|s + y |≤

b⊐⊔z(z =s + y)
�
→ |s1+ t|≤b⊐⊔z(z =s1+ t)

⊓-Introduction: 67

69.
⊓y
�
|s + y |≤b⊐⊔z(z =s + y)

�
→

|s1+ t|≤b⊐⊔z(z =s1+ t)
MP: 34,68

70.
⊓y
�
|s + y |≤b⊐⊔z(z =s + y)

�
→

⊓y
�
|s1+ y |≤b⊐⊔z(z =s1+ y)

� ⊓-Introduction: 69

71.
⊓y
�
|s + y |≤b⊐⊔z(z =s + y)

�

→⊓y
�
|s0+ y |≤b⊐⊔z(z =s0+ y)

�
⊓⊓y
�
|s1+ y |≤b⊐⊔z(z =s1+ y)

�

⊓ -Introduction: 36,70

72. ⊓y
�
|s + y |≤b⊐⊔z(z =s + y)

�
BSI: 4,71

73. ⊓x⊓y
�
|x + y |≤b⊐⊔z(z = x + y)

�
⊓-Introduction: 72

19.6. The efficient computability of multiplication

The following lemma is fully analogous to the lemma of the previous

subsection, with the difference that this one is about multiplication in-

stead of addition. Morally, the proof of this lemma is also very similar

to the proof of its counterpart. But, as multiplication is somewhat more

complex than addition, technically a formal proof here would be con-

siderably longer than the 73-step proof of Lemma 19.6, and producing

it would be no fun. For this reason, we limit ourselves to only an in-

formal proof. As noted earlier, sooner or later it would be necessary to

abandon the luxury of generating formal proofs, anyway.

Lemma 19.7 PTA ⊢⊓x⊓y
�
|x × y |≤b⊐⊔z(z = x × y)

�
.

Proof. By BSI induction on s, we want to prove

⊓y
�
|s × y |≤b⊐⊔z(z =s × y)

�
, from which the target formula follows by

⊓-Introduction.

The basis

⊓y
�
|0× y |≤b⊐⊔z(z =0× y)

�
(78)

of induction is simple: for whatever y , since 0=0× y , the problem

|0× y |≤b⊐⊔z(z =0× y) is resolved by choosing the right ⊐ -component

and specifying z as the value of 0. Our ability to produce such a value

is guaranteed by Axiom 8.
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The inductive step is

⊓y
�
|s × y |≤b⊐⊔z(z =s × y)

�
→⊓y
�
|s0× y |≤b⊐⊔z(z =s0× y)

�

⊓⊓y
�
|s1× y |≤b⊐⊔z(z =s1× y)

�
. (79)

In justifying it, we rely on the following facts — call them “observa-

tions” for subsequent references — provable in PA:

(i) s0× r0=(s × r)00, because 2s ×2r =4(s × r);

(ii) s0× r1=(s × r)00+s0, because 2s ×(2r +1)=4(s × r)+2s;

(iii) s1× r0=(s × r)00+ r0, because (2s +1)×2r =4(s × r)+2r;

(iv) s1× r1=(s × r)00+(s + r)1, because

(2s +1)×(2r +1)=4(s × r)+
�
2(s + r)+1
�
.

In resolving (79), at the beginning we wait till the environment se-

lects one of the two ⊓ -conjuncts in the consequent, and also a value t

for y there. What we see as a “beginning” here is, in fact, the end of the

proof of (79) for, as pointed out in Section 17, such proofs correspond

to winning strategies only when they are read bottom-up. And, as we

know, the steps corresponding to selecting a ⊓ -conjunct and select-

ing t for y are (bottom-up) ⊓ -Introduction and ⊓-Introduction. Then,

using Axiom 12, we find the binary predecessor r of t. Furthermore,

the same axiom will simultaneously allow us to tell whether t = r0 or

t = r1. We immediately specify (bottom-up ⊔-Choose) y as r in the

antecedent of (79). We thus have the following four possibilities to

consider now, depending on whether the left or the right ⊓ -conjunct

was selected in the consequent of (79), and whether t = r0 or t = r1. In

each case we will have a different problem to resolve.

Case 1: The problem to resolve (essentially) is

|s × r|≤b⊐⊔z(z =s × r)→ |s0× r0|≤b⊐⊔z(z =s0× r0). (80)

Pretending for a while — for simplicity — that no values that we are

going to deal with have sizes exceeding b, here is our strategy. Using

the resource provided by the antecedent of (80), we find the product w

of s and r. Then, using the resource provided by Lemma 19.4 (which,
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unlike the resource provided by the antecedent of (80), comes in an

unlimited supply) twice, we find the value v of w00, i.e. of (s× r)00.

In view of observation (i), that very v will be (equal to) s0× r0, so (80)

can be resolved by choosing the right ⊐ -component in its consequent

and specifying z as v.

The above, however, was a simplified scenario. In a complete sce-

nario without “cheating”, what may happen is that, while using the

antecedent of (80) in computing s× r, or while — after that — using

Lemma 19.4 in (first) computing (s× r)0 and (then) (s× r)00, we dis-

cover that the size of the to-be-computed value exceeds b and hence

the corresponding resource (the antecedent of (80), or Lemma 19.4)

does not really allow us to compute that value. Such a correspond-

ing resource, however, does allow us to tell that the size of the value

sought has exceeded b. And, in that case, (80) is resolved by choosing

the left component ¬|s0× r0|≤b of its consequent.

Case 2: The problem to resolve is

|s × r|≤b⊐⊔z(z =s × r)→ |s0× r1|≤b⊐⊔z(z =s0× r1). (81)

Here and in the remaining cases, as was done in the first paragraph of

Case 1, we will continue pretending that no values that we deal with

have sizes exceeding b. Violations of this simplifying assumption will

be handled in the way explained in the second paragraph of Case 1.

Here, we fist compute (the value of) (s × r)00 exactly as we did

in Case 1. Exploiting Lemma 19.4 one more time, we also compute

s0. Using these values, we then employ Lemma 19.6 to compute (s×

r)00+s0, and use the computed value to specify z in the consequent

of (81) (after first choosing the right ⊐ -component there, of course).

Observation (ii) guarantees success.

Case 3: The problem to resolve is

|s × r|≤b⊐⊔z(z =s × r)→ |s1× r0|≤b⊐⊔z(z =s1× r0). (82)

This case is very similar to the previous one, with the only differ-

ence that Lemma 19.4 will be used to compute r0 rather than s0, and

the success of the strategy will be guaranteed by observation (iii) rather

than (ii).

www.thebalticyearbook.org

Ptarithmetic 114

Case 4: The problem to resolve is

|s × r|≤b⊐⊔z(z =s × r)→ |s1× r1|≤b⊐⊔z(z =s1× r1). (83)

First, we compute (s×r)00 exactly as in Case 1. Using Lemma 19.6, we

also compute s + r and then, using Lemma 19.5, compute (s + r)1. With

the values of (s× r)00 and (s + r)1 now known, Lemma 19.6 allows us

to compute the value of (s× r)00+(s + r)1. Finally, using the resulting

value to specify z in the consequent of (83), we achieve success. It is

guaranteed by observation (iv).

19.7. The efficient computability of all explicitly polynomial functions

By “explicitly polynomial functions” in the title of this subsection we

mean functions represented by terms of the language of PTA. Such

functions are “explicitly polynomial” because they, along with vari-

ables, are only allowed to use 0, ′, + and ×.

Lemma 19.8 For any18 term τ, PTA ⊢ |τ|≤b⊐⊔z(z =τ).

Proof. We prove this lemma by (meta)induction on the complexity

of τ. The following Cases 1 and 2 comprise the basis of this induction,

and Cases 3-5 the inductive step.

Case 1: τ is a variable t. In this case the formula |τ|≤b⊐⊔z(z =τ),
i.e. |t|≤b⊐⊔z(z = t), immediately follows from the logical axiom t = t

by ⊔-Choose and then ⊔ -Choose.

Case 2: τ is 0. Then |0|≤b⊐⊔z(z =0) follows in a single step from

Axiom 8 by ⊔ -Choose.

Case 3: τ is θ ′ for some term θ . By the induction hypothesis, PTA

proves

|θ |≤b⊐⊔z(z =θ). (84)

Our goal is to establish the PTA-provability of |θ ′|≤b⊐⊔z(z =θ ′), which

is done as follows:

1. ⊓x
�
|x ′|≤b⊐⊔y(y = x ′)

�
Lemma 19.3
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2. ¬|θ |≤b→¬|θ ′|≤b PA

3. ¬|θ |≤b ∧⊓x
�
|x ′|≤b⊐⊔y(y = x ′)

�
→¬|θ ′|≤b Weakening: 2

4.
¬|θ |≤b ∧⊓x
�
|x ′|≤b⊐⊔y(y = x ′)

�
→

|θ ′|≤b⊐⊔z(z =θ ′)
⊔ -Choose: 3

5. s =θ ∧ ¬|s ′|≤b→¬|θ ′|≤b Logical axiom

6. s =θ ∧ ¬|s ′|≤b→ |θ ′|≤b⊐⊔z(z =θ ′) ⊔ -Choose: 5

7. s =θ ∧ t =s ′ → t =θ ′ Logical axiom

8. s =θ ∧ t =s ′ →⊔z(z =θ ′) ⊔-Choose: 7

9. s =θ ∧⊔y(y =s ′)→⊔z(z =θ ′) ⊓-Introduction: 8

10. s =θ ∧⊔y(y =s ′)→ |θ ′|≤b⊐⊔z(z =θ ′) ⊔ -Choose: 9

11.
s =θ ∧
�
|s ′|≤b⊐⊔y(y =s ′)

�
→

|θ ′|≤b⊐⊔z(z =θ ′)
⊓ -Introduction: 6,10

12.
s =θ ∧⊓x
�
|x ′|≤b⊐⊔y(y = x ′)

�
→

|θ ′|≤b⊐⊔z(z =θ ′)
⊔-Choose: 11

13.
⊔z(z =θ) ∧⊓x
�
|x ′|≤b⊐⊔y(y = x ′)

�
→

|θ ′|≤b⊐⊔z(z =θ ′)
⊓-Introduction: 12

14.

�
|θ |≤b⊐⊔z(z =θ)

�
∧⊓x
�
|x ′|≤

b⊐⊔y(y = x ′)
�
→ |θ ′|≤b⊐⊔z(z =θ ′)

⊓ -Introduction: 4,13

15. |θ ′|≤b⊐⊔z(z =θ ′) MP: (84),1,14

Case 4: τ is θ 1
+θ 2 for some terms θ 1 and θ 2. By the induction

hypothesis, PTA proves both of the following formulas:

|θ 1|≤b⊐⊔z(z =θ 1); (85)

|θ 2|≤b⊐⊔z(z =θ 2). (86)

Our goal is to establish the PTA-provability of |θ 1
+θ 2|≤b⊐⊔z(z =θ 1

+θ 2),

which is done as follows:

1. ⊓x⊓y
�
|x + y |≤b⊐⊔z(z = x + y)

�
Lemma 19.6

2. ¬|θ 1|≤b→¬|θ 1
+θ 2|≤b PA

3. ¬|θ 1|≤b→ |θ 1
+θ 2|≤b⊐⊔z(z =θ 1

+θ 2) ⊔ -Choose: 2
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4.

¬|θ 1|≤b ∧
�
|θ 2|≤b⊐⊔z(z =θ 2)

�
∧⊓x⊓y

�
|x + y |≤b⊐⊔z(z = x + y)

�
→

|θ 1
+θ 2|≤b⊐⊔z(z =θ 1

+θ 2)

Weakenings: 3

5. ¬|θ 2|≤b→¬|θ 1
+θ 2|≤b PA

6. ¬|θ 2|≤b→ |θ 1
+θ 2|≤b⊐⊔z(z =θ 1

+θ 2) ⊔ -Choose: 5

7.
⊔z(z =θ 1) ∧ ¬|θ 2|≤b ∧⊓x⊓y

�
|x + y |

≤b⊐⊔z(z = x + y)
�
→ |θ 1

+θ 2|≤b⊐⊔z(z =θ 1
+θ 2)

Weakenings: 6

8. t1
=θ 1 ∧ t2

=θ 2 ∧ ¬|t1
+ t2|≤b→¬|θ 1

+θ 2|≤b Logical axiom

9.
t1
=θ 1 ∧ t2

=θ 2 ∧ ¬|t1
+ t2|≤b

→ |θ 1
+θ 2|≤b⊐⊔z(z =θ 1

+θ 2)
⊔ -Choose: 8

10. t1
=θ 1 ∧ t2

=θ 2 ∧ t = t1
+ t2→ t =θ 1

+θ 2 Logical axiom

11. t1
=θ 1 ∧ t2

=θ 2 ∧ t = t1
+ t2→⊔z(z =θ 1

+θ 2) ⊔-Choose: 10

12.
t1
=θ 1 ∧ t2

=θ 2 ∧⊔z(z = t1
+ t2)→

⊔z(z =θ 1
+θ 2)

⊓-Introduction: 11

13.
t1
=θ 1 ∧ t2

=θ 2 ∧⊔z(z = t1
+ t2)→

|θ 1
+θ 2|≤b⊐⊔z(z =θ 1

+θ 2)
⊔ -Choose: 12

14.
t1
=θ 1 ∧ t2

=θ 2 ∧
�
|t1

+ t2|≤b⊐⊔z(z = t1
+ t2)
�

→ |θ 1
+θ 2|≤b⊐⊔z(z =θ 1

+θ 2)
⊓ -Introduction: 9,13

15.
t1
=θ 1 ∧ t2

=θ 2 ∧⊓x⊓y
�
|x + y |≤b

⊐⊔z(z = x + y)
�
→ |θ 1

+θ 2|≤b⊐⊔z(z =θ 1
+θ 2)

⊔-Chooses: 14

16.
⊔z(z =θ 1) ∧⊔z(z =θ 2) ∧⊓x⊓y

�
|x + y |≤b

⊐⊔z(z = x + y)
�
→ |θ 1

+θ 2|≤b⊐⊔z(z =θ 1
+θ 2)

⊓-Introductions: 15

17.

⊔z(z =θ 1) ∧
�
|θ 2|≤b⊐⊔z(z =θ 2)

�

∧⊓x⊓y
�
|x + y |≤b⊐⊔z(z = x + y)

�

→ |θ 1
+θ 2|≤b⊐⊔z(z =θ 1

+θ 2)

⊓ -Introduction: 7,16

18.

�
|θ 1|≤b⊐⊔z(z =θ 1)

�
∧
�
|θ 2|≤b⊐⊔z(z =θ 2)

�
∧

⊓x⊓y
�
|x + y |≤b⊐⊔z(z = x + y)

�
→

|θ 1
+θ 2|≤b⊐⊔z(z =θ 1

+θ 2)

⊓ -Introduction: 4,17

19. |θ 1
+θ 2|≤b⊐⊔z(z =θ 1

+θ 2) MP: (85),(86),1,18

Case 5: τ is θ 1
×θ 2 for some terms θ 1 and θ 2. Here we only outline

a proof/solution for the target |θ 1
×θ 2|≤b⊐⊔z(z =θ 1

×θ 2). Using the

induction hypothesis (85) and Axiom 9,19 we figure out whether θ 1
=0

Vol. 8: Games, Game Theory

and Game Semantics

http://www.thebalticyearbook.org/


117 Giorgi Japaridze

or not. If θ 1
=0, then θ 1

×θ 2 is also 0, and we solve the target by choos-

ing its right component ⊔z(z =θ 1
×θ 2) and then naming the value of 0

(which is found using Axiom 8) for z. Suppose now θ 1
6=0. Then we do

for θ 2 the same as what we did for θ 1, and figure out whether θ 2
=0 or

θ 2
6=0. If θ 2

=0, we solve the target as we did in the case θ 1
=0. Suppose

now θ 2, just like θ 1, does not equal to 0. Note that then the proof

given in Case 4 goes through for our present case virtually without

any changes, only with “×” instead of “+” and “Lemma 19.7” instead

of “Lemma 19.6”. Indeed, the only steps of that proof that would be

generally incorrect for × instead of + are steps 2 and 5. Namely, the

formula of step 2 is false when θ 2
=0, and the formula of step 5 is false

when θ 1
=0. But, in the case that we are considering, these possibilities

have been handled separately and by now are already ruled out.

19.8. The efficient computability of subtraction

The formula of the following lemma, as a computational problem, is

about finding the difference z between any two numbers x and y and

then telling whether this difference is x − y or y − x .

Lemma 19.9 PTA ⊢⊓x⊓y⊔z(x = y +z ⊔ y = x +z).

Proof. As we did in the case of Lemma 19.7, showing a proof idea

or sketch instead of a detailed formal proof would be sufficient here. By

BSI+ induction on s, we want to prove ⊓y⊔z(s = y +z ⊔ y =s +z), from

which the target formula follows by ⊓-Introduction.

The basis

⊓y⊔z(0= y +z ⊔ y =0+z) (87)

of induction is proven as follows:

1. t =0+ t PA

2. 0= t + t ⊔ t =0+ t ⊔ -Choose: 1

3. ⊔z(0= t +z ⊔ t =0+z) ⊔-Choose: 2

4. ⊓y⊔z(0= y +z ⊔ y =0+z) ⊓-Introduction: 3
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The inductive step is

|s0|≤b ∧⊓y⊔z(s = y +z ⊔ y =s +z)→⊓y⊔z(s0= y +z ⊔ y =s0+z)

⊓⊓y⊔z(s1= y +z ⊔ y =s1+z). (88)

To prove (88), it would be sufficient to prove the following two formu-

las, from which (88) follows by ⊓ -Introduction:

|s0|≤b ∧⊓y⊔z(s = y +z ⊔ y =s +z)→⊓y⊔z(s0= y +z ⊔ y =s0+z); (89)

|s0|≤b ∧⊓y⊔z(s = y +z ⊔ y =s +z)→⊓y⊔z(s1= y +z ⊔ y =s1+z). (90)

Let us focus on (89) only, as the case with (90) is similar. (89) follows

from the following formula by ⊓-Introduction:

|s0|≤b ∧⊓y⊔z(s = y +z ⊔ y =s +z)→⊔z(s0= t +z ⊔ t =s0+z). (91)

A strategy for the above, which can eventually be translated into a

bottom-up PTA-proof, is the following. Using Axiom 12, we find the

binary predecessor r of t, and also determine whether t = r0 or t = r1.

Consider the case of t = r0. Solving (91) in this case essentially

means solving

|s0|≤b ∧⊓y⊔z(s = y +z ⊔ y =s +z)→⊔z(s0= r0+z ⊔ r0=s0+z). (92)

We can solve the above by using the second conjunct of the antecedent

(specifying y as r in it) to find a w such that s = r +w or r =s +w, with “or”

here being a choice one, meaning that we will actually know which of

the two alternatives is the case. Let us say the case is s = r +w (with

the other case being similar). From PA we know that, if s = r +w, then

s0= r0+w0. So, in order to solve the consequent of (92), it would be

sufficient to specify z as the value u of w0, and then choose the left

⊔ -disjunct s0= r0+u of the resulting formula. Such a u can be com-

puted using Axiom 11: |w0|≤b→⊔x(x =w0), whose antecedent is true

because, according to the first conjunct of the antecedent of (92), the

size of s0 — and hence of w0 — does not exceed b.

The remaining case of t = r1 is similar, but it additionally requires

proving ⊓x
�

x 6=0⊐⊔y(x = y ′)
�

(the efficient computability of unary

predecessor), doing which is left as an exercise for the reader.
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19.9. The efficient computability of “x ’s yth bit”

For any natural numbers n and i — as always identified with the corre-

sponding binary numerals — we will write (n)i =0 for a formula saying

that |n|> i and bit #i of n is 0. Similarly for (n)i =1. In either case the

count of the bits of n starts from 0 rather than 1, and proceeds from

left to right rather than (as more common in the literature) from right

to left. So, for instance, if n = 100, then 1 is its bit #0, and the 0s are

its bits #1 and #2.

Lemma 19.10 PTA ⊢⊓x⊓y
�
|x |> y ⊐ (x)y =0 ⊔ (x)y =1

�
.

Proof. We limit ourselves to providing an informal argument

within PTA. The target formula follows by ⊓-Introduction from

⊓y
�
|s|> y ⊐ (s)y =0 ⊔ (s)y =1

�
, and the latter we prove by BSI.

The basis of induction is

⊓y
�
|0|> y ⊐ (0)y =0 ⊔ (0)y =1

�
. (93)

Solving it is easy. Given any y , using Axiom 9, figure out whether y =0

or y 6=0. If y =0, then resolve (93) by choosing (0)y =0 in it. Otherwise,

choose ¬|0|> y .

The inductive step is

⊓y
�
|s|> y ⊐ (s)y =0 ⊔ (s)y =1

�
→

⊓y
�
|s0|> y ⊐ (s0)y =0 ⊔ (s0)y =1

�
⊓⊓y
�
|s1|> y ⊐ (s1)y =0 ⊔ (s1)y =1

�
.

(94)

Solving it is not hard, either. It means solving the following two prob-

lems, from which (94) follows by first applying ⊔-Choose, then ⊓-

Introduction and then ⊓ -Introduction:

|s|> r ⊐ (s)r =0 ⊔ (s)r =1→ |s0|> r ⊐ (s0)r =0 ⊔ (s0)r =1; (95)

|s|> r ⊐ (s)r =0 ⊔ (s)r =1→ |s1|> r ⊐ (s1)r =0 ⊔ (s1)r =1. (96)

To solve (95), wait till the environment selects one of the three ⊔ -

disjuncts in the antecedent. If (s)r =0 is selected, then select (s0)r =0

in the consequent and you are done. Similarly, if (s)r =1 is selected,

then select (s0)r =1 in the consequent. Suppose now ¬|s|> r is selected.

In this case, using Lemma 19.1, find the value of |s| and then, using
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Lemma 18.3, figure out whether |s|= r or |s| 6= r. If |s|= r, then select

(s0)r =0 in the consequent of (95); otherwise, if |s| 6= r, select ¬|s0|> r

there.

The problem (96) is solved in a similar way, with the difference

that, where in the previous case we selected (s0)r =0, now (s1)r =1

should be selected.

20. TWO MORE INDUCTION RULES

This section establishes the closure of PTA under two additional vari-

ations of the PTI and WPTI rules. These variations are not optimal as

they could be made stronger,20 nor are they natural enough to deserve

special names. But these two rules, exactly in their present forms, will

be relied upon later in Section 21. Thus, the present section is a purely

technical one, and a less technically-minded reader may want to omit

the proofs of its results.

Lemma 20.1 The following rule is admissible in PTA:

R→ E(w) ∧ F(w) |t ′|≤b ∧ E(t) ∧ F(t)→ E(t)∧
�

E(t ′) ⊓ F(t ′)
�

R ∧ w ≤ t ≤τ→ E(t)∧ F(t)
,

where R is any elementary formula, w is any variable, t is any variable

other than b, τ is any b-term, E(t), F(t) are any formulas, E(w) (resp.

E(t ′)) is the result of replacing in E(t) all free occurrences of t by w

(resp. t ′), and similarly for F(w), F(t ′).

Idea. We manage reduce this rule to PTI by taking

R ∧ |w +s|≤b→ E(w +s) and R ∧ |w + s|≤b→ F(w +s) in the roles of the

formulas E(s) and F(s) of the latter.

Proof. Assume all conditions of the rule, and assume its premises

are provable, i.e.,

PTA ⊢ R→ E(w) ∧ F(w); (97)

PTA ⊢ |t ′|≤b ∧ E(t) ∧ F(t)→ E(t) ∧
�

E(t ′) ⊓ F(t ′)
�
. (98)

Our goal is to show that PTA ⊢ R ∧ w ≤ t ≤τ→ E(t) ∧ F(t).
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Let us agree on the following abbreviations:

Ẽ(s) = R ∧ |w +s|≤b→ E(w +s); F̃(s) = R ∧ |w +s|≤b→ F(w +s).

As easily seen, we have

CL4 ⊢ f =w ∧
�

p→ P(w) ∧Q(w)
�
→
�

p ∧ q→ P( f )
�
∧
�

p ∧ q→Q( f )
�

and hence, by CL4-Instantiation,

PTA ⊢ w +0=w ∧
�
R→ E(w) ∧ F(w)

�
→
�
R ∧ |w +0|≤b→ E(w +0)

�

∧
�
R ∧ |w +0|≤b→ F(w +0)

�
.

The above, together with (97) and the obvious fact PA ⊢ w +0=w, by

Modus Ponens, yields

PTA ⊢
�
R ∧ |w +0|≤b→ E(w +0)

�
∧
�
R ∧ |w +0|≤b→ F(w +0)

�
,

i.e., using our abbreviations,

PTA ⊢ Ẽ(0) ∧ F̃(0). (99)

With a little effort, the following can be seen to be a valid formula

of classical logic:

�
|t ′|≤b ∧ p1(t) ∧ q1(t)→ p2(t) ∧ q2(t

′)
�
→

t =w +s→ |w +s ′|≤b ∧ |w +s|≤b ∧ (w +s) ′ =w +s ′→
�
R ∧ |w +s|≤b→ p1(w +s)

�
∧
�
R ∧ |w +s|≤b→ q1(w +s)

�
→

�
R ∧ |w +s|≤b→ p2(w +s)

�
∧
�
R ∧ |w +s ′|≤b→ q2(w +s ′)

�
.

Applying Match four times to the above formula, we find that CL4

proves

�
|t ′|≤b ∧ P1(t) ∧Q1(t)→ P2(t) ∧Q2(t

′)
�
→

t =w +s→ |w +s ′|≤b ∧ |w +s|≤b ∧ (w +s) ′ =w +s ′ →
�
R ∧ |w +s|≤b→ P1(w +s)

�
∧
�
R ∧ |w +s|≤b→Q1(w +s)

�
→

�
R ∧ |w +s|≤b→ P2(w +s)

�
∧
�
R ∧ |w +s ′|≤b→Q2(w +s ′)

�
.

(100)

Now we claim that

PTA ⊢ s ≤τ→ Ẽ(s) ∧ F̃(s). (101)
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Below comes a justification of this claim:

1. ¬|w +s ′|≤b ⊔⊔z(z =w +s ′) Lemma 19.8

2.
¬|w +s ′|≤b→ Ẽ(s) ∧ F̃(s)→ Ẽ(s) ∧
�
�
R ∧ |w +s ′|≤b→ E(w +s ′)

�
⊓
�
R ∧ |w +s ′|≤b→ F(w +s ′)

�
�

CL4-Instantiation, instance of ¬p→ P ∧Q1→ P ∧
�
(q ∧ p→Q2) ⊓ (q ∧ p→Q3)

�

3. ¬|w +s ′|≤b→ Ẽ(s) ∧ F̃(s)→ Ẽ(s) ∧
�

Ẽ(s ′) ⊓ F̃(s ′)
�

abbreviating 2

4. |v|≤b Axiom 13

5. |v|≤b→ v =w +s ′ → |w +s ′|≤b ∧ |w +s|≤b ∧ (w +s) ′ =w +s ′ PA

6. v =w +s ′ → |w +s ′|≤b ∧ |w +s|≤b ∧ (w +s) ′ =w +s ′ MP: 4,5

7. ¬|w +s|≤b ⊔⊔z(z =w +s) Lemma 19.8

8.
¬|w +s|≤b→ |w +s ′|≤b ∧ |w +s|≤b ∧ (w +s) ′ =w +s ′ →

Ẽ(s) ∧ F̃(s)→ Ẽ(s) ∧
�

Ẽ(s ′) ⊓ F̃(s ′)
�

CL4-Instantiation, instance of ¬p→ q1 ∧ p ∧ q2→ Q

9.

�
|t ′|≤b ∧ E(t) ∧ F(t)→ E(t) ∧ E(t ′)

�
→ t =w +s→ |w +s ′|≤b ∧ |w +s|≤b

∧ (w +s) ′ =w +s ′→
�
R ∧ |w +s|≤b→ E(w +s)

�
∧
�
R ∧ |w + s|≤b→ F(w +s)

�

→
�
R ∧ |w +s|≤b→ E(w +s)

�
∧
�
R ∧ |w +s ′|≤b→ E(w +s ′)

�

CL4-Instantiation, instance of (100)

10.

�
|t ′|≤b ∧ E(t) ∧ F(t)→ E(t)∧ E(t ′)

�
→

t =w +s→ |w +s ′|≤b ∧ |w +s|≤b ∧ (w +s) ′ =w +s ′→ Ẽ(s) ∧ F̃(s)→ Ẽ(s) ∧ Ẽ(s ′)
abbreviating 9

11.

�

|t ′|≤b ∧ E(t) ∧ F(t)→ E(t)∧
�

E(t ′) ⊓ F(t ′)
�
�

→

t =w +s→ |w +s ′|≤b ∧ |w +s|≤b ∧ (w +s) ′ =w +s ′→ Ẽ(s) ∧ F̃(s)→ Ẽ(s) ∧ Ẽ(s ′)
⊔ -Choose: 10

12.

�
|t ′|≤b ∧ E(t) ∧ F(t)→ E(t) ∧ F(t ′)

�
→

t =w +s→ |w + s ′|≤b ∧ |w + s|≤b ∧ (w +s) ′ =w +s ′→
�
R ∧ |w +s|≤b→ E(w +s)

�
∧
�
R ∧ |w +s|≤b→ F(w +s)

�
→

�
R ∧ |w +s|≤b→ E(w +s)

�
∧
�
R ∧ |w +s ′|≤b→ F(w +s ′)

�

CL4-Instantiation, instance of (100)

13.

�
|t ′|≤b ∧ E(t) ∧ F(t)→ E(t)∧ F(t ′)

�
→

t =w +s→ |w +s ′|≤b ∧ |w +s|≤b ∧ (w +s) ′ =w +s ′→ Ẽ(s) ∧ F̃(s)→ Ẽ(s) ∧ F̃(s ′)
abbreviating 12
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14.

�

|t ′|≤b ∧ E(t) ∧ F(t)→ E(t)∧
�

E(t ′) ⊓ F(t ′)
�
�

→

t =w +s→ |w +s ′|≤b ∧ |w +s|≤b ∧ (w +s) ′ =w +s ′→ Ẽ(s) ∧ F̃(s)→ Ẽ(s) ∧ F̃(s ′)
⊔ -Choose: 10

15.

�

|t ′|≤b ∧ E(t) ∧ F(t)→ E(t)∧
�

E(t ′) ⊓ F(t ′)
�
�

→

t =w +s→ |w + s ′|≤b ∧ |w + s|≤b ∧ (w +s) ′ =w +s ′→

Ẽ(s) ∧ F̃(s)→ Ẽ(s) ∧
�

Ẽ(s ′) ⊓ F̃(s ′)
�

⊓ -Introduction: 11,14

16.
t =w +s→ |w + s ′|≤b ∧ |w + s|≤b ∧ (w +s) ′ =w +s ′→

Ẽ(s) ∧ F̃(s)→ Ẽ(s) ∧
�

Ẽ(s ′) ⊓ F̃(s ′)
� MP: (98),15

17.
⊔z(z =w +s)→

|w +s ′|≤b ∧ |w +s ≤b| ∧ (w +s) ′ =w +s ′ → Ẽ(s) ∧ F̃(s)→ Ẽ(s) ∧
�

Ẽ(s ′) ⊓ F̃(s ′)
�

⊓-Introduction: 16

18. |w +s ′|≤b ∧ |w +s|≤b ∧ (w +s) ′ =w +s ′ → Ẽ(s) ∧ F̃(s)→ Ẽ(s) ∧
�

Ẽ(s ′) ⊓ F̃(s ′)
�

⊔ -Elimination: 7,8,17

19. v =w +s ′→ Ẽ(s) ∧ F̃(s)→ Ẽ(s) ∧
�

Ẽ(s ′) ⊓ F̃(s ′)
�

TR: 6,18

20. ⊔z(z =w +s ′)→ Ẽ(s) ∧ F̃(s)→ Ẽ(s) ∧
�

Ẽ(s ′) ⊓ F̃(s ′)
�
⊓-Introduction: 19

21. Ẽ(s) ∧ F̃(s)→ Ẽ(s) ∧
�

Ẽ(s ′) ⊓ F̃(s ′)
�
⊔ -Elimination: 1,3,20

22. Ẽ(s) ∧
�

Ẽ(s ′) ⊓ F̃(s ′)
�
→ Ẽ(s ′) ⊓
�

F̃(s ′) ∧ Ẽ(s)
�

CL4-Instantiation

23. Ẽ(s) ∧ F̃(s)→ Ẽ(s ′) ⊓
�

F̃(s ′) ∧ Ẽ(s)
�

TR: 21,22

24. s ≤τ→ Ẽ(s) ∧ F̃(s) PTI: (99), 23

The following is a disabbreviation of (101):

PTA ⊢ s ≤τ→
�
R ∧ |w +s|≤b→ E(w +s)

�
∧
�
R ∧ |w +s|≤b→ F(w +s)

�
.

It is easy to see that, by CL4-Instantiation, we also have

PTA ⊢
�

s ≤τ→
�
R ∧ |w +s|≤b→ E(w +s)

�
∧
�
R ∧ |w +s|≤b→ F(w +s)

�
�

→

s ≤τ ∧ R ∧ |w +s|≤b→ E(w +s) ∧ F(w +s).

Hence, by Modus Ponens,

PTA ⊢ s ≤τ ∧ R ∧ |w +s|≤b→ E(w +s) ∧ F(w +s). (102)
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Now, the following sequence is an PTA-proof of the target formula

R ∧ w ≤ t ≤τ→ E(t) ∧ F(t), which completes our proof of the present

lemma:

1. ⊓x⊓y⊔z(x = y +z ⊔ y = x +z) Lemma 19.9

2. ⊔z(w = t +z ⊔ t =w +z) ⊓-Elimination (twice): 1

3. s =0 ⊔ s 6=0 Axiom 8

4. s =0→ (w = t +s→ t =w) PA

5.
�
R→ E(w) ∧ F(w)

�
→ (w = t +s→ t =w)→

�
w = t +s→ R→ E(t)∧ F(t)

�

CL4-Instantiation

6. (w = t +s→ t =w)→
�
w = t +s→ R→ E(t)∧ F(t)

�
MP: (97),5

7. s =0→ w = t +s→ R→ E(t)∧ F(t) TR: 4,6

8. s =0→ w = t +s→ R ∧ w ≤ t ≤τ→ E(t) ∧ F(t) Weakening: 7

9. s 6=0→ w = t +s→¬w ≤ t ≤τ PA

10. s 6=0→ w = t +s→ R ∧ w ≤ t ≤τ→ E(t)∧ F(t) Weakenings: 9

11. w = t +s→ R ∧ w ≤ t ≤τ→ E(t)∧ F(t) ⊔ -Elimination: 3,8,10

12. |t|≤b Axiom 13

13. t =w +s ∧ w ≤ t ≤τ→ s ≤τ PA

14.
|t|≤b ∧ (t =w +s ∧ w ≤ t ≤τ→ s ≤τ) ∧

�
s ≤τ ∧ R ∧ |w +s|≤b→ E(w +s) ∧ F(w +s)

�

→ t =w +s→ R ∧ w ≤ t ≤τ→ E(t)∧ F(t)
CL4-Instantiation

15. t =w +s→ R ∧ w ≤ t ≤τ→ E(t)∧ F(t) MP: 12,13,(102),14

16. w = t +s ⊔ t =w +s→ R ∧ w ≤ t ≤τ→ E(t) ∧ F(t) ⊓ -Introduction: 11,15

17. ⊔z(w = t +z ⊔ t =w +z)→ R ∧ w ≤ t ≤τ→ E(t)∧ F(t) ⊓-Introduction: 16

18. R ∧ w ≤ t ≤τ→ E(t) ∧ F(t) MP: 2,17

Lemma 20.2 The following rule is admissible in PTA:

R→ F(w) R ∧ w ≤ t <τ ∧ F(t)→ F(t ′)

R ∧ w ≤ t ≤τ→ F(t)
,

where R is any elementary formula, w is any variable, t is any variable
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not occurring in R and different from b, F(t) is any formula, τ is any

b-term, and F(w) (resp. F(t ′)) is the result of replacing in F(t) all free

occurrences of t by w (resp. t ′).

Idea. This rule can be reduced to the rule of Lemma 20.1 by

taking ⊤ and R ∧ w ≤ t ≤τ→ F(t) in the roles of E(t) and F(t) of the

latter, respectively.

Proof. Assume all conditions of the rule, and assume its premises

are provable, i.e.,

PTA ⊢ R→ F(w); (103)

PTA ⊢ R ∧ w ≤ t <τ ∧ F(t)→ F(t ′). (104)

Our goal is to show that PTA ⊢ R ∧ w ≤ t ≤τ→ F(t).

Let us agree on the following abbreviation:

F̃(t) = R ∧ w ≤ t ≤τ→ F(t).

From (103), by Weakening, we have

PTA ⊢ R→ F̃(w). (105)

We now claim that

PTA ⊢ |t ′|≤b ∧⊤ ∧ F̃(t)→⊤ ∧
�
⊤ ⊓ F̃(t ′)
�
. (106)

This claim is justified a follows:

1. ¬|t ′|≤b ⊔⊔z(z = t ′) Lemma 19.8

2. |w|≤b Axiom 13

3. |w|≤b→¬|t ′|≤b→ t ′ 6=w Logical axiom

4. ¬|t ′|≤b→ t ′ 6=w MP: 2,3

5. ¬|t ′|≤b→ t ′ =w ⊔ t ′ 6=w ⊔ -Choose: 4

6. ⊓x⊓y(y = x ⊔ y 6= x) Lemma 18.3

7. r =w ⊔ r 6=w ⊓-Elimination (twice): 6

8. r =w→ r = t ′→ t ′ =w Logical axiom

9. r =w→ r = t ′→ t ′ =w ⊔ t ′ 6=w ⊔ -Choose: 8

10. r 6=w→ r = t ′→ t ′ 6=w Logical axiom
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11. r 6=w→ r = t ′→ t ′ =w ⊔ t ′ 6=w ⊔ -Choose: 10

12. r = t ′→ t ′ =w ⊔ t ′ 6=w ⊔ -Elimination: 7,9,11

13. ⊔z(z = t ′)→ t ′ =w ⊔ t ′ 6=w ⊓-Introduction: 12

14. t ′ =w ⊔ t ′ 6=w ⊔ -Elimination: 1,5,13

15. (R→ F(w)
�
→ t ′ =w→
�
R→ F(t ′)
�

CL4-Instantiation

16. t ′ =w→
�
R→ F(t ′)
�

MP: (103),15

17. t ′ =w→
�
R ∧ w ≤ t ≤τ→ F(t)

�
→
�
R ∧ w ≤ t ′ ≤τ→ F(t ′)

�
Weakenings: 16

18. t ′ 6=w→ (w ≤ t ′ ≤τ→ w ≤ t ≤τ ∧ w ≤ t <τ) PA

19.

�
R ∧ w ≤ t <τ ∧ F(t)→ F(t ′)

�
→

(w ≤ t ′ ≤τ→ w ≤ t ≤τ ∧ w ≤ t <τ)→
�
R ∧ w ≤ t ≤τ→ F(t)

�
→

�
R ∧ w ≤ t ′ ≤τ→ F(t ′)

�

CL4-Instantiation, instance of (q ∧ p3 ∧ P→Q)→ (p1→ p2 ∧ p3)→

(q ∧ p2→ P)→ (q ∧ p1→Q)

20.
(w ≤ t ′ ≤τ→ w ≤ t ≤τ ∧ w ≤ t <τ)→
�
R ∧ w ≤ t ≤τ→ F(t)

�
→
�
R ∧ w ≤ t ′ ≤τ→ F(t ′)

� MP: (104),19

21. t ′ 6=w→
�
R ∧ w ≤ t ≤τ→ F(t)

�
→
�
R ∧ w ≤ t ′ ≤τ→ F(t ′)

�
TR: 18,20

22.

�
R ∧ w ≤ t ≤τ→ F(t)

�
→

�
R ∧ w ≤ t ′ ≤τ→ F(t ′)

� ⊔ -Elimination: 14,17,21

23. F̃(t)→ F̃(t ′) abbreviating 22

24. |t ′|≤b ∧⊤ ∧ F̃(t)→ F̃(t ′) Weakenings: 23

25. F̃(t ′)→⊤ ∧
�
⊤ ⊓ F̃(t ′)
�

CL4-Instantiation

26. |t ′|≤b ∧⊤ ∧ F̃(t)→⊤ ∧
�
⊤ ⊓ F̃(t ′)
�

TR: 24,25

From (105) and (106), by the rule of Lemma 20.1, we get

PTA ⊢ R ∧ w ≤ t ≤τ→⊤ ∧ F̃(t). Of course (by CL4-Instantiation) PTA ⊢

⊤ ∧ F̃(t)→ F̃(t), so, by Transitivity, PTA ⊢ R ∧ w ≤ t ≤τ→ F̃(t). Disab-

breviating the latter, we thus have

PTA ⊢ R ∧ w ≤ t ≤τ→ R ∧ w ≤ t ≤τ→ F(t).

We also have

PTA ⊢ (R ∧ w ≤ t ≤τ→ R ∧ w ≤ t ≤τ→ F(t)
�
→
�
R ∧ w ≤ t ≤τ→ F(t)

�
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(the above formula is an instance of the obviously CL4-provable

(p→ p→Q)→ (p→Q)). So, by Modus Ponens, we find that PTA

proves the desired R ∧ w ≤ t ≤τ→ F(t).

21. THE EXTENSIONAL COMPLETENESS OF PTA

This section is devoted to proving the completeness part of Theorem

12.3. It means showing that, for any arithmetical problem A that has a

polynomial time solution, there is a theorem of PTA which, under the

standard interpretation, equals (“expresses”) A.

So, let us pick an arbitrary polynomial-time-solvable arithmetical

problem A. By definition, A is an arithmetical problem because, for

some formula X of the language of PTA, A = X †. For the rest of this

section, we fix such a formula

X ,

and fix

X

as an HPM that solves A (and hence X †) in polynomial time. Specifi-

cally, we assume that X runs in time

ξ(b),

where ξ(b), which we also fix for the rest of this section and which

sometimes can be written simply as ξ, is a b-term (a term containing

no variables other than b).

X may not necessarily be provable in PTA, and our goal is to con-

struct another formula X for which, just like for X , we have A= X † and

which, perhaps unlike X , is provable in PTA.

Remember our convention about identifying formulas of ptarith-

metic with (the games that are) their standard interpretations. So, in

the sequel, just as we have done so far, we shall typically write E, F, . . .

to mean either E, F, . . . or E†, F †, . . .. Similar conventions apply to terms

as well. In fact, we have just used this convention when saying that X

runs in time ξ. What was really meant was that it runs in time ξ†.
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21.1. Preliminary insights

Our proof is long and, in the process of going through it, it is easy to

get lost in the forest and stop seeing it for the trees. Therefore, it might

be worthwhile to try to get some preliminary insights into the basic

idea behind this proof before venturing into its details.

Let us consider the simplest nontrivial special case where X is

Y (x) ⊔ Z(x)

for some elementary formulas Y (x) and Z(x) (perhaps Z(x) is ¬Y (x),

in which case X expresses an ordinary decision problem — the problem

of deciding the predicate Y (x)).

The assertion “X does not win X in time ξ” can be formalized in

the language of PA through as a certain formula L. Then we let the

earlier mentioned X be the formula

�
Y (x) ∨ L
�
⊔
�

Z(x) ∨ L
�
.

Since X does win game X in time ξ, L is false. Hence Y (x) ∨ L is

equivalent to Y (x), and Z(x) ∨ L is equivalent to Z(x). This means

that X and X , as games, are the same, that is, X † = X †. It now remains

to understand why PTA ⊢ X .

A central lemma here is one establishing that the work of X is

“provably traceable”. Roughly, this means the provability of the fact

that, for any time moment t ≤ξ(b), we can tell (“can tell” formally in-

dicated with ⊔ or ⊔ applied to the possible alternatives) the state in

which X will be, the locations of its three scanning heads, and the

content of any of the cells of any of the three tapes. Letting X work

for ξ(b) steps, one of the following four eventual scenarios should take

place, and the provable traceability of the work of X can be shown to

imply that PTA proves the ⊔ -disjunction of formulas describing those

scenarios:

Scenario 1: X makes the move 0 (and no other moves).

Scenario 2: X makes the move 1 (and no other moves).

Scenario 3: X does not make any moves.
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Scenario 4: X makes an illegal move (perhaps after first making a

legal move 0 or 1).

In the case of Scenario 1, the play over X hits Y (x) ∨ L. And PTA

— in fact, PA — proves that, in this case, Y (x) ∨ L is true. The truth

of Y (x) ∨ L is indeed very easily established: if it was false, then Y (x)

should be false, but then the play of X over X (which, as a game, is

the same as X ) hits the false Y (x) and hence is lost, but then L is true,

but then Y (x) ∨ L is true. Thus, PTA ⊢ (Scenario 1)→ Y (x) ∨ L, from

which, by ⊔ -Choose, PTA ⊢ (Scenario 1)→ X .

The case of Scenario 2 is symmetric.

In the case of Scenario 3, (PTA proves that) X loses, i.e. L is

true, and hence, say, Y (x) ∨ L (or Z(x) ∨ L if you like) is true. That

is, PTA ⊢ (Scenario 3)→ Y (x) ∨ L, from which, by ⊔ -Choose, PTA ⊢

(Scenario 3)→ X .

The case of Scenario 4 is similar.

Thus, for each i ∈ {1,2,3,4}, PTA ⊢ (Scenario i)→ X . And, as we

also have

PTA ⊢ (Scenario 1) ⊔ (Scenario 2) ⊔ (Scenario 3) ⊔ (Scenario 4),

by ⊔ -Elimination, we find the desired PTA ⊢ X .

The remaining question to clarify is how the provable traceability

of the work of X is achieved. This is where PTI comes into play. In

the roles of the two formulas E and F of that rule we employ certain

nonelementary formulas E and F. With t being the “current time”,

E(t) is a formula which, as a resource, allows us to tell ( ⊔ or ⊔) the

current state of X , and ( ∧ ) the locations of its three heads, and ( ∧ )

the contents of the three cells under the three heads. And F(t) allows

us, for any (⊓) cell of any ( ∧ ) tape, to tell ( ⊔ ) its current content.

In order to resolve F(t ′) — that is, to tell the content of any (⊓)

given cell #c at time t +1 — all we need to know is the state of X ,

the content of cell #c, the locations of the scanning heads (perhaps

only one of them), and the contents of the three cells scanned by the

three heads at time t. The content of cell #c at time t can be obtained

from (a single copy of) the resource F(t), and the rest of the above

information from (a single copy of) the resource E(t). PTA is aware of

this, and proves E(t) ∧ F(t)→ F(t ′).
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Similarly, it turns out that, in order to resolve E(t ′), a single copy

of E(t) and a single copy of F(t) are sufficient, and PTA, being aware

of this, proves E(t) ∧ F(t)→ E(t ′).

The above two provabilities, by ⊓ -Introduction, imply PTA ⊢

E(t) ∧ F(t)→ E(t ′) ⊓ F(t ′). This is almost the inductive step of PTI.

What is missing is a ∧ -conjunct E(t) in the consequent. Not to

worry. Unlike F(t), E(t) is a recyclable resource due to the fact that

it does not contain ⊓ or ⊓ (albeit it contains ⊔ ,⊔). Namely, once

we learn — from the antecedental resource E(t) — about the state

of X , the locations of the three scanning heads and the cell con-

tents at those locations at time t, we can use/recycle that informa-

tion and “return/resolve back” E(t) in the consequent. A syntactic

equivalent — or rather consequence — of what we just said is that

the provability of E(t) ∧ F(t)→ E(t ′) ⊓ F(t ′) implies the provability of

E(t) ∧ F(t)→
�
E(t ′) ⊓ F(t ′)
�
∧ E(t), and hence also the provability of

the weaker E(t) ∧ F(t)→ E(t ′) ⊓
�
F(t ′) ∧ E(t)
�
.

Thus, PTA ⊢ E(t) ∧ F(t)→ E(t ′) ⊓
�
F(t ′) ∧ E(t)
�
. We also have

PTA ⊢ E(0) ∧ F(0), as this formula is essentially just a description

of the initial configuration of the machine. Then, by PTI, PTA ⊢

t ≤ξ(b)→ E(t) ∧ F(t). This is exactly what we meant by the provable

traceability of the work of X .

The above was about the pathologically simple case of X =

Y (x) ⊔ Z(x), and the general case will be much more complex, of

course. Among other things, provable traceability would have to ac-

count for the possibility of the environment making moves now and

then. And showing the provability of X would require a certain metain-

duction on its complexity, which we did not need in the present case.

But the idea that we have just tried to explain would still remain valid

and central, only requiring certain — nontrivial but doable — adjust-

ments and refinements.

21.2. The overline notation

Throughout the rest of this section, we assume that the formula X has

no free occurrences of variables other than b. There is no loss of gener-

ality in making such an assumption, because, if X does not satisfy this

condition, it can be replaced by the both semantically and deductively

equivalent ⊓-closure of it over all free variables different from b.
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We shall sometimes find it helpful to write X as

X (b).

When, after that, writing X (b) (where b is a constant), one should

keep in mind that it means the result of substituting b by b in X (b) not

only where we explicitly see b, but also in choice quantifiers ⊓ and ⊔,

which, as we remember, are lazy ways to write ⊓b and ⊔b. So, for

instance, if X (b) is ⊔xE(x) and c 6= b, then X (c) is not the same as

X (b) even if b does not occur in E(x), because the former is ⊔c xE(x)

and the latter is ⊔b xE(x). The same applies to any formula written in

the form F(b, . . .), of course.

Let us say that a formula is safe iff no two occurrences of quantifiers

in it bind the same variable. For simplicity and also without loss of

generality, we further assume that the formula X is safe (otherwise

make it safe by renaming variables).

Since X has no free variables other than b, for simplicity we can

limit our considerations to valuations that send every non-b variable

to 0. We call such valuations standard and use a special notation for

them. Namely, for an integer b, we write

eb

for the valuation such that eb(b) = b and, for any other variable v,

eb(v) = 0.

By a politeral of a formula we mean a positive occurrence of a

literal in it. While a politeral is not merely a literal but a literal L

together with a fixed occurrence, we shall often refer to it just by the

name L of the literal, assuming that it is clear from the context which

(positive) occurrence of L is meant.

We assume that the reader is sufficiently familiar with Gödel’s tech-

nique of encoding and arithmetizing. Using that technique, we can

construct a sentence

L

of the language of PA which asserts — more precisely, implies — “X

does not win X in time ξ”.

Namely, let E1(b, ~x), . . . , En(b, ~x) be all subformulas of X , where all

free variables of each E i(b, ~x) are among b, ~x (but not necessarily vice
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versa). Then the above sentence L is a natural formalization of the

following statement:

“There is a (finite) run Γ generated by X on some standard

bounded valuation eb such that:

(1) ⊤’s time in Γ is not smaller than ξ(b), or

(2) Γ is a ⊤-illegal run of X (b), or

(3) Γ is a legal run of X (b) and there is a tuple ~c of con-

stants (~c of the same length as ~x) such that:

• 〈Γ〉X (b) = E1(b,~c), and we have ¬‖E1(b,~c)‖ (i.e.,

‖E1(b,~c)‖ is false),

• or . . ., or

• 〈Γ〉X (b) = En(b,~c), and we have ¬‖En(b,~c)‖ (i.e.,

‖En(b,~c)‖ is false).”

As we remember, our goal is to construct a formula X which ex-

presses the same problem as X does and which is provable in PTA. For

any formula E — including X — we let

E

be the result of replacing in E every politeral L by L ∨ L.

Lemma 21.1 Any literal L is equivalent (in the standard model of arith-

metic) to L ∨ L.

Proof. That L implies L ∨ L is immediate, as the former is a dis-

junct of the latter. For the opposite direction, suppose L ∨ L is true at a

given valuation e. Its second disjunct cannot be true, because X does

win X in time ξ, contrary to what L asserts. So, the first disjunct, i.e.

L, is true.

Lemma 21.2 For any formula E, including X , we have E† = E†.

Proof. Immediately from Lemma 21.1 by induction on the com-

plexity of E.

In view of the above lemma, what now remains to do for the com-

pletion of our completeness proof is to show that PTA ⊢ X . The rest of

the present section is entirely devoted to this task.
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21.3. This and that

Lemma 21.3 For any formula E, PTA ⊢ L→ E.

Idea. E is a logical combination of “quasipoliterals” of the form

L ∨ L. Under the assumption (of the truth of) L, each such quasipolit-

eral becomes true and, correspondingly, E essentially becomes a logical

combination of ⊤s. Any such combination is very easy to solve/prove.

Proof. We prove this lemma by induction on the complexity of E.

If E has the form E[H1 ⊔ . . . ⊔ Hn], then, by the induction hypoth-

esis, PTA ⊢ L→ E[H1]. From here, by ⊔ -Choose, we get the desired

PTA ⊢ L→ E[H1 ⊔ . . . ⊔ Hn].

Quite similarly, if E has the form E[⊔xH(x)], then, by the induc-

tion hypothesis, PTA ⊢ L→ E[H(v)] (for whatever variable v you like).

From here, by ⊔-Choose, we get PTA ⊢ L→ E[⊔xH(x)].

Now assume E has no surface occurrences of ⊔ - and⊔-subformulas.

The formula ‖E‖ is a ( ∧ , ∨ ,∀,∃)-combination of ⊤s (originating from

⊓ - and ⊓-subformulas when elementarizing E) and formulas L ∨ L

(originating from L when transferring from E to E) where L is a po-

literal of E. ⊤ is true. If L is true, then each L ∨ L is also true no

matter what the values of the variables of L are (if L contains any vari-

ables at all). Therefore, clearly, ‖E‖, as a ( ∧ , ∨ ,∀,∃)-combination of

(always) true formulas, is true. Formalizing this argument in PA and

hence in PTA yields PTA ⊢ L→ ‖E‖, which, taking into account that L

is an elementary formula and hence L= ‖L‖, is the same as to say that

PTA ⊢ ‖L→ E‖. (107)

Suppose E has the form E[H1 ⊓ . . . ⊓ Hn]. Then, by the induction

hypothesis, PTA proves L→ E[H i] for each i ∈ {1, . . . , n}. Similarly,

suppose E has the form E[⊓xH(x)]. Let v be a variable different from

b and not occurring in E[⊓xH(x)]. Then, again by the induction hy-

pothesis, PTA proves L→ E[H(v)]. These observations, together with

(107), by Wait, yield the desired PTA ⊢ L→ E.

We shall say that a run generated by the machine X is prompt iff

⊥’s time in it is 0. In a prompt run, the environment always reacts to a
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move by X instantaneously (on the same clock cycle as that on which

X moved), or does not react at all. An exception is clock cycle #0,

on which the environment can move even if X did not move. Such

runs are convenient to deal with, because in them ⊤’s time equals the

timestamp of the last move. And this, in turn, means that no moves by

either player are made at any time greater or equal to ξ(b), where b is

the value assigned to b by the valuation spelled on the valuation tape

of the machine.

By our assumption, X wins X (in time ξ), meaning that every run

Γ generated by X on a bounded valuation e is a ⊤-won run of e[X ],

including the cases when Γ is prompt and e is standard. This allows us

to focus on prompt runs and standard valuations only. Specifically, we

are going to show that X is provable because X wins (in time ξ) every

prompt run of X on every standard bounded valuation.

Further, for our present purposes, environment’s possible strategies

can be understood as (limited to) fixed/predetermined behaviors seen

as finite sequences of moves with non-decreasing timestamps. Let us

call such sequences counterbehaviors. The meaning of a counterbe-

havior

〈(α1, t1), (α2, t2), . . . , (αn, tn)〉

is that the environment makes move α1 at time t1, move α2 at time

t2, . . . , move αn at time tn. If two consecutive moves have the same

timestamp, the moves are assumed to be made (appear in the run) in

the same order as they are listed in the counterbehavior.

Given a standard valuation e and a counterbehavior C =

〈(α1, t1), . . . , (αn, tn)〉, by the (C , e)-branch we mean the e-

computation branch of X where the environment acts according to

C — that is, makes move α1 at time t1, . . . , move αn at time tn. And

the (C , e)-run is the run spelled by this branch.

For natural numbers b and d, we say that a counterbehavior C is

(b, d)-adequate iff the following three conditions are satisfied:

(1) the (C , eb)-run is not a ⊥-illegal run of X (b);

(2) the (C , eb)-run is prompt;

(3) the timestamp of the last move of C (if C is nonempty) is less

than d.
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Thus, “C is (b, d)-adequate” means that, using this counterbehavior

against X with eb on the valuation tape of the latter, the environment

has played legally (condition 1), acted fast/promptly (condition 2),

and made all (if any) moves before time d (condition 3).

Just as with any finite objects, counterbehaviors can be encoded

through natural numbers. The code (Gödel number) of an object O

will be denoted by

ðOñ.

Under any encoding, the size of the code of a counterbehavior of inter-

est will generally exceed the value of b. But this is not going to be a

problem as we will quantify counterbehaviors using blind rather than

choice quantifiers.

For convenience, we assume that every natural number is the code

of some counterbehavior. This allows us to terminologically identify

counterbehaviors with their codes, and say phrases like “a is a (b, d)-

adequate counterbehavior” — as done below — which should be un-

derstood as “Where C is the counterbehavior with a = ðCñ, C is (b, d)-

adequate”. Similarly, “the (a, e)-branch” (or “the (a, e)-run”) will mean

“the (C , e)-branch (or (C , e)-run) where C is the counterbehavior with

a = ðCñ”.

Let E = E(b,~s) be a formula all of whose free variables are among

b,~s (but not necessarily vice versa). We will write

W
E(z, t1, t2,b,~s)

to denote an elementary formula whose free variables are exactly (the

pairwise distinct) z, t1, t2,b,~s, and which is a natural arithmetization

of the predicate which, for any constants a, d1, d2, b,~c, holds — that is,

WE(a, d1, d2, b,~c) is true — iff the following conditions are satisfied:

• 0<d1
≤d2

≤ξ(b);

• a is a (b, d1)-adequate counterbehavior;

• where Φ is the initial segment of the (a, eb)-run obtained from

the latter by deleting all moves except those whose timestamps

are less than d1, Φ is a legal position of E(b,~c);

• for the above Φ, we have 〈Φ〉X (b) = E(b,~c), and PA proves this

fact;
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• either d1 = 1 or, in the (a, eb)-branch, X has made some move

at time d1 − 1 (so that the effect of that move first took place at

time d1);

• for any k with d1
≤k <d2, no move is made at time k (i.e. no move

has the timestamp k) in the (a, eb)-run.

Thus, in the context of the (a, eb)-branch, WE(a, d1, d2, b,~c) says

that, exactly by time d1,21 the play has hit the position E(b,~c), and

that this position has remained stable (there were no moves to change

it) throughout the interval [d1, d2]. It does not rule out that a move

was made at time d2 but, as we remember, the effect of such a move

will take place by time d2 + 1 rather than d2.

It may be worthwhile to comment on the meaning of the above for

the special case where t2 is ξ(b). Keeping in mind that X runs in time

ξ(b), the formula

W
E(z, t,ξ(b),b,~s),

for any given values a, d, b,~c for z, t,b,~s, asserts — or rather implies —

that, in the scenario of the (a, eb)-branch, at time d, the play (position

to which X has evolved) hits E(b,~c) and remains stable ever after, so

that E(b,~c) is the final, ultimate position of the play.

We say that a formula E or the corresponding game is critical iff

one of the following conditions is satisfied:

• E is a ⊔ - or ⊔-formula;

• E is ∀yG or ∃yG, and G is critical;

• E is a ∨ -disjunction, with all disjuncts critical;

• E is a ∧ -conjunction, with at least one conjunct critical.

The importance of the above concept is related to the fact that (PA

knows that) a given legal run of X is lost by X if and only if the even-

tual formula/position hit by that run is critical.

Lemma 21.4 Assume E = E(b,~s) is a non-critical formula all of whose

free variables are among b,~s. Further assume θ ,ω, ~ψ are any terms ( ~ψ
of the same length as ~s), and z is a variable not occurring in these terms

or in E. Then

PTA ⊢ ∃zWE(z,θ ,ξ(ω),ω, ~ψ)→ ‖E(ω, ~ψ)‖.
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Idea. The antecedent of the above formula implies that some run

of X generated by X yields the non-critical eventual position E(ω, ~ψ).

If ‖E(ω, ~ψ)‖ is true, then so is ‖E(ω, ~ψ)‖. Otherwise, if ‖E(ω, ~ψ)‖ is

false, X has lost, so L is true. But the truth of the formula L, which

is disjuncted with every politeral of E(ω, ~ψ), easily implies the truth of

‖E(ω, ~ψ)‖. This argument is formalizable in PA.

Proof. Assume the conditions of the lemma. Argue in PA. Consider

arbitrary values of θ , ω, ~ψ, which we continue writing as θ , ω, ~ψ.

Suppose, for a contradiction, that the ultimate position — that is, the

position reached by the time ξ(ω) — of some play of X over X is

E(ω, ~ψ) (i.e., ∃zWE(z,θ ,ξ(ω),ω, ~ψ) is true) but ‖E(ω, ~ψ)‖ is false.

The falsity of ‖E(ω, ~ψ)‖ implies the falsity of ‖E(ω, ~ψ)‖. This is so

because the only difference between the two formulas is that, wherever

the latter has some politeral L, the former has a disjunction containing

L as a disjunct.

But ending with an ultimate position whose elementarization is

false means that X does not win X in time ξ (remember Lemma 9.3).

In other words,

L is true. (108)

Consider any non-critical formula G. By induction on the complex-

ity of G, we are going to show that ‖G‖ is true for any values of its free

variables. Indeed:

If G is a literal, then ‖G‖ is G ∨ L which, by (108), is true.

If G is H1 ⊓ . . . ⊓ Hn or ⊓xH(x), then ‖G‖ is ⊤ and is thus true.

G cannot be H1 ⊔ . . . ⊔ Hn or ⊔xH(x), because then it would be

critical.

If G is ∀yH(y) or ∃yH(y), then ‖G‖ is ∀y‖H(y)‖ or ∃y‖H(y)‖. In

either case ‖G‖ is true because, by the induction hypothesis, ‖H(y)‖ is

true for every value of its free variables, including variable y .

If G is H1 ∧ . . . ∧ Hn, then the formulas H1, . . . , Hn are non-critical.

Hence, by the induction hypothesis, ‖H1‖, . . . ,‖Hn‖ are true. Hence so

is ‖H1‖ ∧ . . . ∧ ‖Hn‖ which, in turn, is nothing but ‖G‖.

Finally, if G is H1 ∨ . . . ∨ Hn, then one of the formulas H i is non-

critical. Hence, by the induction hypothesis, ‖H i‖ is true. Hence so is

‖H1‖ ∨ . . . ∨ ‖Hn‖ which, in turn, is nothing but ‖G‖.
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Thus, for any non-critical formula G, ‖G‖ is true. This includes the

case G = E(ω, ~ψ) which, however, contradicts our earlier observation

that ‖E(ω, ~ψ)‖ is false.

Lemma 21.5 Assume E = E(b,~s) is a critical formula all of whose free

variables are among b,~s. Further assume θ ,ω, ~ψ are any terms ( ~ψ of the

same length as ~s), and z is a variable not occurring in these terms or in

E. Then

PTA ⊢ ∃zWE(z,θ ,ξ(ω),ω, ~ψ)→ E(ω, ~ψ).

Proof. Assume the conditions of the lemma. By induction on

complexity, one can easily see that the elementarization of any criti-

cal formula is false. Thus, ‖E(ω, ~ψ)‖ is false. Arguing further as we

did in the proof of Lemma 21.4 when deriving (108), we find that, if

∃zWE(z,θ ,ξ(ω),ω, ~ψ) is true, then so is L. And this argument can be

formalized in PA, so that we have

PTA ⊢ ∃zWE(z,θ ,ξ(ω),ω, ~ψ)→ L.

The above, together with Lemma 21.3, by Transitivity, implies PTA ⊢

∃zWE(z,θ ,ξ(ω),ω, ~ψ)→ E(ω, ~ψ).

21.4. Taking care of the case of small bounds

|ξ(b)| is logarithmic in b and hence, generally, it will be much smaller

than b. However, there are exceptions. For instance, when b = 1 and

ξ(b) = b+b, the size of ξ(b) is 2, exceeding b. Such exceptions will only

occur in a finite number of cases, where b is “very small”. These patho-

logical cases — the cases with ¬|ξ(b)|≤b — require a separate handling,

which we present in this subsection. The main result here is Lemma

21.11, according to which PTA proves ¬|ξ(b)|≤b→ X , i.e. proves the

target X on the assumption that we are dealing with a pathologically

small b. The remaining, “normal” case of |ξ(b)|≤b will be taken care of

later in Subsection 21.6.

For a natural number n, by the formal numeral for n, denoted n̂,

we will mean some standard variable-free term representing n. For
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clarity, let us say that the formal numeral for zero is 00, the formal

numeral for one is 01, the formal numeral for two is 010, the formal

numeral for three is 011, the formal numeral for four is 0100, etc.

The above-mentioned provability of ¬|ξ(b)|≤b→ X will be estab-

lished through showing (Lemma 21.10) that, for each particular pos-

itive integer b, including all of the finitely many b’s with ¬|ξ( b̂)|≤ b̂,

PTA proves b= b̂→ X . But we need a little preparation first.

Lemma 21.6 Let r be any variable, b any positive integer, and N the set

of all natural numbers a with |a|≤ b. Then

PTA ⊢ b= b̂→ ⊔ {r = â | a ∈ N}.

Idea. On the assumption b= b̂ and due to Axiom 13, PTA knows

that, whatever r is, its size cannot exceed b̂. In other words, it knows

that r has to be one of the elements of N . The main technical part of

our proof of the lemma is devoted to showing that this knowledge is,

in fact, constructive, in the sense that PTA can tell exactly which ( ⊔ )

element of N the number r is.

Proof. Assume the conditions of the lemma. Obviously we have

PA ⊢ |r|≤b→ b= b̂→ ∨ {r = â | a ∈ N},

modus-ponensing which with Axiom 13 yields

PTA ⊢ b= b̂→ ∨ {r = â | a ∈ N}. (109)

Next, consider any a ∈ N . We claim that

PTA ⊢ b= b̂→ r = â ⊔ r 6= â, (110)

which is justified as follows:

1. ¬|â|≤b ⊔⊔z(z = â) Lemma 19.8

2. ¬|â|≤b→ b 6= b̂ PA

3. ¬|â|≤b→
�
b= b̂→⊔z(z = â)

�
Weakening: 2

4. ⊔z(z = â)→
�
b= b̂→⊔z(z = â)

�
CL4-Instantiation, instance of P→ (q→ P)

5. b= b̂→⊔z(z = â) ⊔ -Elimination: 1,3,4
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6. ⊓x⊓y(y = x ⊔ y 6= x) Lemma 18.3

7. s = r ⊔ s 6= r ⊓-Elimination (twice): 6

8. s = r → s = â→ r = â Logical axiom

9. s = r → s = â→ r = â ⊔ r 6= â ⊔ -Choose: 8

10. s 6= r → s = â→ r 6= â Logical axiom

11. s 6= r → s = â→ r = â ⊔ r 6= â ⊔ -Choose: 10

12. s = â→ r = â ⊔ r 6= â ⊔ -Elimination: 7,9,11

13. ⊔z(z = â)→ r = â ⊔ r 6= â ⊓-Introduction: 12

14. b= b̂→ r = â ⊔ r 6= â TR: 5,13

Now, with a little thought, the formula

(b= b̂→ ∨ {r = â | a ∈ N}) ∧ ∧ {b= b̂→ r = â ⊔ r 6= â | a ∈ N}→

(b= b̂→ ⊔ {r = â | a ∈ N})

can be seen to be provable in CL3 and hence in PTA. Modus-

ponensing the above with (109) and (110) yields the desired PTA ⊢

b= b̂→ ⊔ {r = â | a ∈ N}.

Lemma 21.7 Let r be any variable, b any positive integer, and E(r) any

formula. Assume that, for each natural number a with |a|≤ b, PTA ⊢

E(â). Then PTA ⊢ b= b̂→ E(r).

Proof. Assume the conditions of the lemma. Let N be the set of

all numbers a with |a|≤ b. Consider any a ∈ N . Clearly, by CL4-

Instantiation, PTA ⊢ E(â)→ r = â→ E(r). Modus-ponensing this with

the assumption PTA ⊢ E(â) yields PTA ⊢ r = â→ E(r). This holds for

all a ∈ N , so, by ⊓ -Introduction, PTA ⊢ ⊔ {r = â | a ∈ N}→ E(r). But,

by Lemma 21.6, PTA ⊢ b= b̂→ ⊔ {r = â | a ∈ N}. Hence, by Transitivity,

PTA ⊢ b= b̂→ E(r).

Below and elsewhere, for a tuple ~c = c1, . . . , cn of constants, ~̂c
stands for the tuple ĉ1, . . . , ĉn.

Lemma 21.8 Assume E = E(b,~s) is a formula all of whose free variables

are among b,~s, b is any positive integer, and a,d1, d2,~c are any natural
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numbers (~c of the same length as ~s). ThenWE(â, d̂1, d̂2, b̂,~̂c) is true iff it

is provable in PA.

Proof. PA only proves true sentences. PA is also known to prove

all “mechanically verifiable” (of complexity Σ0
1, to be precise) true

sentences, such asWE(â, d̂1, d̂2, b̂,~̂c) is, if true.

Lemma 21.9 Under the conditions of Lemma 21.8, ifWE(â, d̂1, d̂2, b̂,~̂c)

is true, then PTA ⊢ b= b̂→ E( b̂,~̂c).

Idea. In the context of the (a, eb)-branch, the assumptions of the

lemma imply that, at some (d1) point, the play hits the position E(b,~c).
X may or may not make further moves to modify this position.

If a move is made, it brings us to a new position expressed through

a simpler formula, from which E(b,~c) follows by ⊓ -Choose or ⊓-

Choose. This allows us to apply the induction hypothesis to that for-

mula, and then find the provability of b= b̂→ E( b̂,~̂c) by the correspond-

ing Choose rule.

Suppose now no moves are made, so that the play ends as E(b,~c).
This position has to be non-critical, or otherwise X would be the loser.

Then Lemmas 21.4 and 21.8 allow us to find that the elementarization

of the target formula is provable. Appropriately manipulating the in-

duction hypothesis, we manage to find the provability of all additional

premises from which the target formula follows by Wait.

Proof. Our proof proceeds by induction on the complexity of

E(b,~s). Assume WE(â, d̂1, d̂2, b̂,~̂c) is true. We separately consider the

following two cases.

Case 1: WE(â, d̂1,ξ( b̂), b̂,~̂c) is not true. On the other hand, by

our assumption, WE(â, d̂1, d̂2, b̂,~̂c) is true. The latter implies that, in

the (a, eb)-branch, the play reaches (by time d1) the position E( b̂,~̂c)
which persists up to time d2; and the former implies that this situation

changes sometime afterwards (at the latest by time ξ(b)). So, a move

is made at some time m with d2
≤m<ξ(b). Such a move β (the earliest

one if there are several) cannot be made by the environment, because,

as implied by the assumptionWE(â, d̂1, d̂2, b̂,~̂c), a is a (b, d1)-adequate
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counterbehavior. So, β is a move by X . Since X wins X , β cannot be

an illegal move of the play. It is obvious that then one of the following

conditions holds:

(i) There is a formula H = H(b,~s) which is the result of replacing in

E(b,~s) a surface occurrence of a subformula G1 ⊔ . . . ⊔ Gn by one

of the Gi’s, such thatWH(â, m̂ ′, m̂ ′, b̂,~̂c) is true.

(ii) There is formula H = H(b,~s, r), where r is a variable not occur-

ring in E(b,~s), such that H(b,~s, r) is the result of replacing in

E(b,~s) a surface occurrence of a subformula ⊔yG(y) by G(r),

andWH(â, m̂ ′, m̂ ′, b̂,~̂c, k̂) is true for some constant k with |k|≤ b.

.

Thus, H(b,~c) (in case (i)) or H(b,~c, k) (in case (ii)) is the

game/position to which E(b,~c) is brought down by the above-

mentioned legal labmove ⊤β .

Assume condition (i) holds. By the induction hypothesis, PTA ⊢

b= b̂→ H( b̂,~̂c). Then, by ⊔ -Choose, PTA ⊢ b= b̂→ E( b̂,~̂c).
Assume now condition (ii) holds. Again, by the induction hypothe-

sis,

PTA ⊢ b= b̂→ H( b̂,~̂c, k̂). (111)

Obviously CL4 ⊢
�

p→Q( f )
�
→
�

r = f → p→Q(r)
�

whence, by CL4-

Instantiation,

PTA ⊢
�
b= b̂→ H( b̂,~̂c, k̂)

�
→
�

r = k̂→ b= b̂→ H( b̂,~̂c, r)
�
.

Modus-ponensing the above with (111) yields

PTA ⊢ r = k̂→
�
b= b̂→ H( b̂,~̂c, r)

�

from which, by ⊔-Choose,

PTA ⊢ r = k̂→
�
b= b̂→ E( b̂,~̂c)
�

and then, by ⊓-Introduction,

PTA ⊢⊔z(z = k̂)→
�
b= b̂→ E( b̂,~̂c)
�
. (112)
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We also have

PTA ⊢ b= b̂→⊔z(z = k̂), (113)

justified as follows:

1. ¬|k̂|≤b ⊔⊔z(z = k̂) Lemma 19.8

2. ¬|k̂|≤b→ b 6= b̂ PA

3. ¬|k̂|≤b→ b= b̂→⊔z(z = k̂) Weakening: 2

4. ⊔z(z = k̂)→ b= b̂→⊔z(z = k̂) CL4-Instantiation, instance of P → q→ P

6. b= b̂→⊔z(z = k̂) ⊔ -Elimination: 1,3,4

From (113) and (112), by Transitivity, PTA ⊢ b= b̂→ b= b̂→ E( b̂,~̂c).
But, by CL4-Instantiation, we have

PTA ⊢
�
b= b̂→ b= b̂→ E( b̂,~̂c)

�
→
�
b= b̂→ E( b̂,~̂c)
�

(this matches (p→ p→Q)→ (p→Q)). Hence, by Modus Ponens, we

find PTA ⊢ b= b̂→ E( b̂,~̂c), as desired.

Case 2: WE(â, d̂1,ξ( b̂), b̂,~̂c) is true. Then, by Lemma 21.8, PTA

provesWE(â, d̂1,ξ( b̂), b̂,~̂c). PTA also proves the following formula be-

cause it is a logical axiom:

W
E(â, d̂1,ξ( b̂), b̂,~̂c)→ ∃zWE(z, d̂1,ξ( b̂), b̂,~̂c).

Hence, by Modus Ponens,

PTA ⊢ ∃zWE(z, d̂1,ξ( b̂), b̂,~̂c). (114)

WE(â, d̂1,ξ( b̂), b̂,~̂c) implies that E(b,~c) is the final position of the play

over X according to the scenario of the (a, eb)-branch. Note that, there-

fore, E(b,~s) cannot be critical. This is so because, as observed earlier,

the elementarization of any critical formula is false, and having such a

formula as the final position in some play would makeX lose, contrary

to our assumption thatX (always) wins X . Therefore, by Lemma 21.4,

PTA ⊢ ∃zWE(z, d̂1,ξ( b̂), b̂,~̂c)→ ‖E( b̂,~̂c)‖.
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Modus-ponensing the above with (114) yields PTA ⊢ ‖E( b̂,~̂c)‖, from

which, by Weakening, PTA ⊢ b= b̂→ ‖E( b̂,~̂c)‖, which is the same as to

say that

PTA ⊢ ‖b= b̂→ E( b̂,~̂c)‖. (115)

Claim 1. Assume E( b̂,~̂c) has the form H[G1 ⊓ . . . ⊓ Gm], and i ∈

{1, . . . , m}. Then PTA ⊢ b= b̂→ H[Gi].

Proof. Assume the conditions of the claim. Let F = F(b,~s) be the

formula such that F( b̂,~̂c) = H[Gi]. Let β be the environment’s move

that brings H[G1 ⊓ . . . ⊓ Gm] to H[Gi]. Let k be the (code of the) coun-

terbehavior obtained by appending the timestamped move (β , d1
−1) to

(the counterbehavior whose code is) a. SinceWE(â, d̂1, d̂2, b̂,~̂c) is true,

obviouslyWF(k̂, d̂1, d̂1, b̂,~̂c) also has to be true. Then, by the induction

hypothesis, PTA ⊢ b= b̂→ F( b̂,~̂c), i.e. PTA ⊢ b= b̂→ H[Gi].

Claim 2. Assume E( b̂,~̂c) has the form H[⊓yG(y)], and r is an arbi-

trary non-b variable not occurring in E(b, ~x). Then PTA ⊢ b= b̂→ H[G(r)].

Proof. Assume the conditions of the claim. Let F = F(b,~s, r)

be the formula such that F( b̂,~̂c, r) = H[G(r)]. For each constant m

whose size does not exceed b, let βm be the environment’s move that

brings H[⊓yG(y)] to H[G(m)], and let km be the (code of the) coun-

terbehavior obtained by appending the timestamped move (βm, d1
−1)

to (the counterbehavior whose code is) a. Since WE(â, d̂1, d̂2, b̂,~̂c) is

true, obviously, for each constant m with |m|≤ b,WF(k̂m, d̂1, d̂1, b̂,~̂c, m̂)

is also true. Then, by the induction hypothesis, PTA ⊢ b= b̂→ F( b̂,~̂c, m̂),

i.e. PTA ⊢ b= b̂→ H[G(m̂)]. But then, by Lemma 21.7, PTA ⊢

b= b̂→ b= b̂→ F( b̂,~̂c, r), i.e. PTA ⊢ b= b̂→ b= b̂→ H[G(r)]. By CL4-

Instantiation, we also have

PTA ⊢
�
b= b̂→ b= b̂→ H[G(r)]

�
→
�
b= b̂→ H[G(r)]

�

(this is an instance of (p→ p→Q)→ (p→Q)). So, by Modus Ponens,

PTA ⊢ b= b̂→ H[G(r)].

From (115), Claim 1 and Claim 2, by Wait, we find the desired

PTA ⊢ b= b̂→ E( b̂,~̂c).
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Lemma 21.10 For any positive integer b, PTA ⊢ b= b̂→ X (b).

Proof. Consider any positive integer b. Let a be (the code of)

the empty counterbehavior. Of course, WX(â, 1̂, 1̂, b̂) is true. Then, by

Lemma 21.9, PTA ⊢ b= b̂→ X ( b̂). But the formula

�
b= b̂→ X ( b̂)
�
→
�
b= b̂→ X (b)
�

is an instance of the CL4-provable
�
b= f → P( f )
�
→
�
b= f → P(b)
�

and,

by CL4-Instantiation, is provable in PTA. Hence, by Modus Ponens,

PTA ⊢ b= b̂→ X (b).

Lemma 21.11 PTA ⊢ ¬|ξ(b)|≤b→ X (b).

Idea. PTA knows that, if ¬|ξ(b)|≤b, then b= b̂ for one of finitely

many particular (“very small”) positive integers b. Furthermore, as in

Lemma 21.6, we can show that such knowledge is constructive, in the

sense that PTA can tell ( ⊔ ) exactly for which b do we have b= b̂. Then

the desired conclusion easily follows from Lemma 21.10.

Proof. The size of ξ(b) can be greater than b for only a certain

finite number of “small” non-0 values of b. Let N be the set of all such

values. Obviously

PA ⊢ b 6=0→¬|ξ(b)|≤b→ ∨ {b= â | a ∈ N},

modus-ponensing which with Lemma 13.2 yields

PTA ⊢ ¬|ξ(b)|≤b→ ∨ {b= â | a ∈ N}. (116)

By Lemma 21.10, for each a ∈ N we have PTA ⊢ b= â→ X (b).

Hence, by ⊓ -Introduction,

PTA ⊢ ⊔ {b= â | a ∈ N}→ X (b). (117)

Next we claim that

for each a ∈ N, PA ⊢ b= â ⊔ b 6= â. (118)
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Below is a justification of this claim for an arbitrary a ∈ N :

1. ¬|â|≤b ⊔⊔z(z = â) Lemma 19.8

2. ¬|â|≤b→ b 6= â PA

3. ¬|â|≤b→ b= â ⊔ b 6= â ⊔ -Choose: 2

4. ⊓x⊓y(y = x ⊔ y 6= x) Lemma 18.3

5. s =b ⊔ s 6=b ⊓-Elimination (twice): 4

6. s =b→ s = â→ b= â Logical axiom

7. s =b→ s = â→ b= â ⊔ b 6= â ⊔ -Choose: 6

8. s 6=b→ s = â→ b 6= â Logical axiom

9. s 6=b→ s = â→ b= â ⊔ b 6= â ⊔ -Choose: 8

10. s = â→ b= â ⊔ b 6= â ⊔ -Elimination: 5,7,9

11. ⊔z(z = â)→ b= â ⊔ b 6= â ⊓-Introduction: 10

12. b= â ⊔ b 6= â ⊔ -Elimination: 1,3,11

The following formula can be easily seen to be provable in CL3 and

hence in PTA:

PTA ⊢ ∧ {b= â ⊔ b 6= â | a ∈ N}→ ∨ {b= â | a ∈ N}→ ⊔ {b= â | a ∈ N}.

Modus-ponensing the above with (118) yields

PTA ⊢ ∨ {b= â | a ∈ N}→ ⊔ {b= â | a ∈ N}. (119)

Now, from (116), (119) and (117), by Transitivity applied twice,

we get PTA ⊢ ¬|ξ(b)|≤b→ X (b) as desired.

21.5. Ptarithmetizing HPM-computations

In this subsection we prove the earlier-mentioned “provable traceabil-

ity” of the work ofX , in a certain technically strong form necessary for

our further treatment. As we remember, roughly it means the construc-

tive knowledge by PTA of the configurations ofX in its interaction with

a given adversary (the latter thought of as a counterbehavior). The

present elaboration is the first relatively advanced example of “ptarith-

metization” or, more generally, “clarithmetization” — extending Gödel’s
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arithmetization technique from the classical context to the context of

computability logic.

Let STATES be the set of all states of the machine X , and SYMBOLS

be the set of all symbols that may appear on any of its tapes. As we

know, both sets are finite. We assume that the cells of each of the three

tapes are numbered consecutively starting from 0 (rather than 1).

Below we introduce elementary formulas that naturally arithmetize

the corresponding metapredicates.

• Adequate(z, w, t)means “z is a (w, t)-adequate counterbehavior”.

• For each a ∈ STATES, Statea(z, w, t)means “In the (z, ew)-branch,

at time t, X is in state a”.

• For each a ∈ SYMBOLS, VSymbola(z, w, t,u)means “In the (z, ew)-

branch, at time t, cell #u of the valuation tape contains symbol

a”. Similarly for WSymbola(z, w, t,u) (for the work tape) and

RSymbola(z, w, t,u) (for the run tape).

• VHead(z, w, t,u)means “In the (z, ew)-branch, at time t, the head

of the valuation tape is over cell #u”. Similarly for WHead(z, w, t,u)

(for the work tape) and RHead(z, w, t,u) (for the run tape).

• Runsize(z, w, t,u)means “In the (z, ew)-branch, at time t, the left-

most blank cell of the run tape is cell #u”.

• E(z, t) abbreviates

Adequate(z,b, t) ∧

⊔ {Statea(z,b, t) | a ∈ STATES} ∧
�

∃x
�
Runsize(z,b, t, x) ∧ |x |≤b

�
⊐⊔xRunsize(z,b, t, x)

�

∧

⊔x
�
VHead(z,b, t, x) ∧ ⊔ {VSymbola(z,b, t, x) | a ∈ SYMBOLS}

�
∧

⊔x
�
WHead(z,b, t, x) ∧ ⊔ {WSymbola(z,b, t, x) | a ∈ SYMBOLS}

�
∧

⊔x
�
RHead(z,b, t, x) ∧ ⊔ {RSymbola(z,b, t, x) | a ∈ SYMBOLS}

�
.

• F(z, t) abbreviates

⊓x
�
⊔ {VSymbola(z,b, t, x) | a ∈ SYMBOLS}

�
∧

⊓x
�
⊔ {WSymbola(z,b, t, x) | a ∈ SYMBOLS}

�
∧

�

⊓x
�
⊔ {WSymbola(z,b, t, x) | a ∈ SYMBOLS}

�

⊓⊓x
�
⊔ {RSymbola(z,b, t, x) | a ∈ SYMBOLS}

�
�

.
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Note that both formulas E(z, t) and F(z, t), in addition to z and t, con-

tain b as a free variable, which we however do not explicitly indicate

as it will never be replaced by any other term.

We use ∃! as a standard abbreviation, defined by

∃!zT (z) = ∃z
�

T (z) ∧ ∀y
�

T (y)→ y =z)
�
�

.

Let z be any variable and T — let us (also) write it in the form

T (z) — any elementary formula. We say that T is functional for z iff

PTA ⊢ ∃!zT (z).

For variables z,t and an elementary formula T = T (z) functional

for z, we will be using E(zT, t) as an abbreviation defined by

E(zT, t) = ∀z
�

T (z)→ E(z, t)
�
.

Similarly for F(zT, t). It is our convention that, whenever using these

abbreviations, the variables z and t are not the same, so that t does not

get bound by the external ∀z. Similarly, if we write E(zT,θ) or F(zT,θ)
where θ is a term, it will be assumed that θ does not contain z.

Lemma 21.12 For any elementary formula T functional for z, PTA proves

E(zT, t)→ E(zT, t) ∧ E(zT, t).

Idea. As explained in Subsection 21.1, E — whether in the form

E(z, t) or E(zT, t) — is essentially a “recyclable” resource because it

does not contain ⊓ ,⊓.

Proof. Bottom-up, a proof of the target formula goes like this.

Keep applying ⊓-Introduction and ⊓ -Introduction until the antecedent

(in the given branch of the proof tree) becomes

∀z
�

T →

Adequate(z,b, t) ∧

Statea(z,b, t) ∧

Runsize(z,b, t,u) ∧
�
VHead(z,b, t, v) ∧ VSymbolb(z,b, t, v)

�
∧

�
WHead(z,b, t, w) ∧WSymbolc(z,b, t, w)

�
∧

�
RHead(z,b, t, r) ∧ VSymbold(z,b, t, r)

�
�
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— or, maybe, the same but with “¬∃x
�
Runsize(z,b, t, x) ∧ |x |≤b

�
” in-

stead of “Runsize(z,b, t,u)” — for some variables u, v, w, r, state a and

symbols b, c, d. Then apply a series of ⊔ -Chooses and ⊔-Chooses and

bring the consequent to a conjunction of two copies of the antecedent.

Now we are dealing with a classically valid and hence provable ele-

mentary formula of the form F → F ∧ F .

Lemma 21.13 For any elementary formula T functional for z, PTA proves

E(zT, t) ∧ F(zT, t)→ F(zT, t ′). (120)

Idea. For reasons in the spirit of an explanation given in Sub-

section 21.1, a single copy of the resource E(zT, t) and a single copy

of the resource F(zT , t) turn out to be sufficient so solve the problem

F(zT, t ′).

Proof. The following formula is provable in CL4 by Match applied

three times:

∀z
�

P1(z) ∧ P2(z)→ P3(z)
�
→

�

∀z
�
q(z)→

P1(z)
�
∧ ∀z
�
q(z)→ P2(z)
�
→ ∀z(q(z)→ P3(z)

�
�

. (121)

Consider the formula

∀z
�

E(z, t) ∧ F(z, t)→ F(z, t ′)
�

. (122)

The formula (122)→ (120), which — after disabbreviating zT in (120)

— is

∀z
�

E(z, t) ∧ F(z, t)→ F(z, t ′)
�

→
�

∀z
�

T (z)→ E(z, t)
�
∧ ∀z
�

T (z)→ F(z, t)
�
→ ∀z
�

T (z)→ F(z, t ′)
�
�

,

can be seen to be an instance of (121) and hence, by CL4-Instantiation,

provable in PTA. Therefore, if PTA proves (122), then, by Modus Po-

nens, it also proves the target (120). Based on this observation, we

now forget about (120) and, in what follows, exclusively devote our

efforts to showing that PTA ⊢ (122).
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This is one of those cases where giving a full formal proof in the

style practiced earlier is not feasible. But by now we have acquired

enough experience in working with PTA to see that the informal argu-

ment provided below can be translated into a strict PTA-proof if neces-

sary.

Argue in PTA. Consider an arbitrary (∀) counterstrategy z. The

context of our discourse will be the play ofX against z on the standard

valuation eb — the (z, eb)-branch, that is. Assume that a single copy of

the antecedental resource E(z, t) ∧ F(z, t) is at our disposal. We need

to show how to resolve the consequental problem F(z, t ′).

For resolving the first conjunct of F(z, t ′), we need to tell, for an

arbitrary (⊓) given x , the content of cell #x of the valuation tape at

time t ′. This is very easy: the content of the valuation tape never

changes. So, the symbol in cell #x at time t ′ will be the same as at

time t, and what symbol it is we can learn from the first conjunct of

(the antecedental resource) F(z, t). In more detailed terms, a solu-

tion/deduction strategy corresponding to the above outline is to wait

(bottom-up ⊓-introduction) till the environment specifies a value (syn-

tactically, a “fresh” variable) s for x in the first ∧ -conjunct of F(z, t ′);

then, using the same s (bottom-up ⊔-Choose), specify the value of

x in the first ∧ -conjunct of F(z, t); after that, wait (bottom-up ⊓ -

introduction) till the environment selects one of the ⊔ -disjuncts in the

first ∧ -conjunct of F(z, t) (or rather of what that formula has become),

and then select (bottom-up ⊔ -Choose) the same ⊔ -disjunct in the first

∧ -conjunct of F(z, t ′). Henceforth we will no longer provide such de-

tails, and will limit ourselves to just describing strategies, translatable

(as we just saw) into bottom-up PTA-deductions.

For resolving the second conjunct of F(z, t ′), we need to tell, for

an arbitrary (⊓) given x , the content of cell #x of the work tape at

time t ′. This is not hard, either. At first, using the fifth conjunct of

E(z, t), we determine the location m of the work-tape head and the

tape symbol cW at that location at time t. If m 6= x (Lemma 18.3 can

be used to tell whether this is the case or not), then the symbol in cell

#x at time t ′ will remain the same cW . Suppose now m = x . Then we

further use the second, fourth and sixth conjuncts of E(z, t) to learn

about the state a of the machine at time t and the symbols cV and cR

scanned at that time by the heads of the valuation and the run tapes.
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Now, knowing cV , cW , cR and a, based on the transition function of X ,

we can tell what symbol will be written in cell #x of the work tape by

time t ′.

The left ⊓ -conjunct of the third ∧ -conjunct of F(z, t ′) is identical

to the second ∧ -conjunct of F(z, t ′), and it can be resolved as we just

saw above. However, to avoid an (unacceptable/unavailable) repeated

usage of resources, we will employ the first ⊓ -conjunct of the third ∧ -

conjunct of F(z, t) instead of the second ∧ -conjunct of F(z, t) as was

done in the previous case. Of course, we will also need to use some

parts of the resource E(z, t) which were already used by the proce-

dure of the previous case. This, however, does not create any resource

conflicts. Because any information extracted from E(z, t) earlier is still

there, so the relevant parts of E(z, t) do not really need to be “queried”

again, as we already know answers. That (re)using E(z, t) does not

create any competition for resources should be remembered through

the remaining part of this proof and the proof of the following lemma

as well. This phenomenon of the “recycleability” of E(z, t) was, in fact,

already established in Lemma 21.12.

Finally, for resolving the right ⊓ -conjunct of the third ∧ - conjunct

of F(z, t ′), we need to tell, for an arbitrary (⊓) given x , the content of

cell #x of the run tape at time t ′. This is how it can be done. Let us

call j the location of the leftmost blank cell of the run tape at time t. At

first, we wait till the environment selects one of the ⊔ -disjuncts of the

third ∧ -conjunct of E(z, t). If the left disjunct is selected, then b< | j|

(or else the selected disjunct is false and we win). Then we also have

(|x |< | j| and hence) x < j, because the size of (the ⊔ -bound) x cannot

exceed b. If the right disjunct is selected instead, the environment will

have to further provide the actual value of j. Then, using Lemma 19.9,

we can figure out whether x < j or not. Thus, in either case, we will

know whether x < j or x ≥ j and, if x ≥ j, we will also know the value

of j. First, suppose x < j. Then the content of cell #x at time t ′ is

obviously the same as at time t, and information about this content

can be obtained from the right ⊓ -conjunct of the third ∧ -conjunct of

F(z, t).22 Similarly if the state of X was not a move state at time t

(and information about whether this was the case is available from the

second conjunct of E(z, t)). Now assume (we know the value of j and)

x ≥ j, and also assume the state of X at time t was a move state. If
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x = j (use Lemma 18.3 to tell if this is so or not), then the content of

cell #x at time t ′ will be the symbol ⊤. Otherwise, if x 6= j, meaning

that x > j, then the content of cell #x at time t ′ will be the content c

of cell #(x − j −1) of the work tape at time t (Lemma 19.9 can again

be used to compute the value of x − j −1). Such a c can be found using

the left ⊓ -conjunct of the third ∧ -conjunct of F(z, t). Well, what we

just said is true unless x − j −1 is greater than or equal to the location of

the work-tape head at time t (known from E(z, t)), in which case the

content of cell #x of the run tape at time t ′ will be blank.

Lemma 21.14 For any elementary formula T functional for z, PTA proves

|t ′|≤b ∧ E(zT, t) ∧ F(zT, t)→ E(zT, t ′). (123)

Idea. As in the previous lemma, a single copy of the resource

E(zT, t) and a single copy of the resource F(zT, t) turn out to be suf-

ficient so solve the problem E(zT, t ′). A minor additional technical

condition for this in the present case is that the size of t ′ should not

exceed b.

Proof. For reasons similar to those given at the beginning of

the proof of Lemma 21.13, it would be sufficient to show the PTA-

provability of the following formula instead of (123):

∀z
�

|t ′|≤b ∧ E(z, t) ∧ F(z, t)→ E(z, t ′)
�

. (124)

Argue in PTA. Consider an arbitrary (∀) counterstrategy z. As in

the proof of the previous lemma, the context of our discourse will be

the play according to the scenario of the (z, eb)-branch. Assume |t ′|≤b.

And assume that a single copy of the resource E(z, t) ∧ F(z, t) is at our

disposal. We need to show how to resolve E(z, t ′).

The first conjunct of E(z, t) is Adequate(z,b, t). It implies that

the environment does not move at t or any greater time, so that z

will remain adequate for any value greater than t as well. Thus,

Adequate(z,b, t ′) is true, which takes care of the first conjunct of

E(z, t ′).

The resource E(z, t) contains full information about the state of the

machine at time t, the locations of the three scanning heads, and the
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symbols at those three locations. This allows us to determine the next

state, and the next locations of the heads (“next” means “at time t ′”).

Note that we will have no problem naming those locations, as they

cannot exceed t ′ (moving a head farther than cell #t ′ would require

more than t ′ steps) and hence, in view of the assumption |t ′|≤b, their

sizes cannot exceed b. What we just said fully takes care of the second

conjunct of E(z, t ′), and partially takes care of the fourth, fifth and

sixth conjuncts. To turn this “partial care” into a full one, we need to

show how to tell the symbols looked at by the three heads at time t ′.

The content of the cell scanned by the valuation-tape head at time

t ′ will be the same as the content of that cell at time t, and this infor-

mation can be obtained from the first conjunct of F(z, t).

Since scanning heads (almost) always move left or right, the con-

tent of the cell scanned by the work-tape head at time t ′ will generally

also be the same as the content of that cell at time t, which can be

obtained from the second conjunct of F(z, t). An exception is when

the head is at the beginning of the tape at time t, writes a new symbol

and tries to move left which, however, results in staying put. In such

a case, we can obtain the symbol just written (i.e., the content of the

cell scanned by the head at time t ′) directly from our knowledge of

the transition function and our knowledge — already obtained earlier

from E(z, t) — of the state of X and the contents of the three cells

scanned at time t.

Let the cell scanned by the head of the run tape at time t ′ be cell #i

(the value of i has already been established earlier). Let the leftmost

blank cell of that tape at time t be cell # j. Since the run-tape head can

never move past the leftmost blank cell, we have either i = j or (i 6= j and

hence) i < j. The third conjunct of E(z, t) in combination with Lemma

18.3 can be used to tell which of these two alternatives is the case. If

i < j, then the content of the run-tape cell #i at time t ′ will be the same

as at time t, and this information can be obtained from the right ⊓ -

conjunct of the third ∧ -conjunct of F(z, t). Similarly if the state of X

was not a move state at time t (and information about whether this

was the case is available from the second conjunct of E(z, t)). Assume

now i = j, and the state of X at time t was a move state. Then the

content of cell #i at time t ′ will be the symbol ⊤ (the label of the

move made at time t).
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The above three paragraphs complete taking care of the fourth, fifth

and sixth conjuncts of E(z, t ′).

Finally, to solve the remaining third conjunct of E(z, t ′), wait till the

environment selects one of the two ⊔ -disjuncts of the third conjunct

of E(z, t). If the left disjunct is selected there, do the same in the third

conjunct of E(z, t ′). Suppose now the right conjunct is selected. Wait

till the environment further specifies a value j for x there. If X is not

in a move state at time t, do the exact same selections in the third

conjunct of E(z, t ′). Suppose nowX is in a move state at time t. Then

the location of the leftmost blank cell at time t ′ will be j + i +1, where

i is the location of the work-tape head at time t. Using the results of

Section 19, try to compute m with m= j + i +1. If |m| turns out to exceed

b, select the left ⊔ -disjunct of the third conjunct of E(z, t ′). Otherwise

select the right disjunct, and specify x as m there.

Lemma 21.15 For any elementary formula T functional for z, PTA proves

|t ′|≤b ∧ E(zT, t) ∧ F(zT, t)→ E(zT, t) ∧
�
E(zT, t ′) ⊓ F(zT, t ′)

�
.

Idea. This is a logical consequence of the previous three lem-

mas (i.e. a consequence exclusively due to logical axioms and rules,

without appealing to induction or any nonlogical axioms of PTA). Cor-

respondingly, the proof given below is a purely syntactic exercise.

Proof. The following sequence is a CL4-proof:

1. (p1→ p2 ∧⊤) ∧ (⊥ ∧⊥→⊤) ∧ (q ∧⊥ ∧⊥→⊤)→ q ∧ p1 ∧⊤→ p2 ∧⊤

Tautology

2. (p1→ p2 ∧ p3) ∧ (⊥ ∧⊥→⊤) ∧ (q ∧ p3 ∧ p4→ p5)→ q ∧ p1 ∧ p4→ p2 ∧ p5

Tautology

3. (p1→ p2 ∧ p3) ∧ (Q1 ∧Q2→Q4) ∧ (q ∧ p3 ∧ p4→ p5)→ q ∧ p1 ∧ p4→ p2 ∧ p5

Wait: 2

4. (p1→ p2 ∧Q1) ∧ (Q1 ∧Q2 →Q4) ∧ (q ∧Q1 ∧Q2→Q3)→ q ∧ p1 ∧Q2→ p2 ∧Q3

Match (3 times): 3

5. (p1→ p2 ∧ p3) ∧ (p3 ∧ p4→ p5) ∧ (q ∧⊥ ∧⊥→⊤)→ q ∧ p1 ∧ p4→ p2 ∧ p5

Tautology
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6. (p1→ p2 ∧ p3) ∧ (p3 ∧ p4→ p5) ∧ (q ∧Q1 ∧Q2→Q3)→ q ∧ p1 ∧ p4→ p2 ∧ p5

Wait: 5

7. (p1→ p2 ∧Q1) ∧ (Q1 ∧Q2 →Q4) ∧ (q ∧Q1 ∧Q2→Q3)→ q ∧ p1 ∧Q2→ p2 ∧Q4

Match (3 times): 6

8.
(p1→ p2 ∧Q1) ∧ (Q1 ∧Q2→Q4) ∧ (q ∧Q1 ∧Q2→Q3)→

q ∧ p1 ∧Q2→ p2 ∧ (Q3 ⊓Q4)
Wait: 1,4,7

9.
(Q1→Q1 ∧Q1) ∧ (Q1 ∧Q2→Q4) ∧ (q ∧Q1 ∧Q2→Q3)→

q ∧Q1 ∧Q2→Q1 ∧ (Q3 ⊓Q4)
Match (twice): 8

The following formula matches the last formula of the above se-

quence and hence, by CL4-Instantiation, it is provable in PTA:

�
E(zT, t)→ E(zT, t) ∧ E(zT, t)

�
∧
�
E(zT, t) ∧ F(zT, t)→ F(zT, t ′)

�

∧
�
|t ′|≤b ∧ E(zT, t) ∧ F(zT, t)→ E(zT, t ′)

�
→

|t ′|≤b ∧ E(zT, t) ∧ F(zT, t)→ E(zT, t) ∧
�
E(zT, t ′) ⊓ F(zT, t ′)

�
.

But, by Lemmas 21.12, 21.13 and 21.14, the three conjuncts of the

antecedent of the above formula are also provable. Hence, by Modus

Ponens, so is (the desired) consequent.

Lemma 21.16 Assume R is an elementary formula, w is any variable,

t is a variable other than b, z is a variable other than b, w, t, T is an

elementary formula functional for z, and

PTA ⊢ R→ E(zT, w) ∧ F(zT, w). (125)

Then

PTA ⊢ R ∧ w ≤ t ≤ξ(b)→ E(zT, t) ∧ F(zT, t). (126)

Proof. Immediately from Lemmas 21.15 and 20.1.

21.6. Taking care of the case of large bounds

We will be using

A(z, r, t)
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for a natural formalization of the predicate saying that r ≤ t, z is a

(b, r)-adequate counterbehavior (so that b is a hidden free variable of

this formula) and, in the (z, eb)-branch, X is not in a move state at any

time v with r ≤ v < t.

Next, we will be using

B(z, r, t)

as an abbreviation of

t <ξ(b) ∧A(z, r, t) ∧ ¬A(z, r, t ′).

In the context of the (z, eb)-branch, B(z, r, t) thus asserts that, on

the interval [r, t], one single move β was made, and it was made ex-

actly at time t. Note that, since the condition of the (b, r)-adequacy of

z is implied by (A(z, r, t) and hence) B(z, r, t), PA knows that the above

move β can only be made by X .

For a variable z and an elementary formula T functional for z, as we

did in the case of E and F, we will write A(zT, r, t) as an abbreviation

of ∀z(T →A(z, r, t)). Similarly for B(zT, r, t) andWE(zT, t1, t2,b,~s).

Lemma 21.17 Assume x ,u, z, w,~s are pairwise distinct non-b variables,

R is an elementary formula, T is an elementary formula functional for z,

E = E(b,~s) is a safe formula all of whose free variables are among b,~s,
and the following provabilities hold:

PTA ⊢ R→ ξ(b)=u; (127)

PTA ⊢ R→WE(zT, w, w,b,~s); (128)

PTA ⊢ R→ E(zT, w) ∧ F(zT, w). (129)

Then PTA proves

R→WE(zT, w,u,b,~s) ⊔⊔xB(zT, w, x). (130)

Idea. According to (128), PTA knows that, under the assumptions

(of the truth of) R and T , z is a (b, w)-adequate counterbehavior and,

in the context of the (z, eb)-branch, by time w, the play is legal and it

has evolved to the position E(b,~s). Under the above assumptions, the

target (130) is the problem of telling whether the same situation per-

sists up to time u (the left ⊔ -disjunct of the consequent), or whether
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a (legal or illegal) move is made at some time x with w ≤ x <ξ(b) (the

right ⊔ -disjunct), i.e. — in view of (127) — at some time x with

w ≤ x <u.

Solving this problem is not hard. Conditions (127) and (129), by

Lemma 21.16, imply full knowledge of the configurations of the ma-

chine at any time t with w ≤ t <u. Using this knowledge, we can trace

the work of the machine step-by-step starting from w and ending with

u−1 and see if a move is made or not. Technically, such “tracing” can

be implemented relying on the induction rule of Lemma 20.2.

Proof. Assume all conditions of the lemma. We shall point out

that the condition on the safety of E is not relevant to the present

proof, and it is included in the formulation of the lemma merely for

the convenience of future references.

By Lemma 21.16, condition (129) implies

PTA ⊢ R ∧ w ≤ t ≤ξ(b)→ E(zT, t) ∧ F(zT, t) (131)

which, in turn, in view of condition (127), can be easily seen to further

imply

PTA ⊢ R ∧ w ≤ t ≤u→ E(zT, t) ∧ F(zT, t). (132)

Obviously PA ⊢WE(zT, w, w,b,~s)→ A(zT, w, w). This, together with

(128), by Transitivity, yields PTA ⊢ R→A(zT, w, w), whence, by ⊔ -

Choose,

PTA ⊢ R→ A(zT, w, w) ⊔⊔xB(zT, w, x). (133)

Claim 1: PTA proves

R ∧ B(zT, w, t)→G1(z
T) ⊔ . . . ⊔Gm(z

T) ⊔ ¬
�
G1(z

T) ∨ . . . ∨Gm(z
T)
�
. (134)

Proof. As in the case of Lemmas 21.13 and 21.14, we will

have to limit ourselves to an informal reasoning within PTA. Assume

R ∧ w ≤ t <ξ(b), and (a single copy) of the resource

A(zT, w, t) ⊔⊔xB(zT, w, x) (135)

from the antecedent of (??) is at our disposal. Our task is to solve the

consequental problem

A(zT, w, t ′) ⊔⊔xB(zT, w, x). (136)
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The environment will have to choose one of the two ⊔ -disjuncts of

(135). If the right disjunct is chosen, then we also choose the identical

right disjunct in (136), thus reducing the (relevant part of the) overall

play to ⊔xB(zT, w, x)→⊔xB(zT, w, x) which, having the form F → F ,

is, of course, solvable/provable.

Suppose now the left disjunct of (135) is chosen, bringing the latter

to A(zT, w, t). If this formula is false, we win. So, assume it is true. In

view of (131), we have access to the resource E(zT, t), which contains

information about the state of the machine at time t in the play against

the counterbehavior z (“the” due to the functionality of T for z) for

which T is true. If that state is not a move state, then we resolve (136)

by choosing its left component. And if that state is a move state, then

we resolve (136) by choosing its right component and specifying x as

t in it. With a little thought, this can be seen to guarantee a win.

From (133) and Claim 1, by the rule of Lemma 20.2, we find

PTA ⊢ R ∧ w ≤ t ≤ξ(b)→A(zT, w, t) ⊔⊔xB(zT, w, x)

which, in view of condition (127), obviously implies

PTA ⊢ R ∧ w ≤ t ≤u→A(zT, w, t) ⊔⊔xB(zT, w, x).

Applying first ⊓-Introduction and then ⊓-Elimination to the above for-

mula, we get

PTA ⊢ R ∧ w ≤u≤u→ A(zT, w,u) ⊔⊔xB(zT, w, x). (137)

But the condition w ≤ξ(b) is part of WE(zT, w, w,b,~s) and hence, in

view of (128) and (127), PTA obviously proves R→ w ≤u≤u. This, in

conjunction with (137), can be easily seen to imply the PTA-provability

of

R→A(zT, w,u) ⊔⊔xB(zT, w, x). (138)

Clearly PA ⊢ WE(zT, w, w,b,~s)→A(zT, w,u)→WE(zT, w,u,b,~s). This,

together with (128), by Transitivity, implies that PTA proves

R→A(zT, w,u)→WE(zT, w,u,b,~s). (139)

One can easily verify that CL4 proves

(p→ q1 ⊔Q) ∧ (p→ q1→ q2)→ (p→ q2 ⊔Q).
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Now, (138) ∧ (139)→ (130) can be seen to be an instance of the above

formula and hence provable in PTA. Modus-ponensing it with (138)

and (139) yields (the PTA-provability of) the desired (130).

Assume E is a safe formula. We say that a formula G is a ⊔ -

deletion of E iff G is the result of replacing in E some surface occur-

rence of a subformula H1 ⊔ . . . ⊔ Hm by H i (some i ∈ {1, . . . , m}). And

we say that a formula G(y) is a ⊔-deletion of E iff G(y) is the result

of replacing in E some surface occurrence of a subformula ⊔yH(y) by

H(y) (deleting “⊔y”, that is). Note that ⊔ -deletions and ⊔-deletions

of a safe formula remain safe, and do not create free occurrences of

variables that also have bound occurrences, which would otherwise

violate Convention 8.1.

Lemma 21.18 Assume the conditions of Lemma 21.17 are satisfied. Let

G1 = G1(b,~s), . . . , Gm = Gm(b,~s) be all of the ⊔ -deletions of E, and

H1 = H1(b,~s, y1), . . . , Hn = Hn(b,~s, yn) be all of the ⊔-deletions of E

(each H i is obtained from E by deleting a surface occurrence of “⊔y i”).

Let t be a fresh variable, and C(t) and D(t) be abbreviations defined by

C(t) = WG1(zT, t ′, t ′,b,~s) ⊔ . . . ⊔WGm(zT, t ′, t ′,b,~s);
D(t) = ⊔y1W

H1(zT, t ′, t ′,b,~s, y1) ⊔ . . . ⊔⊔ynW
Hn(zT, t ′, t ′,b,~s, yn).

Then PTA proves

R ∧ B(zT, w, t)→ L ⊔C(t) ⊔D(t). (140)

Idea. By the conditions of the lemma plus the additional condition

expressed by the antecedent of (140), and in the context of the play ac-

cording to the scenario of the (z, eb)-branch (for the counterbehavior z

satisfying T), we — PTA, that is — know that, by time w, the play has

evolved to the position E, and that, at time t with w ≤ t <ξ(b), some new

move β has been made by the machine. From (131), we have all in-

formation necessary to determine whether β is legal or not and — if β
is legal — what move exactly it is. If β is illegal, the machine does not

win X after all, so we can choose L in the consequent of (140). And if

β is legal, then, depending on what it is, we can choose C(t) or D(t) in

the consequent of (140), and then further choose in it the correspond-

ing subcomponent WGi(zT, t, t,b,~s) or (⊔y iW
Hi(zT, t ′, t ′,b,~s, y i) and

then)WHi(zT, t ′, t ′,b,~s, c).
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Proof. Assume the conditions of the lemma. Let us fix the two sets

{α1, . . . ,αm} and {β1, . . . ,βn} of strings such that the move that brings

E(b,~s) down to Gi(b,~s) is αi,
23 and the move that brings E(b,~s) down

to H i(b,~s, c) (whatever constant c) is β i.c.

For each i ∈ {1, . . . , m}, let Gi(z) be an elementary formula saying

that B(z, w, t) is true and the move made by the machine at time t

in the (z, eb)-branch is αi. Extending our notational practice to this

formula, Gi(z
T) will be an abbreviation of ∀z

�
T →Gi(z)
�
.

Claim 1. PTA proves

R ∧ B(zT, w, t)→G1(z
T) ⊔ . . . ⊔Gm(z

T) ⊔ ¬
�
G1(z

T) ∨ . . . ∨Gm(z
T)
�
.

(141)

Proof. Let k be the greatest of the lengths of the moves α1, . . . ,αm.

Argue in PTA. Assume R ∧ B(zT, w, t). Consider the counterbehavior z

for which T is true, and consider the play according to the scenario of

the (z, eb)-branch. B(zT, w, t) implies w ≤ t <ξ(b). Therefore, in view of

(131), full information is available about the situation in the machine

at time t. Using this information, we first find the location l of the

work-tape head and, using the results of Section 19, find a with a =

min(l, k). Then we construct a full picture of the contents of cells

#0 through #(a −1) of the work tape at time t. From this picture,

we can determine whether it shows making one of the moves αi (and

which one), or none, and accordingly choose the true ⊔ -disjunct of

the consequent of (141).

For each i ∈ {1, . . . , n}, let Hi(z) be an elementary formula saying

that B(z, w, t) is true and the move made by the machine at time t in

the (z, eb)-branch has the prefix “β i.”. Hi(z
T) will be an abbreviation

of ∀z
�

T →Hi(z)
�
.

Claim 2. PTA proves

R ∧ B(zT, w, t)→H1(z
T) ⊔ . . . ⊔Hn(z

T) ⊔ ¬
�
H1(z

T) ∨ . . . ∨Hn(z
T)
�
.

(142)

Proof. Similar to the proof of Claim 1.

For each i ∈ {1, . . . , n}, let H′i(z, y) be an elementary formula say-

ing that Hi(z) is true and the move made by the machine at time
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t in the (z, eb)-branch is β i.y . H′i(z
T, y) will be an abbreviation of

∀z
�

T →H′i(z, y)
�
.

Claim 3. For each i ∈ {1, . . . , n}, PTA proves

R ∧Hi(z
T)→⊔y iH

′
i(z

T, y i) ⊔ L. (143)

Proof. Take any i ∈ {1, . . . , n}. Let k be the length of the string

“β i.”. Let J(z, v, y) be a formula saying

“ Hi(z) (is true) and, in the (z, eb)-branch, at time t, on the

work tape, cells #k through #(k + v) spell constant y, and the

location of the head is not any of the cells #0,#1, . . . ,#(k + v +1)”.

J(zT, v, y) will be an abbreviation of ∀z
�

T → J(z, v, y)
�
.

Argue in PTA. We want to prove, by WPTI induction on v, that

v ≤ k̂ +b→ R ∧Hi(z
T)→ L ⊔⊔y iH

′
i(z

T, y i) ⊔⊔yJ(zT, v, y). (144)

The basis is

R ∧Hi(z
T)→ L ⊔⊔y iH

′
i(z

T, y i) ⊔⊔yJ(zT, 0, y). (145)

Assume the (truth of the) antecedent of the above. Consider the coun-

terbehavior z for which T is true, and consider the play according to

the scenario of the (z, eb)-branch. We will implicitly rely on the fact

that, in view of (131) (whose antecedent is implied by R ∧Hi(z
T)), full

information is available about the situation in the machine at time t.

The problem (145) is solved as follows, where “head” and “cell” al-

ways mean those of the work tape, and “located” or “contains” mean

that this is so at time t.

(1) Using the results of Section 19, figure out whether |k +1|≤b

(|k̂ ′|≤b, that is) and, if so, find the values of k and k +1 and

then continue according to Steps 2-4. If, however, |k +1|>b, then

choose L in the consequent of (145) and you are done as it is

guaranteed to be true. This is so because, from Axiom 13, we

know that |t|≤b, and thus k +1> t; this, in turn, means that the

head would not have enough time to go as far as cell #(k +1);

and, if so, the machine cannot make a legal move at time t, so it

loses.
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(2) If the location of the head is not greater than k, then we are

dealing with the fact of X having just (at time t) made an ille-

gal move which is “β i.” or some proper initial substring of it, so

choose L in the consequent of (145) because X loses.

(3) Suppose the head is located at cell #(k +1). Then:

• If cell #k contains 0, then we are dealing with the fact of

X having made the move β i.0, so choose ⊔y iH
′
i(z

T, y i) in

the consequent of (145) and specify y i as 0 in it.

• If cell #k contains 1, then we are dealing with the fact of

X having made the move β i.1, so choose ⊔y iH
′
i(z

T, y i) in

the consequent of (145) and specify y i as 1 in it.

• If cell #k contains any other symbol, then we are dealing

with the fact of X having made an illegal move, so choose

L.

(4) Suppose the location of the head is greater than k +1. Then:

• If cell #k contains 0, choose ⊔yJ(zT, 0, y) in the conse-

quent of (145) and specify y as 0 in it.

• If cell #k contains 1, choose ⊔yJ(zT, 0, y) in the conse-

quent of (145) and specify y as 1 in it.

• If cell #k contains any other symbol, choose L.

The inductive step is

�
R ∧Hi(z

T)→ L ⊔⊔y iH
′
i(z

T, y i) ⊔⊔yJ(zT, v, y)
�
→

�
R ∧Hi(z

T)→ L ⊔⊔y iH
′
i(z

T, y i) ⊔⊔yJ(zT, v ′, y)
�
.

(146)

Assume R ∧Hi(z
T) is true (otherwise (146) is won). Under this as-

sumption, solving (146) essentially means solving the following prob-

lem:
L ⊔⊔y iH

′
i(z

T, y i) ⊔⊔yJ(zT, v, y)→

L ⊔⊔y iH
′
i(z

T, y i) ⊔⊔yJ(zT, v ′, y).
(147)

This problem is solved as follows. Wait for the environment to choose

a ⊔ -disjunct in the antecedent. If that choice is one of the first two

disjuncts, choose the identical disjunct in the consequent, and then
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resolve the resulting problem of the form F → F . Suppose now the

third disjunct ⊔yJ(zT, v, y) is chosen. Wait till it is further brought

to J(zT, v, c) for some c. Consider the counterbehavior z for which T

is true, and consider the play according to the scenario of the (z, eb)-

branch. As was done when justifying the basis of induction, we will rely

on the fact that, in view of (131), full information is available about

the situation in the machine at time t. In our subsequent discourse,

“head” and “cell” always mean those of the work tape, and “located”

or “contains” mean that this is so at time t. Note that, as implied by

J(zT, v, c), the location of the head is greater than k + v ′. So, using the

results of Section 19, we can tell ( ⊔ ) whether that location is k + v ′ +1

or greater than k + v ′ +1. We correspondingly consider the following

two cases and resolve the consequent of (147) accordingly:

(1) Suppose the head is located at cell #(k + v ′ +1). Then:

• If cell #(k + v ′) contains 0, then we are dealing with the fact

ofX having made the move β i.c0, so choose⊔y iH
′
i(z

T, y i)

in the consequent of (147) and specify y i as c0 in it.

• If cell #(k + v ′) contains 1, then we are dealing with the fact

ofX having made the move β i.c1, so choose⊔y iH
′
i(z

T, y i)

in the consequent of (147) and specify y i as c1 in it.

• If cell #k contains any other symbol, then we are dealing

with the fact of X having made an illegal move, so choose

L.

(2) Suppose the location of the head is greater than k + v ′ +1. Then:

• If cell #k contains 0, choose ⊔yJ(zT, v′, y) in the conse-

quent of (147) and specify y as c0 in it.

• If cell #k contains 1, choose ⊔yJ(zT, v′, y) in the conse-

quent of (147) and specify y as c1 in it.

• If cell #k contains any other symbol, choose L.

Now, (144) follows by WPTI from (145) and (146).

We continue our proof of Claim 3 by arguing in PTA towards the

goal of justifying (143). Assume (the truth of) the antecedent of the

latter. As before, we let z be the counterbehavior satisfying T , and let
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the context of our discourse be the play according to the scenario of

the (z, eb)-branch. From (131), we find the location l of the work-tape

head at time t. If l =0, we are dealing with the fact of the machine

having made an illegal move (the empty move), so choose L in the

consequent of (143). Otherwise, we find the number a with l =a ′ (the

results of Section 19 will allow us to do so). From (144), we get

a ≤ k̂ +b→ R ∧Hi(z
T)→ L ⊔⊔y iH

′
i(z

T, y i) ⊔⊔yJ(zT, a, y). (148)

Next, we figure out (again relying on the results of Section 19)

whether a ≤k +b or not. If not, we are obviously dealing with the case of

the machine having made an illegal (“too long a”) move, so we choose

L in the consequent of (143). Suppose now a ≤k +b. Then, from (148)

by Modus Ponens applied twice, we get

L ⊔⊔y iH
′
i(z

T, y i) ⊔⊔yJ(zT, a, y). (149)

Our remaining task is to show how to solve the consequent

⊔y iH
′
i(z

T, y i) ⊔ L (150)

of (143) using the resource (149). This is very easy. Wait till the envi-

ronment selects a ⊔ -disjunct of (149). If one of the first two disjuncts

is selected, select the identical disjunct in (150) and, having brought

things down to a problem of the form F → F , solve it. And if the third

disjunct ⊔yJ(zT, a, y) of (149) is selected, we win. That is because, no

matter what c the environment further selects for y in it, the resulting

formula J(zT , a, c) will be false as it implies that the work-tape head at

time t is not located at cell #(a +1), which is a contradiction — as we

remember, l =a ′ is exactly the location of the head.

Our proof of Claim 3 is now complete.

Claim 4. PA ⊢ R ∧ B(zT, w, t)→¬
�
G1(z

T) ∨ . . . ∨Gm(z
T)
�
∧

¬
�
H1(z

T) ∨ . . . ∨Hn(z
T)
�
→ L.

Proof. This and the following two claims can be proven by a

straightforward argument within PA based on the meanings of the

predicates involved in the formula. Assume R ∧ B(zT, w, t) and

¬
�
G1(z

T) ∨ . . . ∨Gm(z
T)
�
∧ ¬
�
H1(z

T) ∨ . . . ∨Hn(z
T)
�
. (151)

Vol. 8: Games, Game Theory

and Game Semantics

http://www.thebalticyearbook.org/


165 Giorgi Japaridze

Consider the counterbehavior z satisfying T , and the play according to

the scenario of the (z, eb)-branch. According to (128), by time w the

play has evolved to position E(b,~s). And, according to B(zT, w, t), a

(first new) move β has been made by the machine at time t. Obviously

the assumption (151) precludes the possibility of such a β being a

legal move of E(b,~s). So, β is illegal, which makes the machine lose

the game, and hence L is true.

Claim 5. For each i ∈ {1, . . . , m}, PA ⊢ R→Gi(z
T)→

WGi(zT, t ′, t ′,b,~s).

Proof. Argue in PA. Assume R and Gi(z
T). Consider the coun-

terbehavior z satisfying T , and the play according to the scenario of

the (z, eb)-branch. According to (128), by time w the play has evolved

to position E(b,~s). And, according to Gi(z
T), a (first new) move has

been made by the machine at time t, and such a move is αi. But

this move brings E(b,~s) down to Gi(b,~s). This, in turn, implies that

WGi(zT, t ′, t ′,b,~s) is true.

Claim 6. For each i ∈ {1, . . . , n}, PA ⊢ R→H′i(z
T, y i)→

WHi(zT, t ′, t ′,b,~s, y i).

Proof. Very similar to the proof of Claim 5. Argue in PA. Assume

R and H′i(z
T, y i). Consider the counterbehavior z satisfying T , and

the play according to the scenario of the (z, eb)-branch. According to

(128), by time w the play has evolved to position E(b,~s). And, accord-

ing to Hi(z
T, y i), a (first new) move has been made by the machine at

time t, and such a move is β i.y i. But this move brings E(b,~s) down to

H i(b,~s, y i). This, in turn, implies thatWHi(zT, t ′, t ′,b,~s, y i) is true.

To complete our proof of Lemma 21.18, it remains to observe that

(140) is a logical consequence of Claims 1-6. Since we have played

more than enough with CL4, here we only schematically outline how

to do this purely syntactic exercise.

First of all, Claims 1 and 2 can be easily seen to imply

PTA ⊢ R ∧ B(zT, w, t)→G1(z
T) ⊔ . . . ⊔Gm(z

T) ⊔H1(z
T) ⊔ . . . ⊔Hn(z

T) ⊔
�

¬
�
G1(z

T) ∨ . . . ∨Gm(z
T)
�
∧ ¬
�
H1(z

T) ∨ . . . ∨Hn(z
T)
�
�

.
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The above, together with Claim 4, further implies

PTA ⊢ R ∧ B(zT, w, t)→G1(z
T) ⊔ . . . ⊔Gm(z

T) ⊔H1(z
T) ⊔ . . . ⊔Hn(z

T) ⊔ L.

This, in turn, together with Claim 5, further implies

PTA ⊢ R ∧ B(zT, w, t)→ C(t) ⊔H1(z
T) ⊔ . . . ⊔Hn(z

T) ⊔ L.

The above, together with Claim 3, further implies

PTA ⊢ R ∧ B(zT, w, t)→C(t) ⊔⊔y1H
′
1(z

T, y i) ⊔ . . . ⊔⊔ynH
′
n(z

T, yn) ⊔ L.

(152)

Claim 6 can be seen to imply

PTA ⊢ R→⊔y iH
′
i(z

T, y i)→⊔y iW
Hi(zT, t ′, t ′,b,~s, y i)

for each i ∈ {1, . . . , n}. This, together with (152), can be seen to imply

the desired (140).

Lemma 21.19 Under the conditions of Lemma 21.17 and using the ab-

breviations of Lemma 21.18, PTA proves

R→ L ⊔⊔x
�
C(x) ⊔D(x)
�
⊔WE(zT, w,u,b,~s). (153)

Idea. This is a logical consequence of the previous two lemmas.

Proof. Assume the conditions of Lemma 21.17. Then, according

to Lemmas 21.17 and 21.18, PTA proves (130) and (140) (where, in

the latter, t is a fresh variable). The target formula (153) is a logical

consequence of those two formulas, verifying which is a purely syntac-

tic exercise. As we did in the proof of the previous lemma, here we

only provide a scheme for such a verification. It is rather simple. First,

applying ⊔-Choose and ⊓-Introduction to (140), we get

PTA ⊢ R ∧⊔xB(zT, w, x)→ L ⊔⊔x
�
C(x) ⊔D(x)
�
.

And then we observe that the above, together with PTA ⊢ (130), im-

plies PTA ⊢ (153).
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Lemma 21.20 Under the conditions of Lemma 21.17, PTA ⊢ R→ E(b,~s).

Idea. Under the assumption of the truth of R, one of the three ⊔ -

disjuncts of the consequent of (153) is available as a resource. In each

case, we need to show (in PTA) how to solve the target E = E(b,~s).
1. The case of L is taken care of by Lemma 21.3, according to which

PTA ⊢ L→ E.

2. The case of ⊔x
�
C(x) ⊔D(x)
�
, depending on which of its ⊔-

and ⊔ -components are further chosen, allows us to jump to a for-

mula F (one of the Gi, 1≤ i ≤m or H i, 1≤ i ≤n) from which E follows by

⊔ -Choose or ⊔-Choose. With appropriately readjusted R and certain

other parameters, by the induction hypothesis, we know how to solve

F . Then (by ⊔ -Choose or ⊔-Choose) we also know how to solve E.

3. Finally, consider the case of WE(zT, w,u,b,~s). E can be crit-

ical or non-critical. The case of E being critical is almost imme-

diately taken care of by Lemma 21.5, according to which PTA ⊢

∃zWE(z, w,u,b,~s)→ E. Suppose now E is non-critical. Then, by Lemma

21.4, according to which PTA ⊢ ∃zWE(z, w,u,b,~s)→ ‖E‖, the elemen-

tarization of E is true/provable. Relying on the induction hypothesis

as in the previous case, and replacing T (z) by a formula S(z) saying

that z is a certain one-move extension of the counterbehavior satisfy-

ing T , we manage to show that any other (other than ‖E‖) necessary

Wait-premise of E is also solvable/provable. Then, by Wait, we know

how to solve/prove E.

Proof. We prove this lemma by (meta)induction on the complexity

of E(b,~s). Assume the conditions of Lemma 21.17. Then, by Lemma

21.19, PTA ⊢ (153).

By Lemma 21.3, PTA ⊢ L→ E(b,~s), whence, by Weakening,

PTA ⊢ L ∧ R→ E(b,~s). (154)

In what follows, we will rely on the additional assumptions and

abbreviations of Lemma 21.18.

Claim 1. For each i ∈ {1, . . . , m}, PTA ⊢WGi(zT, t ′, t ′,b,~s) ∧ R→ E(b,~s).

Proof. Pick any i ∈ {1, . . . , m} and a fresh variable v.
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From condition (127), by Weakenings, we have

PTA ⊢ v = t ′ ∧WGi(zT, t ′, t ′,b,~s) ∧ R→ ξ(b)=u. (155)

And, of course, we also have

PTA ⊢ v = t ′ ∧WGi(zT, t ′, t ′,b,~s) ∧ R→WGi(zT, v, v,b,~s). (156)

Condition (129) and Lemma 21.16 imply

PTA ⊢ R ∧ w ≤ v ≤ξ(b)→ E(zT, v) ∧ F(zT, v). (157)

In view of condition (128), we also obviously have

PTA ⊢ v = t ′ ∧WGi(zT, t ′, t ′,b,~s) ∧ R→ R ∧ w ≤ v ≤ξ(b). (158)

From (158) and (157), by Transitivity, we get

PTA ⊢ v = t ′ ∧WGi(zT, t ′, t ′,b,~s) ∧ R→ E(zT, v) ∧ F(zT , v). (159)

By the induction hypothesis of our lemma, with v, Gi(b,~s) and

v = t ′ ∧WGi(zT, t ′, t ′,b,~s) ∧ R in the roles of w, E(b,~s) and R, (155),

(156) and (159) — which correspond to (127), (128) and (129), re-

spectively — imply

PTA ⊢ v = t ′ ∧WGi(zT, t ′, t ′,b,~s) ∧ R→ Gi(b,~s).

The above, by ⊓-Introduction, yields

PTA ⊢⊔x(x = t ′) ∧WGi(zT, t ′, t ′,b,~s) ∧ R→ Gi(b,~s). (160)

Remembering the definition of W, the condition t ′ ≤ξ(b)
is one of the conjuncts of WGi

�
zT, t ′, t ′,b,~s). Hence PA ⊢

WGi
�
zT, t ′, t ′,b,~s)→ t ′ ≤ξ(b). Together with condition (127), this im-

plies

PTA ⊢WGi
�
zT, t ′, t ′,b,~s) ∧ R→ t ′ ≤u.

But, by Axiom 13, PTA ⊢ |u|≤b. Hence, obviously, PTA ⊢

WGi
�
zT, t ′, t ′,b,~s) ∧ R→ |t ′|≤b. This, together with in Axiom 10, by

Transitivity, yields PTA ⊢WGi
�
zT, t ′, t ′,b,~s) ∧ R→⊔x(x = t ′). And the

latter, in turn, in conjunction with (160), can be seen to imply
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PTA ⊢WGi(zT, t ′, t ′,b,~s) ∧ R→ Gi(b,~s). (161)

Now, it remains to notice that the desiredWGi(zT, t ′, t ′,b,~s) ∧ R→ E(b,~s)
follows from (161) by ⊔ -Choose.

Claim 2. For each i ∈ {1, . . . , n}, PTA ⊢⊔y iW
Hi(zT, t ′, t ′,b,~s, y i) ∧

R→ E(b,~s).

Proof. Pick any i ∈ {1, . . . , n}. Arguing as we did for (161) in the

proof of Claim 1, we find

PTA ⊢WHi(zT, t ′, t ′,b,~s, y i) ∧ R→ H i(b,~s, y i).

Applying first ⊔-Choose and then ⊓-Introduction to the above, we get

the desired conclusion PTA ⊢⊔y iW
Hi(zT, t ′, t ′,b,~s, y i) ∧ R→ E.

Claims 1 and 2, by ⊓ -Introductions, imply

PTA ⊢
�
�
WG1(zT, t ′, t ′,b,~s) ⊔ . . . ⊔WGm(zT, t ′, t ′,b,~s)

�
⊔

�
⊔y1W

H1(zT, t ′, t ′,b,~s, y1) ⊔ . . . ⊔⊔

ynW
Hn(zT, t ′, t ′,b,~s, yn)

�
�

∧ R→ E(b,~s)

which, using the abbreviations of Lemma 21.18, is written as PTA ⊢
�
C(t) ⊔D(t)
�
∧ R→ E(b,~s). The latter, by ⊓-Introduction, yields

PTA ⊢⊔x
�
C(x) ⊔D(x)
�
∧ R→ E(b,~s). (162)

Claim 3. If E(b,~s) is not critical, then PTA ⊢ ‖WE(zT, w,u,b,~s) ∧ R→E(b,~s)‖.

Proof. Assume E(b,~s) is not critical. Then, Lemma 21.4,

together with the fact of T being functional for z, can be easily

seen to imply PTA ⊢ WE(zT, w,ξ(b),b,~s
�
→ ‖E(b,~s)‖. Remember-

ing condition (127), the latter can be seen to further imply PTA ⊢

WE(zT, w,u,b,~s) ∧ R→ ‖E(b,~s)‖, which is the same as to say that PTA ⊢

‖WE(zT, w,u,b,~s) ∧ R→ E(b,~s)‖, because both WE(zT, w,u,b,~s) and R

are elementary.

Claim 4. Assume E(b,~s) has the form F[J1 ⊓ . . . ⊓ Jk], and i ∈

{1, . . . , k}. Then

PTA ⊢WE(zT, w,u,b,~s) ∧ R→ F[J i].
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Proof. From (127), by Weakening, we have

PTA ⊢WE(zT, w,u,b,~s) ∧ R→ ξ(b)=u. (163)

Assume E(b,~s) = F[J1 ⊓ . . . ⊓ Jk] and 1≤ i ≤k. Let α be the

move whose effect is turning F[J1 ⊓ . . . ⊓ Jk] into F[J i]. Let us

write our formula T in the form T (z). Let S = S(z) be a for-

mula saying that z is the code of the counterbehavior resulting by

adding the timestamped move (α, w −1) to the counterbehavior a

for which T (a) holds. Of course, S is functional for z. It is

not hard to see that PA proves WE(zT, w,u,b,~s)→WE(zT, w, w,b,~s)
and WE(zT, w, w,b,~s)→WF[Ji](zS, w, w,b,~s). Therefore it proves

WE(zT, w,u,b,~s)→WF[Ji](zS, w, w,b,~s), whence, by Weakening,

PTA ⊢WE(zT, w,u,b,~s) ∧ R→WF[Ji](zS, w, w,b,~s). (164)

Next, we claim that

PTA ⊢ R→ E(zS, w) ∧ F(zS, w). (165)

Here is a brief justification of (165) through reasoning in PTA. Let a

be the counterbehavior for which T (a) is true, and let d be the coun-

terbehavior for which S(d) is true. Assume R. Then, in view of (129),

the resource E(zT, w) ∧ F(zT, w) is available for us in unlimited supply.

That is, we have full information about the configuration of X at time

w in the (a, eb)-branch. Solving (165) means being able to generate

full information about the configuration of X at time w in the (d, eb)-

branch. Since the time w is fixed and is the same in both cases, let us

no longer explicitly mention it. Note that the two configurations are

identical, for the exception of the contents of the run tape. So, from

the resource E(zT, w) ∧ F(zT, w) which describes the configuration of

the (a, eb)-branch, we can directly tell the (identical) state of X in the

configuration of the (d, eb)-branch, as well as the locations of all three

scanning heads, and the contents of any cells of the valuation and work

tapes. Next, in order to tell the location of the leftmost blank cell on

the run tape in the configuration of the (d, eb)-branch (or tell that the

size of this location exceeds b), all we need is to compute i + j +1, where

i is the location of the leftmost blank cell of the run tape in the con-

figuration of the (a, eb)-branch (unless |i|≥b, in which case the size of
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the sought value also exceeds b), and j is the location of the work-tape

head in the configuration of the (a, eb)-branch. Finally, consider any

cell #c of the run tape. If c is less than the above i, then the content of

cell #c in the configuration of the (d, eb)-branch is the same as in the

(a, eb)-branch. Otherwise, if c ≥ i, then the sought content is the (c − i)th

symbol (starting the count of those symbols from 0 rather than 1) of

the labmove ⊥α — unless c − i is greater or equal to the length of this

labmove, in which case the sought content of cell #c is blank.

From (165), by Weakening, we have

PTA ⊢WE(zT, w,u,b,~s) ∧ R→ E(zS, w) ∧ F(zS, w). (166)

By the induction hypothesis of our lemma, with F[J i] and

WE(zT, w,u,b,~s) ∧ R in the roles of E and R, (163), (164) and (166)

— which correspond to (127), (128) and (129), respectively — imply

the desired PTA ⊢WE(zT, w,u,b,~s) ∧ R→ F[J i].

Claim 5. Assume E(b,~s) has the form F[⊓xJ(x)], and v is a variable

not occurring in E(b,~s). Then

PTA ⊢WE(zT, w,u,b,~s) ∧ R→ F[J(v)].

Proof. Assume E = F[⊓xJ(x)], and v is a fresh variable. Let

α be the string such that, for whatever constant c, α.c is the move

which brings F[⊓xJ(x)] down to F[J(c)]. Arguing almost literally as

in the proof of Claim 4, only with “α.v” instead of α and “J(v)” instead

of “J i”, we find that PTA ⊢ WE(zT, w,u,b,~s) ∧ R→ F[J(v)]. The only

difference and minor complication is related to the fact that, while in

the proof of Claim 4 the labmove ⊤α was constant, the corresponding

labmove ⊤α.v in the present case is not. Hence, its size is not given

directly but rather needs to be determined (while arguing within PTA).

No problem, this (for the “v” part of the labmove) can be done using

Lemma 19.1. Similarly, various symbols of the labmove that were given

directly in the proof of Claim 4 will now have to be determined using

some general procedure. Again no problem: this (for the “v” part of

the labmove) can be done using Lemma 19.10.
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Now we claim that

PTA ⊢WE(zT, w,u,b,~s) ∧ R→ E(b,~s). (167)

Indeed, if E(b,~s) is not critical, then the above follows from Claims 3, 4

and 5 by the closure of PTA under Wait. Suppose now E(b,~s) is critical.

Then, by Lemma 21.5, PTA ⊢ ∃zWE(z, w,ξ(b),b,~s)→ E(b,~s). This, in

view of the functionality of T for z and condition (127), can be easily

seen to imply PTA ⊢WE(zT, w,u,b,~s) ∧ R→ E(b,~s), as claimed.

From (154), (162) and (167), by ⊓ -Introduction, we find that PTA

proves

�

L ⊔⊔x
�
C(x) ⊔D(x)
�
⊔WE(zT, w,u,b,~s)

�

∧ R→ E(b,~s). (168)

In turn, the PTA-provability of (153) and (168) can be easily seen

to imply the desired PTA-provability of R→ E(b,~s). This completes our

proof of Lemma 21.20.

Lemma 21.21 PTA ⊢⊔x
�

x =ξ(b)
�
→ X (b).

Idea. We take u=ξ(b) ∧ w =0 ′ in the role of R, X in the role of E

and show that the conditions of Lemma 21.17 are satisfied. Then, by

Lemma 21.20, PTA proves u=ξ(b) ∧ w =0 ′→ X . And the target formula

⊔x
�

x =ξ(b)
�
→ X is an almost immediate logical consequence of the

latter and Lemma 13.3.

Proof. Let R be the formula u=ξ(b) ∧ w =0 ′. Then, of course, we

have

PTA ⊢ R→ ξ(b)=u. (169)

Let T (z) be an elementary formula saying that z is (the code of) the

empty counterbehavior. Obviously PA proves b 6=0→WX(zT, 0 ′, 0 ′,b)

and hence, in view of Lemma 13.2, PTA provesWX(zT, 0 ′, 0 ′,b). There-

fore, as R contains the condition w =0 ′,

PTA ⊢ R→WX(zT, w, w,b). (170)

Next, we observe that PTA ⊢ E(zT, 0) ∧ F(zT, 0). Indeed, arguing in

PTA, solving both E(zT, 0) and F(zT, 0) is very easy as we know exactly
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and fully the situation in the machine at time 0, which is nothing but

the start configuration of the machine. The observation that we just

made, of course, implies

PTA ⊢ v =0→ E(zT, v) ∧ F(zT, v). (171)

From (171), by Lemma 21.16, we get

PTA ⊢ v =0 ∧ v ≤w ≤ξ(b)→ E(zT, w) ∧ F(zT, w). (172)

Since w =0 ′ is a conjunct of R, PA obviously proves

b 6=0→ v =0→ R→ v =0 ∧ v ≤w ≤ξ(b).24 But, by Lemma 13.2, PTA ⊢ b 6=0.

Hence, by Modus Ponens, PTA ⊢ v =0→ R→ v =0 ∧ v ≤w ≤ξ(b). From

here and (172), by Transitivity, we get

PTA ⊢ v =0→ R→ E(zT, w) ∧ F(zT, w)

whence, by ⊓-Introduction,

PTA ⊢⊔x(x =0)→ R→ E(zT, w) ∧ F(zT, w),

modus-ponensing which with Axiom 8 yields

PTA ⊢ R→ E(zT, w) ∧ F(zT, w). (173)

Now, with X (b) in the role of E(b,~s), the conditions (169), (170)

and (173) are identical to the conditions (127), (128) and (129) of

Lemma 21.17. Hence, by Lemma 21.20, we have PTA ⊢ R→ X (b), i.e.

PTA ⊢ u=ξ(b) ∧ w =0 ′→ X (b).

From the above, by ⊓-Introduction, we get

PTA ⊢ u=ξ(b) ∧⊔x(x =0 ′)→ X (b).

But the second conjunct of the antecedent of the above formula is prov-

able by Lemma 13.3. Hence, we obviously have PTA ⊢ u=ξ(b)→ X (b)

which, by⊓-Introduction, yields the desired PTA ⊢⊔x
�

x =ξ(b)
�
→ X (b).
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21.7. Completing the completeness proof

By Lemma 19.8, PTA ⊢ ¬|ξ(b)|≤b ⊔⊔x
�

x =ξ(b)
�
. By Lemmas

21.11 and 21.21, we also have PTA ⊢ ¬|ξ(b)|≤b→ X and PTA ⊢

⊔x
�

x =ξ(b)
�
→ X . From these three facts, by ⊔ -Elimination, PTA ⊢ X .

22. INHERENT EXTENSIONAL INCOMPLETENESS IN THE GENERAL

CASE

The extensional completeness of PTA is not a result that could be

taken for granted. In this short section we argue that, if one consid-

ers computability-in-general instead of polynomial time computability,

extensional completeness is impossible to achieve for whatever recur-

sively axiomatizable sound extension of PTA.

First of all, we need to clarify what is meant by considering

computability-in-general instead of polynomial time computability.

This simply means a minor readjustment of the semantics of ptarith-

metic. Namely, such a readjusted semantics would be the same as the

semantics we have been considering so far, with the only difference

being that the time complexity of the machine solving a given prob-

lem would no longer be required to be polynomial, but rather it would

be allowed to be arbitrary without any restrictions. Alternatively, we

can treat ⊓,⊔ as the ordinary ⊓,⊔ of computability logic (rather than

⊓b,⊔b as done throughout the present paper), and then forget about

any complexity altogether.

In either case, our extensional incompleteness argument goes like

this. Consider any system S in the style of PTA whose proof predicate

is decidable25 and hence the theoremhood predicate recursively enu-

merable. Assume S is sound in the same strong sense as PTA — that

is, there is an effective procedure that extracts an algorithmic solution

(HPM) for the problem represented by any formula F from any S-proof

of F .

Let then A(s) be the predicate which is true iff:

• s is (the code of) an S-proof of some formula of the form

⊓x
�
¬E(x) ⊔ E(x)
�
, where E is elementary,

• and E(s) is false.
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On our assumption of the soundness of S, A(s) is a decidable pred-

icate. Namely, it is decided by a procedure that first checks if s is the

code of an S-proof of some formula of the form ⊓x
�
¬E(x) ⊔ E(x)
�
,

where E is elementary. If not, it rejects. If yes, the procedure ex-

tracts from s an HPM H which solves ⊓x
�
¬E(x) ⊔ E(x)
�
, and then

simulates the play of H against the environment which, at the very

beginning of the play, makes the move s, thus bringing the game down

to ¬E(s) ⊔ E(s). If, in this play, H responds by choosing ¬E(s), then

the procedure accepts s; and if H responds by choosing E(s), then

the procedure rejects s. Obviously this procedure indeed decides the

predicate A.

Now, assume that S is extensionally complete. Since A is decidable,

the problem ⊓x
�
¬A(x) ⊔ A(x)
�

has an algorithmic solution. So, for

some formula F with F † = ⊓x
�
¬A(x) ⊔ A(x)
�

and some c, we should

have that c is an S-proof of F . Obviously F should have the form

⊓x
�
¬E(x) ⊔ E(x)
�
, where E is an elementary formula with E†(x) =

A(x). We are now dealing with the absurdity of A(c) being true iff it is

false.

23. ON THE INTENSIONAL STRENGTH OF PTA

Theorem 23.1 Let X and L be as in Section 21. Then PTA ⊢ ¬L→ X .

Proof. As established in Section 21, PTA ⊢ X . By induction on the

complexity of X , details of which we omit, it can also easily be seen

that PTA ⊢ X →¬L→ X . So, by Modus Ponens, PTA ⊢ ¬L→ X .

Remember that, in Section 21, X was an arbitrary PTA-formula as-

sumed to have a polynomial time solution under the standard interpre-

tation †. And ¬Lwas a certain true sentence of the language of classical

Peano arithmetic. We showed in that section that PTA proved a certain

formula X with X † = X †. That is, we showed that X was “extensionally

provable”.

According to our present Theorem 23.1, in order to make X also

provable in the intensional sense, all we need is to add to the axioms

of PTA the true elementary sentence ¬L.

In philosophical terms, the import of Theorem 23.1 is that the cul-

prit of the intensional incompleteness of PTA is the (Gödel’s) incom-
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pleteness of its classical, elementary part. Otherwise, the “nonelemen-

tary rest” — the extra-Peano axioms and the PTI rule — of PTA, as

a bridge from classical arithmetic to ptarithmetic, is as perfect/strong

as it could possibly be: it guarantees not only extensional but also in-

tensional provability of every polynomial time computable problem as

long as all necessary true elementary formulas are taken care of. This

means that if, instead of PA, we take the truth arithmetic Th(N) (the

set of all true sentences of the language of PA) as the base arithmetical

theory, the corresponding version of PTA will be not only extensionally,

but also intensionally complete. Unfortunately, however, such a system

will no longer be recursively axiomatizable.

So, in order to make PTA intensionally stronger, it would be suf-

ficient to add to it new true elementary (classical) sentences, without

any need for also adding some nonelementary axioms or rules of in-

ference that deal with nonelementary formulas. Note that this sort of

an extension, even if in a language more expressive than that of PA,

would automatically remain sound and extensionally complete: virtu-

ally nothing in this paper relies on the fact that PA is not stronger than

it really is. Thus, basing applied theories on computability logic allows

us to construct ever more expressive and intensionally strong (as well

as extensionally so in the case of properly more expressive languages)

theories without worrying about how to preserve soundness and ex-

tensional completeness. Among the main goals of this paper was to

illustrate the scalability of computability logic rather than the virtues

of the particular system PTA based on it. The latter is in a sense arbi-

trary, as is PA itself: in the role of the classical part of PTA, we could

have chosen not only any true extension of PA, certain weaker-than-PA

theories as well, for our proof of the extensional completeness of PTA

does not require the full strength of PA. The reason for not having

done so is purely “pedagogical”: PA is the simplest and best known

arithmetical theory, and reasoning in it is much more relaxed, easy and

safe than in weaker versions. PTA is thus the simplest and nicest rep-

resentative of the wide class of “ptarithmetics”, all enjoying the same

relevant properties as PTA does.

Among the potential applications of ptarithmetic-style systems is

using them as formal tools for finding efficient solutions for problems

(after developing reasonable theorem-provers, which, at this point,
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only belongs to the realm of fantasy, of course). One can think of those

systems as ideally declarative programming languages, where human

“programming” simply means stating the problem/formula whose effi-

cient solution is sought (for systematic usage in the future), and hence

the program verification problem is non-existent. Compiling such a

“program” means finding a proof, followed by the easy step of trans-

lating it into an assembly-language program/solution. This process of

compiling may take long but, once compiled, the program runs fast

ever after. The stronger such a system is, the better the chances that a

solution for a given problem will be found. Of course, what matters in

this context is intensional rather than extensional strength. So, perfect

strength is not achievable, but we can keep moving ever closer to it.

One may ask why not think of simply using PA (or even, say, ZFC)

instead of PTA for the same purposes: after all, PA is strong enough to

allow us to reason about polynomial time computability. This is true,

but PA is far from being a reasonable alternative to PTA. First of all, as

a tool for finding solutions, PA is very indirect and hence hopelessly in-

efficient. Pick any of the basic arithmetical functions of Section 19 and

try to generate, in PA, a full formal proof of the fact that the function is

polynomial-time computable (or even just express this fact) to under-

stand the difference. Such a proof would have to proceed by clumsy

reasoning about non-number objects such as Turing machines and com-

putations, which, only by good luck, happen to be amenable to being

understood as numbers through encoding. In contrast, reasoning in

PTA would be directly about numbers and their properties, without

having to encode any foreign beasts and then try to reason about them

as if they were just kind and innocent natural numbers. Secondly, even

if an unimaginably strong theorem-prover succeeded in finding such

a proof, there would be no direct use for it, because from a proof of

the existence of a solution we cannot directly extract a solution. Fur-

thermore, even knowing that a given HPM X solves the problem in

some polynomial time ξ, would have no practical significance without

knowing what particular polynomial ξ is, in order to asses whether it

is “reasonable” (such as b
2, b3, . . . ) or takes us beyond the number of

nanoseconds in the lifespan of the universe (such as b9999999999). In or-

der to actually obtain a solution and its polynomial degree, one would

need a constructive proof, that is, not just a proof that a polynomial
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ξ and a ξ-time solution exist, but a proof of the fact that certain par-

ticular numbers a and b are (the codes of) a polynomial term ξ and a

ξ-time solution X . This means that a theorem-prover would have to

be used not just once for a single target formula, but an indefinite (in-

tractably many) number of times, once per each possible pair of values

of a, b until the “right” values is encountered. To summarize, PA does

not provide any reasonable mechanism for handling queries in the style

“find a polynomial time solution for problem A”: in its standard form,

PA is merely a YES/NO kind of a “device”.

The above dark picture can be somewhat brightened by switching

from PA to Heyting’s arithmetic HA — the version of PA based on intu-

itionistic logic instead of classical logic, which is known to allow us to

directly extract, from a proof of a formula ∃xF(x), a particular value

of x for which F(x) is true. But the question is: why intuitionistic logic

and not computability logic? Both claim to be “constructive logics”, but

the constructivistic claims of computability logic have a clear semanti-

cal meaning and justification, while intuitionistic logic is essentially

an ad hoc invention whose constructivistic claims are mainly based

on certain syntactic and hence circular considerations,26 without being

supported by a convincing and complete constructive semantics. And,

while HA is immune to the second one of the two problems pointed

out in the previous paragraph, it still suffers from the first problem.

At the same time, as a reasoning tool, HA is inferior to PA, for it is

intensionally weaker and, from the point of view of the philosophy of

computability logic, is so for no good reasons. As a simple example,

consider the function f defined by “ f (x) = x if PA is either consistent

or inconsistent, and f (x) = 2x otherwise”. This is a legitimately de-

fined function, and we all — just as PA — know that extensionally it is

the same as the identity function f (x) = x . Yet, HA can be seen to fail

to prove — in the intensional sense — its computability.

A natural question to ask is: Is there a formula X of the language

of PTA whose polynomial time solvability is constructively provable in PA

yet X is not provable in PTA? Remember that, as we agreed just a while

ago, by constructive provability of the polynomial time solvability of

X in PA we mean that, for some particular HPM X and a particular

polynomial (term) ξ, PA proves that X is a ξ-time solution of X . If

the answer to this question was negative, then PA, while indirect and
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inefficient, would still have at least something to say in its defense when

competing with PTA as a problem-solving tool. But, as seen from the

following theorem, the answer to the question is negative:

Theorem 23.2 Let X be any formula of the language of PTA such that PA

constructively proves (in the above sense) the polynomial time solvability

of X . Then PTA ⊢ X .

Proof. Consider any formula X of the language of PTA. Assume

PA constructively proves the polynomial time solvability of X , meaning

that, for a certain HPM X and a certain term ξ (fix them), PA proves

that X solves X in time ξ. But this is exactly what the formula L of

Section 21 denies. So, PA ⊢ ¬L. But, by Theorem 23.1, we also have

PTA ⊢ ¬L→ X . Consequently, PTA ⊢ X .

An import of the above theorem is that, if we tried to add to PTA

some new nonelementary axioms in order to achieve a properly greater

intensional strength, the fact that such axioms are computable in time

ξ for some particular polynomial ξ would have to be unprovable in

PA, and hence would have to be “very nontrivial”. The same applies to

attempts to extend PTA through some new rules of inference.

24. GIVE CAESAR WHAT BELONGS TO CAESAR

The idea of exploring versions of Peano arithmetic motivated by and

related to various complexity-theoretic considerations and concepts is

not new. In this connection one should mention a solid amount of

work on studying bounded arithmetics, with the usage of the usual

quantifiers ∀,∃ of PA restricted to forms such as ∀x
�

x ≤τ→ F(x)
�

and

∃x
�

x ≤τ ∧ F(x)
�
, where τ is a term not containing x . Parikh (1971)

was apparently the first to tackle bounded quantifiers in arithmetic.

A systematic study of bounded arithmetics and their connections to

complexity theory was initiated in the seminal work (1986a) by Buss.

Hajek and Pudlak (1993) give an extensive survey of this area. The

main relevant results in it can be summarized by saying that, by ap-

propriately weakening the induction axiom of PA and then further

restricting it to bounded formulas of certain forms, and correspond-

ingly readjusting the nonlogical vocabulary and axioms of PA, certain

www.thebalticyearbook.org

Ptarithmetic 180

soundness and completeness results for the system(s) S thus gener-

ated can be achieved. Such soundness results typically read like “If S

proves a formula of the form ∀x∃y F(x , y), where F satisfies such and

such constraints, then there is function of such and such computational

complexity which, for each a, returns a b with F(a, b)”. And complete-

ness results typically read like “For any function f of such and such

computational complexity, there is an S-provable formula of the form

∀x∃y F(x , y) such that, for any a and b, F(a, b) is true iff b = f (a)”.

Among the characteristics that make our approach very different

from the above, one should point out that it extends rather than re-

stricts the language and the deductive power of PA. Restricting the lan-

guage and power of PA in the style of the approach of bounded arith-

metics throws out the baby with the bath water. Not only does it expel

from the system many complexity-theoretically unsound yet otherwise

meaningful and useful theorems, but it apparently also reduces — even

if only in the intensional rather than extensional sense — the class of

complexity-theoretically correct provable principles. This is a necessary

sacrifice in such cases, related to the inability of the underlying classi-

cal logic to clearly differentiate between constructive ( ⊓ , ⊔ ,⊓,⊔) and

“ordinary”, non-constructive versions ( ∧ , ∨ ,∀,∃) of operators. Clas-

sical logic has never been meant to be a constructive logic, let alone

a logic of efficient computations. Hence an attempt to still make it

work as a logic of computability or efficient computability cannot go

forward without taking a toll, and results such as the above-mentioned

soundness can only be partial.

The problem of the partiality of the soundness results has been par-

tially overcome in Buss (1986b) through basing bounded arithmetic on

intuitionistic logic instead of classical logic. In this case, soundness ex-

tends to all formulas of the form ∀x∃y F(x , y), without the “F satisfies

such and such constraints” condition (the reason why we still consider

this sort of soundness partial is that it is still limited to formulas of

the form ∀x∃y F(x , y), even if for arbitrary Fs; similarly, complete-

ness is partial because it is limited only to functions which, for us, are

only special cases of computational problems). However, for reasons

pointed out in the previous section, switching to intuitionistic logic sig-

nifies throwing out even more of the “baby” from the bath tub, further

decreasing the intensional strength of the theory. In any case, whether
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being based on classical or intuitionistic logic, bounded arithmetics do

not offer the flexibility of being amenable to strenghthening without

loss of soundness, and are hence “inherently weak” theories.

In contrast, computability logic avoids all these troubles and sac-

rifices by giving Caesar what belongs to Caesar, and God what be-

longs to God. As we had a chance to see throughout this paper,

classical ( ∧ , ∨ ,∀,∃) and constructive ( ⊓ , ⊔ ,⊓,⊔) logical constructs

can peacefully coexist and complement each other in one natural sys-

tem that seamlessly extends the classical, constructive, resource- and

complexity-conscious visions and concepts, and does so not by mechan-

ically putting things together, but rather on the basis of one natural, all-

unifying game semantics. Unlike most other approaches where only a

few, special-form expressions (if any) have clear computational inter-

pretations, in our case every formula is a meaningful computational

problem. Further, we can capture not only computational problems

in the traditional sense, but also problems in the more general — in-

teractive — sense. That is, ptarithmetic or computability-logic-based

theories in general, are by an order of magnitude more expressive and

deductively powerful than the classical-logic-based PA, let alone the far

more limited bounded arithmetics.

Classical logic and classical arithmetic, so close to the hearts and

minds of us all, do not at all need to be rejected or tampered with (as

done in Heyting’s arithmetic or bounded arithmetic) in order to achieve

constructive heights. Just the opposite, they can be put in faithful and

useful service to this noble goal. Our heavy reliance on reasoning in

PA throughout this paper is an eloquent illustration of this.

25. THOUGHTS FOR THE FUTURE

The author wishes to hope that the present work is only the be-

ginning of a longer and more in-depth line of research on explor-

ing computability-logic-based theories (arithmetic in particular) with

complexity-conscious semantics. There is an ocean of problems to

tackle in this direction.

First of all, it should be remembered that the particular language

of ptarithmetic employed in this paper is only a modest fragment of

the otherwise inordinately expressive and, in fact, open-ended formal-
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ism of computability logic. Attempting to extend the present results

to more expressive versions of ptarithmetic is one thing that can be

done in the future. Perhaps a good starting point would be considering

the language employed in Japaridze (2010) which, in addition to the

present connectives, has the operator •–≀≀ , with A •–≀≀ B being the prob-

lem of reducing B to A where any finite number of reusages of A is al-

lowed. From a more ambitious perspective, a development along these

lines may yield the discovery of a series of new, complexity-conscious

operators that are interesting and useful in the context of interactive

computational complexity, while not quite so useful in the ordinary

context of computability-in-principle.

Another direction to continue the work started in this paper would

be to try to consider complexity concepts other than polynomial time

complexity. Who knows, maybe these studies can eventually lead to

the discovery of substantially new, not-yet tried weapons for attacking

the famous and notorious open problems in complexity theory. Two of

the most immediate candidates for exploration are logarithmic space

and polynomial space computabilities. While the precise meaning of

logarithmic space computability in our interactive context has yet to

be elaborated, a definition of polynomial space computability comes

almost for free. It can be defined exactly as we defined polynomial

time computability in Section 7, only, instead of counting the number

of steps taken by the machine (⊤’s time, to be more precise), we should

count the number of cells visited by the head of the work tape. What, if

any, variations of the PTI rule (and perhaps also the nonlogical axioms)

would yield systems of psarithmetic (“polynomial space arithmetic”)

or larithmetic (“logarithmic space arithmetic”), sound and complete

with respect to polynomial space or logarithmic space computability in

the same sense as PTA is sound and complete with respect to polyno-

mial time computability?

Acknowledgement: Parts of this material are reprinted from “In-

troduction to clarithmetic I”, Information and Computation, vol. 209

(2011), pp. 1312-1354, with permission from Elsevier.
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Notes

1The paper by Xu & Liu (2009) (in Chinese) is apparently another exception, focused

on applications of CL in AI.
2For simplicity, here we treat “Composite” as the complement of “Prime”, even though,

strictly speaking, this is not quite so: the numbers 0 and 1 are neither prime nor com-

posite. Writing “Nonprime” instead of “Composite” would easily correct this minor inac-

curacy.
3According to our conventions, such a natural number i is identified with its binary

representation. The same applies to the other clauses of this definition.
4It is important to note that, unlike the case with the choice quantifiers, here we are

not imposing any restrictions on the size of such a constant.
5The concept of an interpretation in CL is usually more general than the present

one. Interpretations in our present sense are called perfect. But here we omit the word

“perfect” as we do not consider any nonperfect interpretations, anyway.
6That is, = ∗ is a congruence relation. More commonly classical logic simply treats =

as the identity predicate. That treatment of = , however, is known to be equivalent —

in every respect relevant for us — to our present one. Namely, the latter turns into the

former by seeing any two = ∗-equivalent constants as two different names of the same

object of the universe, as “Evening Star” and “Morning Star” are.
7Remember Convention 4.4, according to which⊓ means⊓b and⊔ means⊔b.
8Since we need to constructM no matter whether those assumptions are true or not,

we can letM simply stop making any moves as soon as it detects some illegal behavior.
9Here and later, of course, an implicit stipulation is that the position spelled on the

imaginary run tape of the machine (M i in the present case) that made the move is also

correspondingly updated (in the present case, by appending ⊤α to it).
10Remember Convention 3.4.
11In fact, an essentially the same logic, under the name L, was already known as early

as in Japaridze (2002), where it emerged in the related yet quite different context of the

Logic of Tasks.
12To ensure that Convention 8.1 is respected, here we can safely assume that, if E is

obtained by⊔-Choose and this rule (in the bottom-up view) introduced a fresh variable

s, then s has no (bound) occurrences in G♥, or otherwise rename s into some neutral

variable.
13Only Axiom 7 is a scheme in the proper sense. Axioms 1-6 are “schemes” only in

the sense that x and y are metavariables for variables rather than particular variables.

These axioms can be painlessly turned into particular formulas by fixing some particular

variables in the roles of x and y. But why bother.
14Warning: here we do not follow the standard convention, according to which |0| is

considered to be 0 rather than 1.
15Do you see or feel a possible application of MP, or TR, or Match behind this informal

phrase?
16The condition s <τ would not automatically imply |s ′|≤b: in pathological cases

where b is “very small”, it may happen that the first condition holds but the second

condition is still violated.
17Those familiar with bounded arithmetics will notice a resemblance between BPI and

the version of induction axiom known as PIND (Buss 1986a; Hajek & Pudlak 1993). An
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important difference, however, is that PIND assumes s to be (actually or potentially)

∀-bound, while in our case s, as a free variable, can be seen as ⊓ -bound but by no

means as ∀-bound.
18In view of Convention 8.1, it is implicitly assumed here that τ does not contain z,

for otherwise the formula would have both bound and free occurrences of z. Similarly,

since z is quantified, it cannot be b.
19Strictly speaking, Axiom 13 or Lemma 13.2 will also be needed here to be sure that,

if the size of θ 1 exceeds b, then θ 1
6=0.

20For instance, the rule of Lemma 20.1 can be easily strengthened by weakening the

consequent of its right premise to the more PTI-style E(t ′) ⊓ (F(t ′) ∧ E(t)), and/or

strengthening the antecedent of that premise by adding the conjuncts R and w ≤ t <τ (on

the additional condition that t does not occur in R).
21Only considering nonzero times in this context.
22The third ∧-conjunct of F(z, t) was already used in the previous paragraph. But

there is no resource conflict here, as we have a choice (rather than parallel) conjunction

between the problems whose solutions are described in the present and the previous

paragraphs, so that only one of them will actually have to be solved.
23Strictly speaking, more than one move can bring E to the same ⊔-deletion (e.g., think

of the case E = Y ⊔ Y ). But this is not a serious problem, and is easily taken care of by

assuming that the list G1, . . . , Gm has repetitions if necessary so that, for each move that

turns E into one of its ⊔-deletions, the list contains a separate copy of the corresponding

⊔-deletion.
24Remember that X runs in time ξ(b). By definition, this means that ⊤’s time in any

play is less than ξ(b). Hence, the term ξ(b) cannot be 0, or 0×b, or anything else that

always evaluates to 0. Therefore, of course, PA ⊢ ξ(b)≥b.
25PTA can easily be readjusted to satisfy this condition by requiring that each logical

axiom in a PTA-proof be supplemented with a proof of that axiom in some known (fixed)

sound and complete recursively axiomatized calculus for classical logic.
26What creates circularity is the common-sense fact that syntax is merely to serve a

meaningful semantics, rather than vice versa. It is hard not to remember the following

words from Japaridze (2009a) here: “The reason for the failure of P ⊔ ¬P in computabil-

ity logic is not that this principle . . . is not included in its axioms. Rather, the failure of

this principle is exactly the reason why this principle, or anything else entailing it, would

not be among the axioms of a sound system for computability logic”.
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