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LUDICS, DIALOGUE AND INFERENTIALISM

ABSTRACT: In this paper, we try to show that Ludics, a (pre-)
logical framework invented by J-Y. Girard, enables us to rethink
some of the relationships between Philosophy, Semantics and Prag-
matics. In particular, Ludics helps to shed light on the nature of
dialogue and to articulate features of Brandom’s inferentialism.1

1. INTRODUCTION

A large part of Philosophy and notably of the Philosophy of Logic has
ignored the recent revolution which has occured in logic over the last
fifty years. Philosophers often think that such a revolution only con-
cerns computer sciences and is merely technical, when in fact it brings
to the fore essential features of language that a philosopher should
not ignore. In particular, this revolution sheds a new light on the
foundations of logical laws. This question repeatedly occurs in the
philosophical debate. Sometimes relegated to psychology, that is to the
organization of the brain, or to metaphysics under the aspect of tran-
scendental norms, this question cannot be resolved until we have left
behind the superficial analysis of logic, limited to the apparent laws
of discourse, as we have received them from the first ancient logicians
via the medieval tradition. Remaining tethered to this tradition leads
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us to ignore the studies made within logic and calculus. By encom-
passing these studies, not only do we gain a deeper understanding of
logic but also of language. In particular we may grasp the fundamen-
tal nature of language–interaction. About eighty years of research (at
least from Gentzen, 1934) have lead to the huge importance of the
concepts of proofs, seen as mathematical objects, and of normaliza-

tion of proofs, also known as cut-elimination in the Sequent Calculus
presentation of logic. While the study of proofs and their transforma-
tions gave rise to a proof semantics, particularly in the intuitionistic
tradition of Brouwer and Heyting, their study in connection with pro-

grams led to the exploration of their dynamic aspects, as they are in-
volved in the “proofs as programs” paradigm, largely illustrated by the
Curry-Howard isomorphism (Howard 1980). This isomorphism not
only provides an equivalence between formulae and types, proofs and
programs, but also between normalization and reduction, that is the
execution of a program. Seen through the perspective of computer
sciences, logic appears as a domain of processes in interaction. Proper-
ties such as the Curry-Howard isomorphism, the Church-Rosser conflu-
ence, and the cut elimination theorem have become central properties
in logic, but these are not accounted for in model theoretic seman-
tics. In the eighties, the French logician Jean-Yves Girard (1987; 1989;
1989; 1995) generalized this line of research, essentially done in the
context of intuitionism, by signaling the crucial role of structural rules
in logic, paving the way for linear logic and its more recent successors,
such as Ludics and the Geometry of Interaction.

In this paper, we try to show how this paradigm of research brings
new concepts and tools that enable us to reflect on language and the
Philosophy of language. As we shall see, this concerns not only the
study of empirical objects such as ordinary dialogues, and therefore a
study of pragmatics, through taking a slightly different approach than
Grice’s, but also philosophical approaches such as Rational Pragma-
tism (Brandom 1994, 2000), that have seen much discussion in recent
years. In the modern logical frameworks that we consider, interaction

is a two-faceted concept, one referring to the reduction of proofs, and
the other to game-theoretic aspects. For instance, in Ludics, the frame-
work invented by Jean-Yves Girard (2001), the main objects are not
properly proofs but what Girard calls designs, that is, generalizations
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of proofs and counter-proofs, which can also be seen as strategies in
games. The important point is that these games are not governed by
rules which would be a priori given: rules are flexible and come to
the fore in practice, only respecting some general geometric proper-
ties. Nor are they governed by some gain function: the game ends
when players reach a situation where one of them endorses the move
made by the other. We therefore reach a notion of game that is very
suitable for the incorporation of wittgensteinian intuitions, and in ad-
dition, of claims by philosophers like W. Sellars and R. Brandom who
argue, contra Wittgenstein, that language has a downtown, which con-
sists of giving and asking for reasons.

2. LOGIC AND PROCESSES

2.1. The Curry-Howard Correspondence

According to the Curry-Howard correspondence, proofs in an intuition-
istic system are programs and according to the Church-Rosser theorem,
programs so obtained execute in a deterministic way, that is, the reduc-
tion of λ-terms is confluent (the result is not modified when we change
the reduction strategy). Extensions of this isomorphism to other sys-
tems lead to interesting results and new interesting calculi such as
Parigot’s λµ-calculus and Curien-Herbelin λµµ̃-calculus (Parigot 1992;
Curien & Herbelin 2000). In those “classical” calculi, a particular strat-
egy must be chosen (for instance, the so-called call-by-value and call-

by-name strategies) in order to keep the property of determinism. If
not, computations may diverge. If we interpret “computation” as se-

mantic evaluation of a symbolic form (a linguistic expression), we get
the analogy with semantic ambiguity, that is several readings for one
sentence (as in the case of everyone loves someone). In all cases, these
terms (λ, λµ, λµµ̃) are proof encodings and their reductions refer to
normalizations of the proofs they encode. We are thus led to study
proofs in more general (or more specific) systems than intuitionism,
that is to study:

• how proofs normalize,

• how they interact with each other.

www.thebalticyearbook.org
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2.2. Logical Language and Ordinary Language

Many of these observations can be transposed into the Philosophy of
language, considering that cut-elimination could be the main feature
not only of a logical language, but also of ordinary language. We shall
even try to argue that language is cut-elimination, thus diverging from
the traditional claim that language is primarily attuned to (the descrip-
tion of) external reality. Such a view has, we argue, a strong philo-
sophical impact in that it may change the emphasis we put on some
aspects of language, thus reinforcing the viewpoint, taken by Rational
Pragmatism, according to which inference should be privileged over ref-

erence. Of course, a proof-theoretic viewpoint, like the one sustained
by P. Martin-Löf, A. Ranta or R. Cooper (1984; 1994; 2012), can al-
ready deal with the inferential view according to which: “[o]ne can
pick out what is propositionally contentful as whatever can serve both
as a premise and as a conclusion in inference” but, as pointed out by
Brandom, this is not the entire point:

“[We] typically think about inference solely in terms of
the relation between premise and conclusion, that is as a
monological relation between propositional contents. Dis-
cursive practice, the giving and asking for reasons, how-
ever, involves both intercontent and interpersonal relations
[...] The claim is that the representational aspect of the
propositional contents that play the inferential roles of
premise and conclusion should be understood in terms of
the social and dialogical dimension of communicating rea-
sons, of assessing the significance of reasons offered by
others”.
(R. Brandom, Articulating Reasons, p. 166)

Our aim is therefore to show how a formal theory based on:

• proofs (premises and conclusions)

• a possible game interpretation of inference processes

• interaction (another name for cut-elimination)

can provide a rigorous account of inferentialism.
In passing, we will show that we need to extend the notion of proof in
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order to get a realistic approach. Sellars’ “inferential game of making
claims and giving and asking for reasons” will then be seen as an in-
teraction between processes which generalize proofs (in that they may,
for instance, be infinite).

2.3. From Intuitionistic to Linear logic

It is often said that, if it is possible to translate proofs into λ-terms in
the intuitionistic framework, it is because of the constructivism of in-
tuitionistic logic (IL). In IL, sequents can easily be seen as functions:
they have n inputs (as many as formulae on the left hand side) and
exactly one output (or none when we consider the absurd (⊥) as a
constant of IL). The cut-rule amounts to a composition of functions. Of
course, in this framework there is no particular mystery about logical
rules like modus ponens: “A,A⇒ B ⊢ B” simply means the application
of a function of type A → B to an argument of type A, the result of
which is known to be obviously of type B. Nevertheless, Intuitionnistic
logic has restricted power and we could ask whether there exist other
systems endowed with such properties of constructivism. While explor-
ing the denotational semantics of the System F that he had invented (a
system of second order logic that is very useful for computational pur-
poses since, for instance, it provides a foundation for the use of type

polymorphism), J-Y. Girard discovered linear logic, based on the use of
particular morphisms (“linear” ones) between coherent spaces (Girard
et al. 1989). Expressed as a syntactic calculus, linear logic emerged
as symmetric (like classical logic) and constructive (like intuitionistic
logic). In linear logic, sequents are no longer functions but reversible
flows of information (n inputs, m outputs). They are “reversible” by
means of negation (⊥). As an essential difference with IL, in linear
logic, the negation is involutive.

2.4. Linear Logic and Interaction

As is well known, the removal of the two structural rules of weakening
and contraction entails distinguishing two families of connectives: mul-

tiplicatives and additives. According to the introduction rules for these
connectives, contexts are cumulative in multiplicatives, but shared in
additives.

www.thebalticyearbook.org
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For instance, the right rule for the additive “and” is the following:

Γ ⊢ A,∆ Γ ⊢ B,∆

Γ ⊢ A&B,∆

stating that, by means of a multiset of resources Γ, in the same context
∆, if some user has A as well as B, she does not have A and B, in
the cumulative sense, but she has the (active) choice between the two
resources. Whereas & (the additive and) can be interpreted as an active
choice, ⊕, the additive or, can be interpreted as a passive choice, that
is, the user must be prepared to receive either A or B, but without
knowing which one in advance. It may be shown that the De Morgan
laws are preserved, in such a way that we have:

(A&B)⊥ ≡ A⊥ ⊕ B⊥

(A⊕ B)⊥ ≡ A⊥&B⊥

Thus, it clearly appears that negation (⊥) does not play the usual role
of “negating” (which is merely a La Palisse Truth) but, more subtly,
the role of a change of viewpoint. Along the same lines, the usual law
concerning implication expressed as : A−◦B = A⊥℘B (the counterpart,
in the multiplicative dimension, of A⇒ B = A⊥ ∨ B) must be read as
the rule of an exchange: if you give me A, I will give you B (in the
same exchange, this is why ℘ is also called a “par”, for parallelization).
Thus begins a “game” interpretation of linear logic which has been
developed by A. Blass, S. Abramsky, R. Jagadeesan and others (1992;
1994). But in order to go further with this interpretation, we must
introduce more concepts, such as polarization.

2.5. Polarization

A second important distinction between connectives has emerged from
some of Girard’s insights and J-M. Andreoli’s significant result (1992)
on the focusing property of proofs in linear logic: some are said to be
positive and others are negative. For instance, when applying the right
rule for ⊗, coming from the bottom of the proof, we know that we
have to guess a splitting of the context: Γ, the multiset of resources for
obtaining A⊗ B, must be split into Γ1, used to give A, and Γ2, used to
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give B, with Γ1∩Γ2 = ;. Such a splitting necessitates a choice, that is, a
decision from the user. A similar observation may be made concerning
⊕ since, in this case, in order to prove Γ ⊢ A⊕ B,∆, we have to choose
between Γ ⊢ A,∆ and Γ ⊢ B,∆. On the other hand, no such choice has
to be made for either ℘ or &: the rules introducing these connectives
are perfectly reversible. In other words, ⊗ and ⊕ have active rules,
while & and ℘ have passive ones.
Following a theorem presented by Andreoli, any proof can be put in a
focalized form, that is, a form which respects the following conditions:

• as long as there are still negative formulae in the sequent to
prove, choose one

• when there are no more negative formulae, choose a positive
formula and focalize it, that is, make active all the positive sub-
formulae until there are none left.

A proof then becomes an alternation of sequences of positive and neg-
ative steps. Moreover, it is possible to regroup every sequence of (+/-)
steps into one step, that amounts to applying a (+/-) rule for a synthetic

connective. Then, any proof is displayed as an alternation of positive

and negative steps. The calculus which is obtained, called hypersequen-

tialized may be summed up in the following rules:
Formulas :

F = O|1|P|(F⊥ ⊗ · · · ⊗ F⊥)⊕ · · · ⊕ (F⊥ ⊗ · · · ⊗ F⊥)|

Rules :

• axioms : P ⊢ P,∆ ⊢ 1,∆ O ⊢∆

• logical rules :

⊢ A11, . . . ,A1n1
,Γ . . . ⊢ Ap1, . . . ,Apnp

,Γ

(A⊥11 ⊗ · · · ⊗ A⊥1n1
)⊕ · · · ⊕ (A⊥p1 ⊗ · · · ⊗ A⊥pnp

) ⊢ Γ

Ai1 ⊢ Γ1 . . . Aini
⊢ Γp

⊢ (A⊥11 ⊗ · · · ⊗ A⊥1n1
)⊕ · · · ⊕ (A⊥p1 ⊗ · · · ⊗ A⊥pnp

),Γ

www.thebalticyearbook.org
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where ∪Γk ⊂ Γ (the possibility of ∪kΓk strictly inside Γ, allows
weakening) and for all k, l ∈ {1, . . . p}, Γk ∩ Γl = ;.

• cut rule :

A⊢ B,∆ B ⊢ Γ

A⊢∆,Γ

Let us mention that:

• all propositional variables P are positive

• formulae connected by ⊗ and ⊕ are negative (the focalisation
process leads to maximal decompositions of positive formulae)

• the general pattern (...⊗ ...⊗ ...)⊕ (...⊗ ...⊗ ...)...⊕ (...⊗ ...⊗ ...)
is not a restriction because of distributivity : (A⊕ B)⊗ C ≡ (A⊗

C)⊕ (B⊗ C)

• concerning the particular case of a synthetic connective of arity
1, where (A⊥11 ⊗ · · · ⊗ A⊥1n1

)⊕ · · · ⊕ (A⊥p1⊗ · · · ⊗ A⊥pnp
) reduces

to only one term, the connective is noted: “↓”. We have then the
two rules:

⊢ A,Γ

↓ A⊥ ⊢ Γ

A⊢ Γ

⊢↓ A⊥,Γ

where A is positive. In this case, A⊥ is negative and “↓” changes
the polarity of the formula.
It has a dual, ↑, so that : ↓ (A⊥) = (↑ A)⊥.

2.6. A Gaming Aspect

An action consists of playing a rule:

• either positive, amounting to the selection of a disjunct, then
displaying its components

• or negative, amounting to the display of as many branches as
there are disjuncts, displaying components of each one (with no
active choice)

Vol. 8: Games, Game Theory
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This stems from Andreoli’s theorem that every positive (resp. negative)
action is followed by a negative (resp. positive) action until axioms are
reached. Now, what happens if we connect two attempts to build a
proof, one pertaining to one player aiming to prove ⊢ A,Γ, the other
pertaining to another player, aiming to prove ⊢ A⊥,Γ (or A ⊢ Γ) in-
stead? Let us take a particular case, where Player A wants to prove

X = (A11
⊥⊗ ...⊗A1n1

⊥)⊕ ...⊕ (Ap1
⊥⊗ ...⊗Apnp

⊥), while Player B wants
to deny it. The two attempts may be plugged by the cut-rule. Then,
the cut-elimination procedure reduces the cut, that is the previous occur-
rence of the cut-rule is replaced by one or several other occurrences
of a lower degree (that is implying less connectives). This is evident
in the fact that debate continues. In this particular case, the cut is
transmitted to the pair made of the premise that A chooses to prove X

and the corresponding premise assumed by B to deny X . This amounts
to saying that, by a negative rule, B previewed all the choices possibly
made by A. Let us suppose that A chooses Γ ⊢ Aj1

⊥ ⊗ ... ⊗ Ajnj

⊥, that

is the jth component of the ⊕ (where 1 ≤ j ≤ p), the cut is between
this formula and the corresponding Γ ⊢ Aj1℘...℘Ajnj

, or in other words

there are nj cuts between formulae belonging to the sequents Γi ⊢ Ajk
⊥

(1 ≤ k ≤ nj) on one side and the sequent Γ ⊢ Aj1, ...,Ajnj
on the other

side. Then, roles are interchanged, because each Ajk is positive, it is B’s
turn to perform a positive action while A performs a negative action.
Of course, because there cannot be a proof of X and a proof of X⊥, if
one of the sequents is provable, the corresponding attempt (or para-

proof) ends up by an axiom, while the other ends up by a termination
rule which is not a proof rule but what can be called a paralogism: the

daimon, formulated as: †
⊢ Γ

.

2.7. Geometrisation of Proofs

While proofs in intuitionistic logic are encoded into λ-terms, in linear
logic, they are encoded into proof-nets, which are one of the main inno-
vations due to linear logic. Generally speaking, proof-nets are graphs
enjoying a particular correctness criterion. Figure 1 illustrates such
a proof-net. The idea behind proof-nets can be formulated as follows.
When we display the proof of a sequent in sequent calculus, the deriva-
tion produces many redundancies. Contexts are duplicated as long as

www.thebalticyearbook.org
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B⊥A ℘ (A⊥ ⊗ B)

A A⊥ ⊗ B

A⊥ B

Figure 1: Proof net for ⊢ A ℘ (A⊥⊗ B), B⊥

formulae belonging to them are not active, moreover several deriva-
tions may be obtained differing only in a non-essential way (for in-
stance non-relevant commutations of rules). The representation under
the form of a net avoids this problem, thus providing the true essence
of the proof. Having discovered that any sequential proof can be rep-
resented this way, it becomes possible to assert a new, geometrical,
conception of proofs. Proof structures are graphs obtained by means of
particular links associated with the connectives: the set of these links
is the “bottom” of the proof attempt, or of its typing part. The graph
is then completed by so called axiom-links, that is, edges linking atoms
with opposite polarities (a and a⊥ for instance): those links express
the “proof” properly speaking. Cut-links are supplementary links which
link two instances of the same formula, having opposite polarities, thus
plugging two nets. Of course, not all proof-structures are proof-nets,
that is, graphs that we can really associate with sequential proofs. A
proof-structure that is not a proof-net is demonstrated in Figure 2.

If we compare figures 1 and 2, we see that in the latter the re-
moval of a dashed line may suppress connectivity and maintain a cycle

(see figure 3). while any such removal in the former graph keeps con-
nectivity and eliminates cycles. From now on, we can use an easy
geometrical criterion (known as the Danos-Régnier criterion (1989))
to discriminate proof-nets among proof structures:
A proof-net is a proof-structure enjoying the following criterion:

• for every switching of a ℘ link, the graph is connex and acyclic

(Switching is the selection of only one edge in a link). Cut-elimination
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B⊥A ⊗ (A⊥℘ B)

A A⊥℘B

A⊥ B

Figure 2: A proof structure which is not a proof net

B⊥A ⊗ (A⊥℘ B)

A A⊥℘B

A⊥ B

Figure 3: A cycle created by a switch

www.thebalticyearbook.org
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can be performed on proof-nets, as illustrated in figure 4. In stage (i),
there is a cut between the two main formulae A⊥ ⊗ B and A℘B⊥. This
cut is reduced in (ii) where it is replaced by two cuts, one between A⊥

and A and the other between B and B⊥. At this stage, the cut elim-
ination algorithm faces the case of an axiom: the cut is removed in
both instances, leading to (iii). All along the procedure, the correct-
ness criterion has been preserved. Put in the reverse order, starting
from a cut-free proof, a pair of dual formulae cannot be introduced,
to avoid the creation of a cycle. This is a key point with regard to
the foundations of logical laws, since, from now on, instead of starting
from sequential proofs, then discovering the proof structures associated
with them, we can consider the reverse: starting from proof structures
which are proof-nets. In this way, the correctness criterion comes first
and the derivations second. We can even say that rules are those par-
ticular kinds of morphisms which allow one to respect the correctness
criterion, thereby producing a significant change of viewpoint in logic.
Moreover, the origin of the criterion may be intuitively understood by
means of the two fundamental results:

• acyclicity is an invariant of normalization

• normalization succeeds when every cut is eliminated

since normalization, for instance, would fail in the case illustrated in
figure 5 (as the cut can never be eliminated). Because of the preser-
vation of the criterion, the configuration in figure 5, if it is a result of
normalization, necessarily indicates a cycle in a previous stage, there-
fore a wrong proof. Finally, execution explains correctness and at least
partially, why rules are such as they are.
To sum up:

• proofs are alternations of positive and negative steps, but we may
also consider other such alternations, such as counter-proofs, that
is, attempts to deny a proof,

• geometrizing proofs leads to the pre-eminence of geometrical cri-
teria (such as acyclicity), thus opening the field for more gener-
alization of the concept of proof (design)
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B⊥

A A⊥ ⊗ B

A⊥ B

A ℘ B⊥

A B⊥

B ⊗ A⊥

B A⊥

(i)

B⊥

A

A⊥ B

A B⊥

B ⊗ A⊥

B A⊥

(ii)

A B⊥

B ⊗ A⊥

B A⊥

(iii)

Figure 4: Cut-elimination in proof-nets

cut

ax

a⊥ a

Figure 5: An elementary loop in cut-elimination

www.thebalticyearbook.org
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3. LUDICS

3.1. Rules and Designs

Ludics is an attempt to provide foundations for logical rules and con-
nectives, starting from the properties we have seen in the previous sec-
tion, which converge on the central idea of interaction (Girard 2001,
2006). In Ludics, we get rid of axioms and formulae, only keeping loca-
tions of formulae and sub-formulae, for geometrical purposes, notions
like actions and their polarities, and of course the process of normaliza-
tion. We can distinguish two rules (which may be seen as the skeleton
of the two rules introduced in the hypersequential calculus):

- POSITIVE RULE

(ξ.i ⊢∆i)i∈I

(ξ,I)

⊢∆,ξ

where I is a finite set of integers (possibly empty) and the ∆i’s
are pairwise disjoint and included in ∆.

- NEGATIVE RULE

(⊢ (ξ.ij)ij∈I,∆I)I∈N
(ξ,N)

ξ ⊢∆

where N is a set (possibly empty or infinite) of finite sets of in-
tegers and the ∆I ’s, not necessarily disjoint, are contained into
∆.

• and a third rule, DAÏMON:

†

⊢∆

In those rules, loci, or addresses, are indicated by sequences of inte-
gers, sequents are limited to forks, that is, deduction relations with at
most one locus on the left-hand side (all sequents could already be put
in this form in the hypersequential calculus because of the involutive
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Faxξ,ξ′ =
...

...

F axξ′ i,ξi

ξ′i ⊢ ξi ...
(+,ξ′, I)

⊢ (ξi)i∈I,ξ
′ ...

(−,℘f (N))
ξ ⊢ ξ′

Figure 6: The Fax

negation and the fact that several formulae on the left-hand side could
be considered linked by a ⊗, thus giving only one positive formula).
Negative forks have a non-empty left-hand side. A design can be de-
fined as a tree built only by using these rules and such that it always
terminates (seen from the bottom) by the application of a positive rule.
The fork at the root of a design is called its basis. A design is said to
be positive (resp. negative) if its basis is positive (resp. negative). This
is obviously a generalization of the notion of proof. The daïmon rule
can be seen as a way to stop a design. Intuitively, this corresponds to
an action of giving up (we shall see this in more details below). Such
a generalization allows one to deal with infinite processes (e.g. an
infinite design illustrated on figure 6).

3.2. Normalization of a Net of Designs

As evident from the three rules above, in Ludics, there is no explicit
formulation of the cut-rule: a cut is therefore the mere coincidence of
two loci of opposite polarities that share the same address. Normaliza-
tion is then the process of cancellation of such pairs. Let us start from
a net of designs the bases of which are, for instance:

D0 : ξ ⊢ α,β
D1 : α ⊢

D2 : β ⊢

D3 : ⊢ ξ

(where loci of the bases occur at most twice and the graph of the con-
nections between loci has no cycle) then normalization may be per-
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†
⊢ ξ.1.1

(−{{1}})
ξ.1 ⊢

†
⊢ ξ.2.1

(−{{1}})
ξ.2 ⊢

(+, {1,2})
⊢ ξ

(+,;)
⊢

(−, {;})
ξ.2.1 ⊢

(+,ξ.2, {1})
⊢ ξ.2

(−, {;})
ξ.1.1 ⊢ ξ.2

(+,ξ.1, {1})
⊢ ξ.1,ξ.2

(−, {{1,2}})
ξ ⊢

Figure 7: Two designs connected by a cut

formed. It may be explicated in the following way. Let κ be the last
rule of the main design:

• if κ= † then normalization succeeds, the result is : †
⊢

• if κ= (+,ξ, I) (in duality with (−,ξ,N )) :

– if I 6∈ N : normalization fails

– if I ∈ N : the process goes on.

An example is provided in figure 7, where two designs (one positive
and one negative) create a net with a cut which can be reduced. For the
sake of readability, we shall use a graphic representation of designs in
figure 8. Positive rules are represented as embranchments in thin lines.
They connect a positive fork, represented by a rectangle in a thin line,
and negative forks represented by rectangles in a dashed line. Negative
rules are represented as embranchments in dashed lines. Rectangles in
dashed lines are indexed with their unique loci, while rectangles in thin
lines are indexed by sequences of loci. If this sequence is empty, that
means that there is no continuation above the marked locus. There
can only be a continuation above a locus that is not yet marked (a new
focus). In figure 8, both designs terminate on a positive action, as ex-
pected. The left design ends twice through the daïmon rule, and the
right design ends through the positive rule labelled by the empty set.
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Red thin lines connecting the two designs symbolize cuts: these are
progressively removed, until reaching a situation (Fig. 9) containing
only one last cut, which will disappear during the last step (not illus-
trated in the figure), in which the ; rule is confronted with the † rule.

The result of this normalization is simply the empty fork †
⊢

. In this

situation, the two designs are said to be orthogonal.
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0 0

1 2 1, 2

1 1 1

;

1

;

† †

(i)

1 2 1, 2

1 1 1

;

1

;

† †

(ii)

2 ;, 2

1 1 1

;

1

;

† †

(iii)
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2 ;, 2

1

1

;

†

(iv)

Figure 8: Normalization of a net of designs

1

1

;

†

(v)
then stop!

Figure 9: Normalization of a net of designs - Final steps
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4. FROM LUDICS TO LANGUAGE

4.1. A Linguistic Interpretation of Normalization

We argue here that the normalization of the previous net of designs
can be seen as an exact parallel to a situation of dialogue between two
participants A and B, as illustrated below:

A - let us speak of your father and mother

B - my father is dead...

A - ... your mother?

B - she is retired.

A - I see...

Actually, we can re-use the same graphical representation, with la-
bels associated with utterances (illustrated in figure 10) progressing
along the following lines.

(1) The first cut connects the question asked by A to its recording by
B. Referring to figure 7, the locus of this question is ξ, and it
opens two new loci (ξ.1 and ξ.2), a priori, one for the father,
the other for the mother. The first step of normalization succeeds
because B receives and accepts the question. It leads to a new
situation, illustrated by (ii).

(2) Since A has created two negative loci (corresponding to two dif-
ferent ways of continuing the conversation) and B has recorded
both, two cuts have to be reduced. The order in which they are
reduced does not matter here. It happens that B first responds by
speaking of her father (locus ξ.1) and that, at the same time, A,
performing a negative action, has previewed the kind of answer
that B is expected to give with regard to her father. The cut line
connecting the two 1’s (the one in the dashed rectangle and the
one in the thin rectangle) can therefore be removed. This leads
to the situation illustrated by (iii).
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0 0

1 f? m?2 1, 2 expectation

1 exp. 1 exp. 1 dead

;

1 retired

;

“...”
“I see”

Figure 10: Dialogue as normalization

(3) The only positive action A can perform after the previous moves
is to acknowledge B’s response by, for instance, repeating only
the second part of her question (... your mother?). At the same
time, B performs a negative move by which she stops any contin-
uation above her father’s locus (what she uttered is a mere fact).
This combination of a fact and an acknowledgement results in a
successful step altogether in the dialogue and the normalization.
This leads to situation (iv).

(4) In situation (iv), the first focus (the father) has been given up,
and it is time now to speak of B’s mother. Still, the response by
B encounters A’s expectations, thus resulting in the removal of a
new cut, leading to situation (v).

(5) In situation (v), A can only acknowledge the new fact provided
by B, and the last cut is then removed, thus leading to a perfectly
well-behaved dialogue.
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(a) Emma: We have a flat.

(b) Robert: Ah, I see. (Pause) Nice? (Pause) A flat. It’s quite well

established then, your . . . uh . . . affair?

(c) Emma: Yes.
(d) Robert: How long?

(e) Emma: Some time.

(f) Robert: But how long exactly?

(g) Emma: Five years.

(h) Robert: Five years?

Figure 11: A sample dialogue, taken from Harold Pinter, Betrayal

4.2. Language as a Cut-elimination Process

Concerning dialogue, Ginzburg (2012) makes the following crucial ob-
servations, while discussing a very simple sample taken from H. Pinter’s
play Betrayal (see figure 11).

• “Coherence: each conversational move seems to cohere smoothly
with its predecessor: questions are followed by answers which,
in turn, raise new questions”.

• “Conciseness: conversation is, by comparison with text, a highly

efficient medium. Emma’s affirmation of the well-established na-
ture of the affair, Robert’s wondering how long the affair has
been going on, Emma’s informing Robert that it has gone on for
five years and Robert’s astonishment at Emma’s informing him
this, all of this which takes 40 odd words of text to convey, takes
a dozen words of dialogue.”

• “Radical Context Dependence: Isolated from their occurrence in a
dialogue many utterances lose most of their import. None of the
utterances ((c)-(h)) could stand on their own in a text. Indeed,
some utterances (e.g. ((d),(h)) resist a univocal sentential para-
phrase. At the same time, in context, all these utterances seem
readily comprehensible to the conversationalists.”

It is true that all these features are amazing. Their prototypical exam-
ple lies in the phenomenon of non-sentential utterances (from now on
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MEG : Is that you?

PETER : Yes, it’s me.
MEG : What? Are you back?

PETER Yes.
MEG : I’ve got your cornflakes ready. Here’s your cornflakes. Are they

nice?

PETER : Very nice.

Figure 12: Non-Sentential Utterances in a dialogue

NSU), that is, utterances frequently consisting of one word: yes, no,

perhaps or even bye, hmh... and so on. Interpreting such utterances
can only be done in context, but such a characterization is still too
vague: these words explicitly make reference to the current interac-
tion itself. As noted by Ginzburg, “the conventional meaning of a word
or a construction involves notions that irreducibly involve reference
to interaction - notions such as ‘current issue under discussion’, ‘dis-
engagement from conversation’, ‘acknowledgement of understanding’
and ‘ask intended reference of other’s utterance”’ (p. 5). A “grammar
of dialogue”, as proposed by Ginzburg, is, of course, a possibility. He
proposes explicit conversational rules expressing the facts relative to
the change of context due to a turn of speech, saying, for instance, that
the pair (speaker, addressee), made of two features, is permuted at each
turn of speech, or explicating what is the LATEST MOVE to have been
performed. However, we think that much of the information which
would be contained in such a “grammar” is already present, without
cost, in an interaction-based framework, where interaction is an a pri-

ori foundation, not constructed a posteriori by means of conventional
rules. Let us demonstrate this with the extract from Pinter’s The Birth-

day Party (figure 12). The dialogue from MEG’s perspective can be
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represented by the following design:

...

⊢

..

⊢

...

⊢ Λ

...

⊢ σ.0.1,τ,Γ

σ.0 ⊢ Λ
c

⊢ ξ.0.1.0.1,σ,Λ

ξ.0.1.0 ⊢∆
b

⊢ ξ.0.1,∆

ξ.0 ⊢∆
a

⊢ ξ,∆

where a corresponds to the positive action “question”: is that you?, b

to are you back? and c to are your cornflakes nice?.
PETER’s perspective is represented by the following.

;
⊢ ξ.0.1.0.1.0

ξ.0.1.0.1 ⊢
b′

⊢ ξ.0.1.0

ξ.0.1 ⊢
a′

⊢ ξ.0

ξ ⊢

;
⊢ σ.0.1.0

σ.0.1 ⊢
c′

⊢ σ.0

σ ⊢

etc.

The net made of these designs normalizes just in case the first yes an-
swers the first question, the second answers the second question and
very nice is an option for “are your cornflakes nice?”. Thus, as long as
normalization is successful, we know that such replies can only be as-
sociated with the expectations expressed by negative steps in the other
speaker’s design, thus restricting the number of possible interpreta-
tions. It would also be possible to analyse the phenomena of ellipsis

and focus, and of question / answer dynamics along the same lines.
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5. FROM LUDICS TO INFERENTIALISM

5.1. Utterance and Game

It is interesting to compare Ludics (or its “spirit”) with Brandom’s infer-
entialism since both assign significance to the two notions of proof (or
inference) and game (Brandom 1994, 2000). The latter is less explicit
in Brandom’s work, where it seems to be more metaphorical, as in the
wittgensteinian notion of language game. Nevertheless, we argue that,
even though metaphoric, Brandom’s, as well as Wittgenstein’s notions
of game can be effectively recast in ludical terms. A similar position
is noted by A. Pietarinen ((2007)) who remarks that “Girard’s writings
on Ludics carry Wittgensteinian undertones” (p. 273). Moreover, when
seen from this inferentialist viewpoint, actions take on a different inter-
pretation. Here, we move from the previous conception — according
to which positive actions were conceived of as mere interventions in
dialogue and negative actions as mere recordings — to a new concep-
tion, more precise and philosophically richer, where positive actions
may be seen as commitments and negative actions as entitlements. In
fact, performing a positive action in Ludics (distinct from the daïmon
rule) is selecting a positive locus, as if selecting a token in a game, and
from it, creating any number of negative loci (or none), as would be
the case in a game that includes a rule explaining the circumstances
under which you can move a token from a black square to a white
square, to several, or to none. We then know that the negative loci (or
the new tokens on negative squares) give rise to potential questions
or objections from the other speaker, who may ask for reasons to say
certain things, and that the speaker has to answer those questions and
objections. Therefore, when performing a positive action (which is al-
ways followed by a negative action, unless it is the daïmon or a rule
labelled by ;), every speaker commits herself to providing reasons for
what she says. On the other hand, by performing a negative action,
every speaker limits the type of utterance the other speaker can choose
for her to perform (e.g. either an answer or a new question). By doing
so, every speaker gives entitlements to the other. In what follows, we
shall consider a case in which the other speaker is fictitious and reacts
as a “scorekeeper” in a game. In fact, his role is to give entitlements and,
when acting positively, to react to every speaker’s commitment either
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by an acknowledgement (thereby increasing the speaker’s score) or
by a failure to acknowledge (which occurs when normalization fails).
These notions of score and scorekeeper may be found in Brandom who
says, for instance: “[u]nderstanding a speech act - grasping its dis-
cursive significance - is being able to attribute the right commitments
in response. This is knowing how it changes the score of what the
performer and the audience are committed and entitled to” (Brandom
2000, p. 165). Brandom is still more explicit when introducing the
notion of scorekeeper:

“Suppose we have a set of counters or markers such
that producing or playing one has the social significance
of making an assertional move in the game. We can call
such counters “sentences”. Then for any player at any time
there must be a way of partitionning sentences into two
classes, by distinguishing somehow those that he is dis-
posed or otherwise prepared to assert (perhaps when suit-
ably prompted). These counters, which are distinguished
by bearing the player’s mark, being on his list, or being kept
in his box, constitute his score. By playing a new counter,
making an assertion, one alters one’s own score, and per-
haps that of others.” (Brandom 2000, p. 190)

This explanation can be correlated with the rules of Ludics. In Ludics
games, counters are replaced by loci. We may consider that selecting

one locus “has the social significance of making an assertional move”.
At any time, of course, any player has a way of partitionning loci into
two classes: those he is allowed to select and those he is not allowed.
This partitionning depends on the moves of the other player: when
acting positively, if he wants to keep convergence, the first player has to
select a locus in a range offered by the other one, and thus, if he suc-
ceeds, he improves his score (as well as the other’s score — this shows
the difference between Ludics and other game semantics. In Ludics,
convergence gives points to both players so it is in their interest to co-
operate).
We may also suggest that it is not only sentences that are counters, but
also any part of speech. We may say that the utterance of The swatch

is red is not simply submitting a proposition to evaluation by stating a
“true” or “false” value, but playing it as a token in a game, and know-
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ing that other players can ask for reasons for this statement, either by
challenging the choice of the noun “swatch”, or by contesting that “it
is red”. Only after this game has come to an end can the assertion be
evaluated.
In this setting, assertion may be analyzed by assuming that counters

are parts of speech and that when producing an utterance such as The

swatch is red, the speaker is in dialogue with a score-keeper, who, at
first, entitles the speaker to choose a THEME from a restricted range of
topics allowed by the context. After the choice of a theme, the speaker
expects it to be validated by the score-keeper, in a virtual positive move,
followed by a new series of proposals concerning the PREDICATE, which
is dependent on the selected THEME. The speaker can then select her
own predicate from this series, waiting for a new validation, and per-
haps other moves (involving assessment of truth, modality and so on).

5.2. Assessments of Truth and Normalization

Normalization may still be connected to the way rational pragmatism
considers how assessments of truth work, as in the following passage
from Brandom:

Consider how assessments of truth work. Perhaps the cen-
tral context in which such assessments classically arise is
attributions of knowledge [...]
In order for [a statement] to be knowledge that a score-
keeper takes another to have, that scorekeeper must adopt
three sorts of practical attitude. First, the scorekeeper must
attribute an inferentially articulated commitment [...]. Sec-

ond, the scorekeeper must attribute a sort of inferential en-
titlement to that commitment [...]. What is it that then cor-
responds to the third, truth condition on knowledge? For
the scorekeeper to take the attributed claim to be true is
just for the scorekeeper to endorse that claim. That is, the
third condition is that the scorekeeper himself untertake
the same commitment attributed to the candidate knower.
(Brandom 2000, p. 168)

We suggest that these three moves correspond to the three possible
configurations in the normalization process. The first practical atti-
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tude corresponds to the case where the “candidate knower” (here A)
makes a positive move (distinct from the daïmon rule) while the score-
keeper (here B) makes a negative one. In this case, the utterance is
currently performed, A asserts something (“the swatch is red”) while B

records its content among her expectations. By doing so, B “attributes
to A an inferentially articulated commitment” since B recognizes it as
entering into the dialogical game. There is convergence if the repre-
sentational2 content of the assertion belongs to B’s set of expectations.
A’s positive step may consist of a positive rule labelled by the empty
set, provided that B acknowledges A’s statement as a fact. The second
attitude corresponds to a second step, just above the previous one, that
is, a negative step for A, which is opposed to B’s positive action. In
this case, the utterance has been produced, and therefore the corre-
sponding commitment has been made by A, and B can ask for reasons
for each aspect under discussion. This amounts to B “attributing a
sort of inferential entitlement to that commitment” since by challeng-
ing A, B attributes to A the power of drawing inferences in response
to these challenges. There is convergence if A has previewed appro-
priate answers (inferences A is compelled to draw from her statement).
And finally, there is the case where A performs a negative action and
B performs the daïmon. B “acknowledges” A, or more precisely, he en-
dorses the claim, or he “undertakes the same commitment attributed
to the candidate knower”. We thus have a deeper understanding of the
role of the daïmon, and how Ludics, in particular, contrasts with other
approaches such as classical game semantics. In traditional game se-
mantics, the purpose of the players is to achieve a precise goal: the
Proponent wants to show she is right when claiming that some thesis
is true, and the Opponent wants to show the contrary. Those games
are founded on an “objective” criterion which determines the winner
(in Hintikka’s games, the ultimate criterion is a model, by which it is
possible to determine the truth or falsity of any elementary fact (Hin-
tikka & Sandu 1997). In Lorenzen’s games, it is a more internal crite-
rion, relying on the fact that some player at some point has no rule to
apply (Lorenzen 1960). Translated into extensive games, those criteria
can be expressed as payoff functions. But, as Wittgenstein might say,
not all games are games with a payoff function and a notion of a win-
ner. Above all, most language games are not! At first glance, Ludics
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may also be seen as a search for the “winning” statement, particularly
when viewed from the perspective of a proof system, such as the hy-
persequential calculus. After all, the purpose of such a system was also
to get proofs, even if the notion of proof was analyzed from the per-
spective of interaction. But in the last sections we have seen that the
object of a proof (that to which the concept of a proof can apply) can
be significantly extended, so that it may now incorporate notions like
achievement, success or acknowledgement. According to our final con-
clusion, inspired by Brandom’s conception, a “proof” is an assertion,
which is supposed to be checked by an interlocutor (a score-keeper)
and the termination rule daïmon is used not “because there is no other
rule to apply” but rather because the partner in the interaction consents
to endorse a claim. That does not prevent one from referring to truth

and falsity, to the extent that the interaction is taken to hold between a
locutor and a (potentially) infinite number of participants, in this case,
we can characterize a true statement as a statement for which all inter-
actions end through the daïmon played by the dual participant. This
clearly brings up similar statements by C. S. Peirce, whose principles
are often compared with Wittgenstein’s.3

5.3. Incompatibility and Convergence

Following this inferentialist direction, it is also worth noting that Ludics
may go deeper than views expressed by Brandom (2008) concerning
logical laws as grounded on an explicitation of discursive practices. Ac-
cording to Brandom’s views, incompatibility plays the pre-eminent role.
It is true that a commitment is such that the player who undertakes it is
constrained by a logic of incompatibility (if she says that “it is red”, she
cannot say that “it is green” since these two judgements are incompat-
ible). Nevertheless, it would be a regression to think of incompatibility
in set-theoretical terms, thus assuming a non-contradiction principle at
the source of logical laws when in fact we are looking for foundations
for these laws. Moreover, as shown by D. Porello (2012), Brandom’s
concept of incompatibility does not take into account all the “stan-
dard” consequence relations we can imagine, but only the “classical”
ones.4 Such drawbacks may be avoided if incompatibility is defined in
another way. Actually, as suggested by Porello, incompatibility must be
defined on the basis of symmetry between players, according to which
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each one has to agree on what counts as disagreement. This considera-
tion calls for a formulation in terms of linear logic due to its particular
interpretation of negation, as a change of viewpoint, so that involu-
tivity (A = A⊥⊥) means precisely that the propositional content of A

requires agreement on which actions can challenge the content of A.
Thus, the concept of interaction, and more precisely that of normaliza-
tion (or convergence of the interaction) becomes the most appropriate
for generating the consequence relations which emerge from the game
of giving and asking for reasons.
Ludics contains important theorems which help us to distinguish be-
tween judgements, such as Girard’s separation theorem according to
which two designs D1 and D2 are said to be equal if and only if any
counter-design orthogonal to one is orthogonal to the other. This pro-
vides us with a method to compare designs via their orthogonal sets
: D is said to be “more defined” than D ′ if and only if D⊥ ⊂ D ′⊥, it
is written D � D ′, and it can be shown that this relation is a partial
order. Let us note that a behaviour is a set of designs which behave
the same way with regards to the other designs. More precisely, if D
is a design, D⊥ is the set of designs orthogonal to D (that is the set
of all designs whose interaction with D converges), and D⊥⊥, which
obviously contains D, is a behaviour. In fact, we may see behaviours as
propositions (see D. Porello for a similar view), and designs belonging
to them as their possible justifications (or reasons if preferred). Accord-
ing to the separation theorem, a behaviour D⊥⊥ can be seen as the set
of all the designs D ′ less defined than D, and therefore a proposition as
the partially ordered set of its justifications. If we consider two positive
behaviours B and B

′ and ⊢ B, ⊢ B′ their respective bases, if B ⊂ B
′,

then each attempt to prove ⊢ B is also an attempt to prove ⊢ B′ and
if ⊢ B succeeds, so does ⊢ B’. Thus, we obtain a natural notion of
entailment, closed to material entailment. Of course if ⊢ B succeeds,
⊢ B⊥ does not, but attempts to prove ⊢ B⊥ are in B

⊥. Viewed from
this perspective, we can say that two dual behaviours express incompat-

ibility. There are actually two notions of incompatibility, strong and
weak. Strong incompatibility occurs between two statements when
the interaction of their designs does not converge. This can be illus-
trated with two statements which do not share their presuppositions
( “is your sister a teacher?” - “But I have no sister!”). Strong incom-
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patibility may be fixed by changing the designs. (For instance, in this
example, we may unfold the first design by beginning with the ques-
tion “do you have a sister?”, if the other speaker answers “no”, there
is convergence). Weak incompatibility is in fact orthogonality.5 We
see then that in conformity with Brandom’s aims, this “incompatibility

semantics” yields consequence relations which make explicit our dis-
cursive practices, but as in Porello’s model (based on phase semantics
for linear logic), those relations are not limited to classical inference
and are able to include more than just classical reasoning.

6. CONCLUSION

We have tried to show that Ludics is a promising framework which
enables us to rethink many pragmatic, semantical and logical phenom-
ena. We may summarize by saying that

• Ludics allows one to get rid of a conception of meaning based on
model theory which takes truth, denotation and truth conditions
for granted while many approaches to language (Peirce, Wittgen-
stein, Sellars, Brandom a.o.) are in favour of a more procedural
way of grasping sentences’ meanings.

• A consequence of this first direction resides in, in some sense,
putting most of Semantics into the domain of Pragmatics : the
use of words amounts to making actions, which are best depicted
as moves in games.

• Another consequence is that Ludics allows one to account for
inferentialism, overcoming some of the difficulties encountered
by Brandom’s theory and by proof-theory.

What is probably the most striking is that by delving deeply into the
foundations of logic, the Ludics project has shed a new light on the
foundations of language. Thus, this foundational exploration has given
raise to concepts which can be dubbed “proto-logical” and are therefore
applicable in the field of language as well as in the field of logic, thereby
going towards a common foundation for both, something that we could
ultimately name a foundation of λoγoσ.
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Notes

1This work was completed with the support of the ANR Project LOCI number 0212
02.

2Brandom defines the representational content of a sentence, as opposed to the propo-
sitional content in these terms: “the representational aspect of the propositional content
that play the inferential roles of premise and conclusion should be understood in terms
of the social and dialogical dimension of communicating reasons, of assessing the signif-
icance of reasons offered by others.” (Brandom 2000, p. 166.)

3For instance, his view that truth is a matter of long-term convergence of scientific
research. cf. “Different minds may set out with the most antagonistic views, but the
progress of investigation carries them by a force outside of themselves to one and the
same conclusion. This activity of thought by which we are carried, not where we wish,
but to a fore-ordained goal, is like the operation of destiny. No modification of the point
of view taken, no selection of other facts for study, no natural bent of mind even, can
enable a man to escape the predestinate opinion. This great hope is embodied in the
conception of truth and reality. The opinion which is fated to be ultimately agreed to
by all who investigate, is what we mean by the truth, and the object represented in this
opinion is the real. That is the way I would explain reality” (Peirce 1982).

4For Brandom, a standard consequence relation is defined by two properties: general

transitivity and defeasibility. The first may be expressed by the cut rule, and the second
states that if a proposition B is not a consequence of A, then there is something which,
when added to B but not to A yields an absurdity.

5Our notions of “weak” and “strong” incompatibility correspond to Girard’s distinction
between refutation and recusation with regard to the interpretation of negation.
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