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DIFFERENTIAL METHYLATION METHODS IN MULTI-CONTEXT ORGANISMS
Blank Line.

Douglas D. Baumann1, Yuqing Su2, Iranga Mendis2, Gayla R. Olbricht2∗
1University of Wisconsin - La Crosse; 2Missouri University of Science and Technology;

∗(olbrichtg@mst.edu) to whom correspondence should be addressed

Abstract. DNA methylation is an epigenetic modification that has the ability to alter
gene expression without any change in the DNA sequence. DNA methylation occurs when a
methyl chemical group attaches to cytosine bases on the DNA sequence. In mammals, DNA
methylation primarily occurs at CG sites, when a cytosine is followed by a guanine in the
DNA sequence. In plants, DNA methylation can also occur in other cytosine sequences, such
as when a cytosine is not followed directly by a guanine. Many of the statistical methods
that have been developed to estimate methylation levels and test differential methylation
in whole-genome bisulfite sequencing studies incorporate the observed correlation between
methylation levels of neighboring cytosine sites. However, most of these methods have been
applied to human studies, where only CG sites are investigated. In this study, we focus
on plant studies and show that the correlation between methylation levels at neighboring
sites depends on the DNA sequence immediately following the cytosine. We investigate the
importance of accounting for these differences in the correlation structure by comparing the
performance of three existing methods (MethylSig, MAGI, and M3D) in plants.

1 Introduction

DNA methylation is an epigenetic modification in which methyl groups selectively bind to
cytosines throughout the genome (Choy et al., 2010). Changes in DNA methylation can
lead to phenotypic differences between genetically identical subjects, different tissues in the
same subject, different cells in the same tissue in the same subject, or even same cells in
the same tissues in the same subject over time (Melka et al., 2015; Roadmap Epigenetics
Consortium et al., 2015). Statistical methods have recently been developed to test for and
model differential methylation in mammalian species, but methods for plant species have
not yet been developed.

1.1 Methylation in Multi-Context Organisms

In mammals, methylation mainly occurs when a cytosine is followed by a guanine on the
DNA sequence (CG sites) either through maintenance or through de novo methylation (Cao
et al., 2003). On the other hand, methylation can occur in plants at CG, CHG, or CHH
sites, where H is any base other than guanine that follows a cytosine on the DNA sequence
(Chan et al., 2005). These different sequences where methylation can occur are referred to as
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sequence “contexts”. Methylation levels at different contexts are created and maintained by
different mechanisms (Qian et al., 2012; Zhong et al., 2012). Many of the current statistical
methods for analyzing DNA methylation data account for correlation in methylation levels
between neighboring CG sites (Park et al., 2014; Baumann and Doerge, 2014; Mayo et al.,
2014). However, the correlation in methylation levels appears to be context dependent
in plants. Figure 1 shows the average decay in correlation between a reference cytosine’s
methylation level and that of downstream cytosines for the unreplicated Arabidopsis thaliana
data presented in Lister et al. (2008) for three separate minimum sequencing depths. In this
study, methylation levels in wild-type columbia-0 and met1 mutants, which are deficient in
CG methylation maintenance, were compared. The CG correlation levels shown in Figure
1 differ greatly between the wild-type and mutant plants, while only minor differences are
evident in CHG or CHH methylation correlations. Average starting correlations also differ
between the contexts, though similar decay patterns are evident in each of the contexts and
treatments.

1.2 Methods Under Comparison

Next-generation sequencing (NGS) technologies combined with bisulfite sequencing meth-
ods are able to produce full genome methylation profiles at single-base resolution. After
sequencing and alignment, methylation data are typically summarized at each cytosine us-
ing the number of methylated reads observed, the number of total reads (sequencing depth)
observed, methylation context, chromosome, chromosome position, condition (e.g., disease
or healthy) and subject. Three recently developed methods for detecting differential methy-
lation between conditions will be applied to NGS plant data and compared. Though each
method accounts for spatial correlation between cytosines in some way, cytosine context is
typically ignored or the method is applied to the CG context only. Each method additionally
treats each non-overlapping gene region independently.

MethylSig. The MethylSig method (Park et al., 2014) tests for differential methylation at
individual cytosines using a beta-binomial model for the number of methylated reads at a
specific site. The model allows the sequencing depth and probability of methylation to vary
between individuals and employs a likelihood ratio test to find differences in methylation
levels between conditions. Local information for estimation of the beta-binomial parame-
ters is incorporated through the use of triangular Kernel weights to obtain local maximum
likelihood estimators.

MAGI. The Methylation Analysis using Genome Information (MAGI) approach (Baumann
and Doerge, 2014) defines testing regions based on a priori genome annotation and implicitly
assumes methylation homogeneity within these regions, but otherwise does not adjust for
spatial correlations between cytosines. The tests performed include two variants of Fisher’s
Exact Test (FET) in unreplicated experiments or two variants of logistic regression in ex-
periments with biological replication. The first variant of each type (MAGIc) involves first
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Correlation between Neighboring Cytosines in Arabidopsis thaliana
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Figure 1: Average empirical Pearson correlation in methylation levels between a reference
cytosine and downstream cytosines for two strains of Arabidopsis thaliana (col0 and met1)
under different contexts and minimum sequencing depths. Differences in average correlation
levels between treatments and between contexts indicate a need to model correlation as well
as context in differential methylation studies in multi-context organisms.

testing differences between methylation levels at individual cytosines then summarizing these
tests within each annotated region, similar to the sliding window approach proposed by Lister
et al. (2009). The second variant (MAGIg) first classifies each cytosine (within individual) as
either methylated or not methylated based on an a priori threshold, then performs a single
FET or logistic regression on the resulting data within each region, assuming the resulting
data are binomially distributed. MAGIg is presented as the more powerful alternative and
will be used for method comparisons.

M3D. The Maximum Mean Methylation Discrepancy (M3D) method (Mayo et al., 2014)
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quantifies changes in the shapes of methylation profiles within local testing regions by apply-
ing a machine learning technique (MMD, (Gretton et al., 2007, 2012)) to test homogeneity
in underlying methylation generating distributions. A radial basis function (RBF) kernel
function is employed to construct the MMD between data sets in each testing region which
is then adjusted based on changes in coverage profiles. The resulting M3D statistics are
then compared to a null distribution of observed M3D statistics between replicate pairs.

The primary goal of this paper is to investigate the performance of current differential methy-
lation analysis techniques when used in multi-context organisms such as plants. The three
methods under comparison (MethylSig, MAGI, and M3D) were applied to an Arabidopsis
thaliana seedlings dataset under a variety of simulated conditions. The data and simulation
procedures are described in Section 2. Simulation results are presented in Section 3, followed
by a discussion of the use of current methods on plant data in Section 4.

2 Data and Simulation Study

2.1 Arabidopsis thaliana Data Source

Methylation data for three biological replicates of bisulfite-sequenced columbia-0 seedlings
Arabidopsis thaliana (Qian et al., 2012; Zhong et al., 2012; Law et al., 2013) were accessed
from NGSmethDB, an online, single-base resolution methylome browser and repository
(Geisen et al., 2014). NGSmethDB provides several levels of depth-filtered data, and a
minimum depth of 10 reads per cytosine was chosen to allow for more sensitivity in testing
for differential methylation (Baumann and Doerge, 2014).

2.2 Simulated Data

Data were simulated following the approach in Mayo et al. (2014) with modifications to
leverage natural correlation patterns and methylation levels. For simplicity, 1000 gene regions
(Lamesch et al., 2011) were randomly selected from chromosome 1 of Arabidopsis thaliana.
Of these, 200 were randomly selected to apply differential methylation changes. Using three
biological replicates as a control group, a treatment group was simulated by first adding (or
subtracting) random Poisson(λ = 1) noise to the number of reads at each cytosine within
each replicate. Uniform (from -0.1 to 0.1) random noise was added to cytosine methylation
levels Li, defined as the ratio of methylation reads to total reads mapped to a particular
cytosine. Methylation levels of cytosines were adjusted within the 200 selected genes per
Mayo et al. (2014). New treatment group methylation levels Ltrt

i are simulated using control
group methylation levels through Ltrt

i = (1− α) ∗ Lcontrol
i + α or Ltrt

i = (1− α) ∗ Lcontrol
i , for

hyper- and hypo-methylation respectively, where α ∈ [0, 1] is used to control the degree of
differential methylation between the control and treatment groups.
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Hyper- and hypo-methylation of cytosines was determined by first calculating mean cytosine
methylation levels within each gene in the control group and hypo-methylating the cytosines
within the corresponding gene in the treatment group if the gene mean exceeded 0.5 (oth-
erwise cytosines were hyper-methylated). Differential methylation was simulated for α val-
ues between 0.2 and 0.8, and under several different context settings (CG-only, CHG-only,
CHH-only, and context-blind methylation). For simulations investigating context-specific
methylation, mean cytosine methylation levels were calculated within each gene only for the
specified context, and methylation changes were only applied to cytosines of those contexts.
This simulation strategy allows the current methods to be tested both when differential
methylation in a region occurs at sites of all contexts and also when it changes for different
contexts.

2.3 Method Evaluation

Two different analysis approaches were implemented on each of the 1000 independent gene
regions for each of the three statistical methods under comparison to determine the im-
portance of accounting for sequence context in detecting differential methylation. Context-
independent analyses included all cytosines regardless of context when implementing the
three methods. The context-specific analyses involved analyzing each context separately for
the three methods by only including the cytosines of one specific context within a given
analysis. The false discovery rate was controlled at α = 0.05 for all analyses (Benjamini and
Hochberg, 1995).

Performance of the methods was evaluated by comparing the true positive rates. For MAGIg
and M3D, the true positive rate is defined as the proportion of the 200 truly differentially
methylated regions that were identified as differentially methylated by the method. For
MethylSig, the calculation is done on a site level rather than a region level. Comparing the
performance of the methods for the context-independent analysis will give insight into which
of the methods perform best using the methods as is without considering sequence context.
Comparing the performance of the context-independent and context-specific analysis will
determine whether applying the methods in a context-specific way improves the ability to
detect sites or regions that are truly differentially methylated.

3 Results

3.1 Context-Independent Analyses

Figure 2 shows the comparison of true positive rates (TPR) between the three methods for
varying degrees of differential methylation (α values) when the context-independent anal-
ysis is employed. The four plots within Figure 2 show the results corresponding to where
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the true underlying differential methylation occurs (CG only, CHG only, CHH only, or all
contexts). When differential methylation occurred at all contexts within a region, MAGIg
and M3D performed similarly well with a TPR over 0.90 regardless of the size of differences
in methylation between the groups. MethylSig had a consistently lower TPR. When only
sites of one context were differentially methylated within a region, the three methods var-
ied in their performance. MethylSig performed best when only CG sites were differentially
methylated, M3D performed best when only CHG sites were differentially methylated, and
MAGIg performed best when only CHH sites were differentially methylated. In general,
the TPR were lower for the context-independent analysis when differential methylation only
occurred at specific contexts. This indicates that a direct application of the three meth-
ods without considering context can lead to lower TPR if differential methylation is truly
context-dependent.
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Figure 2: True positive rates verses the α level for controlling the degree of differential methy-
lation for each of the three different methods (MAGIg - red, M3D - green, and MethylSig
- blue) using the context-independent analysis. Standard error bars for the proportions are
included. The four plots show results for differential methylation at only specific contexts
within a gene (CG only, CHG only, and CHH only) as well as when all cytosines within a
gene are differentially methylated (All Contexts).

3.2 Context-Specific vs. Context-Independent Analyses

Figure 3 shows the comparison of the true positive rates (TPR) between context-specific
and context-independent analyses for varying degrees of differential methylation (α values)
in each of the three methods (shown in separate rows). The four plots (in columns) for each
method show the results corresponding to where the true underlying differential methyla-
tion occurs (CG only, CHG only, CHH only, or all contexts). When differential methylation
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Figure 3: True positive rates verses the α level for controlling the degree of differential
methylation for the context-specific (blue) and context-independent (red) analyses. Standard
error bars for the proportions are included. Results for the three methods (MethylSig, M3D,
and MAGI) are given in different rows. The four plots for each method show results for
differential methylation at only specific contexts within a gene (CG only, CHG only, and
CHH only) as well as when all cytosines within a gene are differentially methylated (All
Contexts).

occurred at all contexts within a region, the context-specific and context-independent anal-
yses performed identically for MAGIg and M3D. The context-specific analysis showed an
improvement over the context-independent analysis in MethylSig in this scenario with TPR
over 0.90 similar to MAGIg and M3D. Since MethylSig tests each site individually rather
than at the gene level, this improvement may be due to inherent differences in correlation
between methylation levels of different contexts that affect the local estimates. These may
affect testing at individual sites more than the region level tests used in MAGIg and M3D.
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When differential methylation occurred only at a specific context within a region (CG
only, CHG only, or CHH only), the context-specific analyses outperformed the context-
independent analysis across almost all settings for all three methods. The largest improve-
ments are seen when the average methylation differences are small, but notable differences
are observed even at large average methylation differences in some settings (e.g., MAGIg
results for CHG only). In the few cases in which the context-specific analyses did not clearly
outperform the context-independent analysis (MethylSig and MAGIg - CG only, MAGIg -
CHH only), the TPR were nearly identical.

4 Discussion

The focus of this work was to evaluate the performance of existing methods for differen-
tial methylation detection in multi-context organisms such as plants. Since the correlation
between methylation levels of neighboring cytosines depends on the sequence context, it is
important to consider the context in differential methylation analyses; however current sta-
tistical methods (Baumann and Doerge, 2014; Mayo et al., 2014; Park et al., 2014) fail to do
so. Through simulation studies, we investigated the performance of three existing methods
on plant data using two approaches: combining all contexts (context-independent) into one
analysis and running separate (context-specific) analyses for each context. The true under-
lying DNA methylation differential status was simulated under conditions of both context
dependence and independence to thoroughly test the methods.

Results of the context-independent analyses indicate that as long as differential methylation
is not context dependent, the M3D and MAGIg methods work well and can be applied
without modification. The underperformance of MethylSig may be indicative that testing
at a gene/region level is more powerful than at individual sites, as noted in the MAGI
manuscript (Baumann and Doerge, 2014). If differential methylation occurs in a context-
specific manner (CG only, CHG only, or CHH only), there is room for improvement among
the three current methods tested and there is not a single method that works best across all
three sequence contexts.

Results comparing the context-specific and context-independent analyses indicate that run-
ning a separate analysis for each context is important when working with organisms like
plants where methylation can occur in multiple sequence contexts. The TPR is generally
much higher and at worst has a similar TPR as the analysis when all contexts are combined
into one analysis (context-independent). These differences are likely due to the correlation
differences between sites of different contexts. Since it may not be known a priori whether all
contexts or only a specific context is differentially methylated within a gene/region, the sep-
arate (context-specific) analyses for each context are recommended. By testing separately,
the analyses can also provide information about which of the contexts are differentially
methylated in a region, which the context-independent analysis can not provide.
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Several model modifications are being considered to improve performance when testing for
differential methylation in organisms where methylation occurs in multiple sequence con-
texts. In plants, DRM and CMT3 methyltransferase classes each maintain CHG and CHH
contexts (Chan et al., 2005), so considering correlation between different methylation con-
texts could increase statistical power in these models. To this end, we are investigating the
incorporation of an additional kernel element into MAGIg, MethylSig, or M3D to combine
context profiles under different correlation structures. In addition, the effects of sequencing
depth are currently being considered. Although we expect a lower minimum depth to reduce
statistical power in each of the three methods, the effects are expected to less detrimental
to MAGIg due to MAGIg’s thresholding protocol when compared to the methylation-level
smoothing techniques of MethylSig or M3D.

5 Summary

In this work, the importance of sequence context in detecting differential methylation in
next generation bisulfite sequencing data was investigated. Sequence context is important
for organisms like plants where methylation can occur at CG, CHG, and CHH contexts, yet
current statistical literature does not address this issue. Three current statistical methods
were applied to an Arabidopsis thaliana data set that was simulated based on real data. Two
different analyses were employed for each method, a context-independent analysis where all
cytosines were analyzed together regardless of context and context-specific analysis where
cytosines of different contexts were analyzed separately. It was shown that it is more powerful
to analyze each context separately, which can also provide additional information about the
type of methylation differences within a region. Improvements to current methods to address
context-specific issues are currently being investigated.
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