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Limited to, Shelf Life Estimation  
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99362 
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Abstract 

Shelf life estimation procedures, following ICH guidelines, use multiple batch regression with fixed batch 

effects. This guidance specifically mandates estimates based on at least 3 batches. Technically, the fixed-

batch model limits inference to the batches actually observed, whereas ICH requires resulting estimates to 

apply to all future batches stored under similar conditions. This creates a conflict between the model used 

and the inference space the model is intended to address. Quinlan, et al. [6] and Schwenke [8] studied the 

small sample behavior of this procedure. Both studies revealed large sampling variation associated with the 

ICH procedure, producing a substantial proportion of extremely low and extremely high estimates. Quinlan, 

et. al [5] also considered alternative approaches including mixed models with random batch effects. While 

this eliminated the conflict between model and intended inference space, there were still problems with the 

mixed model approaches Quinlan considered. We present a Bayesian augmented mixed model approach to 

shelf life estimation that takes advantage of the theoretical benefits of the mixed model and uses prior 

information about variance components to improve accuracy of shelf life estimation procedure. 

Key Words: BLUP, shelf life estimation 

1. Introduction

Accurate shelf life estimation is very important to a variety of applications. This paper specifically focuses 

on the pharmaceutical industry, where inaccurate estimation can lead to undesirable consequences. 

Overestimation of shelf life could lead to consumption of drugs that are no longer stable and effective, 

while underestimation can cause the consumer to discard good product prematurely. Thus accurate 

estimation of shelf life is essential to both consumers and producers. Recent research [3], [6], [9] suggests 

that shelf life estimation procedures used in the pharmaceutical industry are not always reliable: 

overestimation and underestimation are common. This paper explores new techniques that utilize prior 

information gained through previous stages during the development process, thus minimizing the required 

number of replications. These techniques are geared to provide consumers with accurate shelf life estimates 

while maintaining lower costs for the production facilities. 
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2. Shelf life

Suppose we have a product that deteriorates over time. In an agricultural setting, this could be a food product 

or pesticide applied to a field. In a pharmaceutical setting, this could be a drug or a vaccine. There are many 

possible ways the stability limiting characteristic may decrease. In the simplest case, we could imagine that 

a product's effectiveness decreases linearly over time, and its lifetime is determined by how long its measure 

of effectiveness remains within a defined acceptance region. Figure 1 shows a population of batches, where 

y is the stability limiting characteristic and x is storage time in months. 

Figure 1: Distribution of batch mean responses over time 

It is important to note that due to variation in batch responses over time, the intercepts and slopes will vary. 

Once the distribution of batch mean responses is specified, the distribution of shelf lives arises as a 

consequence. For the purpose of this discussion we will use the convention that the average stability limiting 

characteristic of interest at time zero is at 100%.  

Over time, the stability limiting characteristic decreases to a point after which it is not considered acceptable 

anymore (below the acceptance criterion). When a batch intersects the acceptance criterion, we use A = 90 

in this discussion, the value gets projected on the horizontal axis and the corresponding value on the 

horizontal axis represents the batch's shelf life.  

When the process is repeated for each batch, the distribution of batch means produces the distribution of 

batch shelf lives on the horizontal axis. Figure 2 illustrates this relationship between the batch mean 

response distribution and the distribution of batch shelf lives. 
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Figure 21: Distribution of batch mean responses over time and distribution of shelf lives 

_________________________ 
1 Picture credited to Quinlan [7]. 

Within the shelf life determination frame, the statement that we would like to make is that any given batch's 

shelf life will meet or exceed the shelf life established for the product with acceptably high probability. For 

the purpose of this discussion let us assume that we would like that probability to be at least 95%. Therefore, 

in this paper the focus of shelf life determination is on the 5th percentile of the distribution of shelf lives. 

2.1 Fixed batch effects model 

A model typically used for this type of problem can be written as 

                                       ,      (1) 

where 
ijy denotes the stability limiting response at the jth time for the ith batch, 

jX  denotes the jth time 

(typically given in months of storage), 0i  denotes the intercept for the ith batch, 1i denotes the slope for 

the ith batch and ije  is the measurement error with the following distribution 
2~ (0, )ije NI  . According 

to the ICH guidelines at least three batches should be used. 

This model suggests unequal intercepts and unequal slopes for each batch, however it does not take into 

account the variability that naturally occurs among the batch intercepts and batch slopes. 

Quinlan, et al. [6] and Schwenke [8] studied the small sample behavior of this procedure. Both studies 

revealed large sampling variation associated with the ICH procedure, producing a substantial proportion of 

unacceptably low and high estimates 

0 1ij i i j ijy X e   
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2.2 Mixed model 

ICH also requires resulting estimates to apply to all future batches stored under similar conditions. This 

creates a conflict between the fixed batch effects model used and the inference space the model is intended 

to address. 

A random coefficient linear mixed model provides an alternative to the current approach, since it allows 

for inference to be applied to all future batches. 

Random coefficient linear mixed model is given by: 

                                                   ,        (2) 

where 
ijy denotes the stability limiting response at the jth time for the ith batch, 

jX denotes the jth time 

(typically given in months of storage), 0  is the mean value of stability limiting characteristic at time zero, 

1 is the mean rate of decrease of the stability limiting characteristic, 0ib is random deviation on the mean

value of stability limiting characteristics of the ith batch and 1ib  is the random deviation on the mean rate 

of decrease of stability limiting characteristic for the ith batch that have the following distribution: 

2~ (0, ).ije NI 

where 
2

0 is the variance among the intercepts of different batches, 
2

1 is the variance among the slopes

of different batches, 01  is the covariance among the intercepts and slopes of different batches, ije is the

measurement error that is independent of 0ib and 1ib , 
2 is the variance of the measurement error. 

Often in practice it is common to assume that 01 is equal to zero. Specifically, we do so in this paper. 

Quinlan, et. al [5] considered this mixed model with random batch effects. While this eliminated the conflict 

between model and intended inference space, there were still problems with the mixed model approaches 

that were considered. Specifically, while the variability of the mixed model approach was improved 

compared to ICH procedure, the mixed model approach produced a relatively large proportion of estimates 

that were too high. 

The question motivating this study is: “What if we try a Bayesian approach to shelf life estimation?” In 

other words, would a use of plausible, somewhat informative priors improve the estimation procedure? If 

we have information about variance components from the previous stages of drug development, we could 

use it to inform the priors. To answer these questions, we performed a simulation study that is described in 

the next section. Before we describe the simulation and its results let us look at different ways of calculating 

shelf life. 

 0 0 1 1ij i i j ijy b b X e     
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2.3 How can we calculate shelf life? 

Using the random coefficient linear regression mixed model (2) we could obtain the estimates for 0 and 

1 . Estimated shelf life is then given by: 

0
1

1

ˆ
ˆ ,

ˆ

A
T








where A is the acceptance criterion, 0̂ and 1̂ are the estimates for the intercept and slope.

Quinlan has tried this approach and showed that the resulting shelf life estimates were too high. 

Instead of using the estimates for 0̂ and 1̂ , we could get the confidence bounds for 0̂ and 1̂ using the 

mixed models estimation procedure and calculate shelf life based on the lower confidence bounds. 

Estimated shelf life is then calculated as follows: 

0,

2

1,

ˆ
ˆ ,

ˆ
L

L
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where A is the acceptance criterion, 
0,

ˆ
L  and 1,

ˆ
L are the lower bound estimates of population-averaged 

intercept and slope, respectively. For example, we can use the 5th percentile of 0,
ˆ

L  and 1,
ˆ

L , which are 

the lower bounds of a one sided 95% confidence interval. 

We could also get the shelf life based on the Best Linear Unbiased Predictors (BLUPs). To continue the 

discussion let us first define BLUPs more formally. Best Linear Unbiased Prediction (BLUP) is a method 

of estimating random effects. BLUP was developed by Henderson [2] and originally was used in animal 

breeding at the time of development. As we use more information obtained from the random effects the 

variance of the prediction error decreases, which is the beneficial property of BLUP.  

Relating this to the shelf life situation, the BLUPs of ith batch intercept and slope are  0 0 0
ˆˆˆ

i iB b  and 

 1 1 1
ˆˆˆ

i iB b  respectively. Using BLUPs, we can make batch-specific predictions taking into account the 

underlying distribution of random effects. This allows us to focus on the shortest-lived batch and obtain the 

shelf life based on the batch that reaches the acceptance criterion first. 

Estimated shelf life is then calculated as follows: 
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where A is the acceptance criterion ,  0 0
ˆˆ

ib  and  1 1
ˆˆ

ib  are the estimates of the shortest-lived batch 

intercept and slope, respectively. 

 (3) 

(4) 

 (5) 
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Alternatively, we could base the shelf life estimate on the lower confidence bounds of the batch-specific 

intercept and slope BLUPs of the batch with the shortest shelf life. Estimated shelf life is then given by:  
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1 1
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where A is the acceptance criterion ,  0 0
ˆˆ

i
L

b  and  1 1
ˆˆ

i
L

b   are the lower bound estimates of the 

shortest-lived batch intercept and slope, respectively. 

Figure 3 illustrates the difference between shelf life determined using the population-averaged batch 

response over time versus shelf life determined using the BLUP of the shortest-lived batch. Dashed lines 

on each graph represent the response based on the lower bound estimates. “SL Point Estimate” on each plot 

represents the shelf life obtained using the estimates of the slope and the intercept, “SL_LCL” is the shelf 

life obtained based on the lower bound estimates of the intercept and slope. 

Figure 3: Population-averaged versus BLUP shelf life 

(6) 
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3. Simulation

The idea of the simulation study is to generate the empirical distribution of true shelf life and use its 

characteristics as the standard for comparing the shelf life estimation procedures. Specifically, we focus on 

the 0 through 5th percentile of the empirical distribution of true shelf life and refer to this range of values as 

the target range. We chose this range because we would like the shelf life produced by each of the methods 

not to exceed the risk deemed acceptable (in this paper 5th percentile), but also not to be less than the 

effective minimum of the distribution.  

We use the model described in section 2.2 as the starting point for obtaining the shelf life and then compare 

the distribution of shelf life obtained within each method to the target range. The performance of an 

estimation procedure is better if higher proportion of shelf lives fall within the target range. The percentage 

of shelf lives falling within the target range in this paper is also referred to as coverage.  

As a result, two indicators of quality are of interest: a high percentage of calculated shelf lives below the 

5th percentile of the empirical distribution of true shelf life, and a small spread of the distribution of 

calculated shelf lives. 

3.1 Empirical shelf life distribution 

The first step was to generate the empirical shelf life distribution. One thousand data sets were generated 

using a random coefficient regression model with 3 batches per trial. Observations were generated for each 

batch at times 0, 3, 6, 9, 12, 18 and 24 months.  

Parameters used in simulation were similar to Quinlan’s: 0 ~ (101,1.5)iB NI , 1 ~ ( 0.33,0.0015)iB NI 

and ~ (0,0.5)ije NI , where 0iB and 1iB are are intercept and slope effects of the ith batch assumed to be 

uncorrelated, and ije  is the measurement error. The acceptance criterion A was set to 90. 

This set of parameters represents the cumulative knowledge for some product in the pharmaceutical 

industry. These parameters describe a stability limiting characteristic with an average of 101 at time zero, 

and 0.33-unit decrease per month, which corresponds to a 4 % annual rate of decrease of the stability 

limiting characteristic. 

Simulations were performed is SAS 9.4 using PROC MCMC. The length of Markov chain used for each 

scenario was 2,000,000 (before thinning) with a burn-in of 100,000 and thinning of 1000. 

A histogram of the empirical distribution of true shelf life is shown on Figure 4 below. 
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Figure 4: Empirical distribution of true shelf lives 

From Figure 4 we can see that the empirical distribution of the true shelf life ranges from 17 to 75 months 

with a 5th percentile of 28 months and median of 37 months. Thus the target range of values between 0 and 

5th percentile in this simulation corresponds to the range of shelf lives between 17 and 28 months. This 

range is shaded in Figure 4. 

3.2 Estimation procedures 

As mentioned earlier the idea behind a Bayesian augmented mixed model approach is to use the information 

that we have from the previous stages of product development and try different combination of priors to 

learn about the behavior of shelf life estimates for each scenario.  

To explore this, we decided to look at four different scenarios shown in the Table 1 below. Technically, 

priors on 
2

0 and 
2

1  should be called hyperpriors, but for simplicity of this discussion they would be 

referred to as priors. Other names for the non-informative prior are vague, diffuse, and flat prior. 

Table1: Four cases of priors 
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For each scenario we tried different sets of diffuse and informative priors, the results presented for each 

case are typical results that are representative of each set of prior combinations. Results for each scenario 

are described below. In this section lower confidence bounds of 95% confidence interval of mixed model 

estimates 
0,

ˆ
L  and 1,

ˆ
L were used to obtain shelf life. 

The guiding principle for selecting informative priors for each simulation study was that we assumed that 

we had available information about the most likely values of the parameters. The most likely values 

assumed for 0 , 1 , 
2

0 , 
2

1 and 
2  were 100, -0.33, 1.5, 0.0015 and 0.5 respectively. 

The following non-informative priors were used for intercept and slopes: 0 ~ (100,400)NI  , 0 ~

general(0), which is SAS notation for a flat prior and 1 ~ (0,4)NI , 1 ~  general(0). The informative 

priors used for 0  and 1 were NI (100; 9) and NI (- 0:33; 0:05), respectively.

For the variance components the following inverse gamma priors were used:
2

0 ~ (3,6),IG 2

0 ~ (5,9),IG
2

1 ~ (3,0.006),IG 2

1 ~ (5,0.009),IG 2 ~ (3,2),IG 2 ~ (5,3)IG  for informative and 

2 2 2

0 1, , ~ (0.01,0.01)IG   for non-informative priors. 

The typical distributions of shelf life determined based on the lower 5th percentile of the population-

averaged intercept and slope for each of the four cases are shown in Figure 5.  

Figure 5: The resulting distributions of shelf life based on lower 5th percentile of population-averaged 

slope and intercept 
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As can be seen in Figure 5, the most promising results were achieved with the scenario that combined non-

informative priors for variance components with informative priors for slope and intercept. This is because 

we are interested in calculated shelf lives that fall between the 0 to 5th percentile of the true shelf life, which 

in this simulation study translates into the target range of values between 17 and 28 months 

The target range of values produced by each of the four cases is shaded in Figure 5. The first three cases of 

priors did not show the appropriate coverage of the target range, whereas the fourth combination of priors 

produced the coverage of approximately 90% of the target range. 

Gelman [1] suggests using weakly informative priors that provide intentionally weaker information than 

the prior knowledge available for variance parameters. Kruschke [4] also recommends the use of mildly 

informed priors instead of non-informed priors or strongly informed priors. To explore these suggestions, 

we included weakly informative priors in both simulation studies. 

Since the results of the fourth scenario showed the most promise, we decided to investigate this case further 

and see if making the priors for the variance components less vague, i.e. using weakly informative priors, 

will improve the results. The idea that we used to create a weakly informative prior is to use the most likely 

value of the parameter as the mode of a prior distribution, however allow for larger values compared to the 

informative prior 

The first set of weakly informative priors:
2

0 ~ (0.25,1.875),IG 2

1 ~ (0.25,0.00375),IG
2 ~ (0.25,0.625)IG resulted in shelf life shown as Case 4a on Figure 6, the second set of weakly 

informative priors: 
2

0 ~ (0.5,2.25),IG 2

1 ~ (0.5,0.00225),IG 2 ~ (0.5,0.75)IG resulted in the

shelf life distribution shown as Case 4b on Figure 6. 

Figure 6: The resulting distributions of shelf life based on lower 5th percentile of population-averaged 

slope and intercept with weakly informative priors 
New Prairie Press
http://newprairiepress.org/agstatconference
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We can see in Figure 6 that the results of using weakly informative priors for the variance components 

look promising. The shaded area, 17 to 28 months, is symmetric and covers approximately 99% of the 

distribution of shelf life for case 4a and approximately 95% for case 4b. 

4. Best Linear Unbiased Prediction (BLUP)

As described in section 2.3, using BLUPs of ith batch intercept and slope are  0 0 0
ˆˆˆ

i iB b  and

 1 1 1
ˆˆˆ

i iB b  respectively, we can make batch-specific predictions taking into account the underlying 

distribution of random effects. Doing so lets us focus on the shortest-lived batch and calculate the shelf life 

using the batch that reaches the acceptance criterion first.  

Stroup and Quinlan [9] have explored this mixed model methodology further and found that shelf life 

estimates based on the lower BLUPs of batch specific slope and intercept of the shortest-lived batch were 

performing the best out of several other competing mixed model based approaches. However, all of the 

existing methods that use BLUPs for shelf life determination still need improvement, because with only 

three batches we do not have sufficient degrees of freedom to estimate variance components. Thus 

augmenting the BLUP approach with the Bayesian priors seems very reasonable. 

4.1. Population average versus BLUP 

In this section we will look at the result of using the first set of weakly informative priors described in the 

previous sections to obtain shelf lives based on BLUPs of the shortest-lived batch. Figure 7 shows the 

resulting distributions of the shelf life that are based on the median and the lower 5th percentile of the BLUPs 

of the shortest-lived batch with the first set of weakly informative priors on variance components. 

Figure 7: The resulting distributions of shelf life based on the median and lower 5th percentile of BLUP 

with weakly informative prior with weakly informative prior 
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We can see in Figure 7 that the shelf life values based on the posterior median of the BLUPs of the shortest-

lived batch have a large proportion of values that are too high (unshaded area to the right of the target range 

of shaded values). On the other hand, the distribution of shelf life based on the lower 5th percentile of the 

BLUPs of the shortest-lived batch has a large proportion of values that are too low (unshaded area to the 

left of the target range of shaded values).  

Therefore, it seems reasonable that if we use the lower bounds of BLUPs of intercept and slope between 

the 5th and 50th percentiles we could obtain the distribution of shelf life that has most of its values within 

the target range.  

Figure 8 provides a visualization that supports the idea of why it makes sense to use the lower bounds of 

BLUPs of intercept and slope between the 5th and 50th percentiles. The vertical dashed line projected on the 

horizontal axis in Figure 8 shows the shelf life estimate based on the lower BLUPs of intercept and slope 

between the 5th and 50th percentiles. 

Figure 8: Shelf lives based on lower bounds of BLUPs of the shortest-lived batch 

Continued trial and error investigation of the percentiles within the 5th and 50th range revealed that using 

the lower 23rd percentile of the BLUPs of the shortest-lived batch to determine shelf life produced desired 

results. 

Figure 9 presents the distributions of shelf lives obtained based on the lower 23rd bounds of BLUPs of the 

intercept and the slope of the shortest-lived batch with the two sets of weakly informative priors introduces 

in section 3.2. 
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Figure 9: The resulting distribution of shelf life based on the lower 23rd percentile of BLUP with weakly 

informative priors.  

The first set of weakly informative priors resulted in the distributions of shelf life shown as case BLUP 

P23_a in Figure 9, the second set of weakly informative priors resulted in the shelf life distribution shown 

as case BLUP P23_b in Figure 9. The shaded area, 17 to 28 months, is symmetric and covers approximately 

90% of the target range of the distribution of shelf life for both cases. Thus we can see that using the 

approximate average of the distance between the 5th and the 50th percentiles, i.e. the 23rd percentile for the 

lower bound of the BLUPs of the intercept and slope of the shortest-lived batch substantially increases the 

coverage of the target range. 

5. Summary and Conclusions

To summarize the results of this simulation study we can say that using Bayesian estimated BLUPs for 

shelf life determination shows promise. Using the lower 23rd percentile of the BLUPs of the shortest-lived 

batch to obtain shelf life in combination with the weakly informative priors produced the distributions of 

the shelf life that contain about 90% of values within the target range. However, to be able to recommend 

the use of the lower 23rd percentile of the shortest-lived batch as a basis for shelf life determination, 

additional theoretical justification needs to be developed. 
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