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Nenrospora geneties at the turn of the century
David D. Perkins, Department of Biological Sciences, Stanford University, Stanford, California 94305-5020

Research advances are described that have been made since a 1992 survey in Generics (130: 687-701).

The century’s end also marks the 75tk anniversary of the first genetic experiments with Neurospora. Although accounts
usually begin with the 1941 paper of Beadle and Tatum, genetic analysis was in fact initizted | 6 years earlier by B. O. Dodge. It
was he who identified the rwo mating types and used them 1o demonstrate mendelian segregation in individual asci. Dodge quickly
recognized the potentialities of the organism. His enthusiasm was largely responsible for the adoption of Neurospora by geneticisis
and for 1ts development as a2 model organism. Now, 75 years after Dodge’s identfication of the first gene, over 1000 loci have
been characterized and mapped in the seven linkage groups. Horowitz (1991), Perkins {1992), and Davis (2000) have described
the main long-term conmibunions of Neurospora and bave evaluated their signiticance. Specific advances since the 1992 review
are summarized below.

Neurospora crassa has become a preeminent mode! species for studying circadian rhythms. [n an extension of work
pioneered by J. F. Feldman, the gene frg {frequency) has been shown to encode a central component of a molecular feedback loop
in which the preduct of frg negatively regulates synthesis of its own transcript, resulting in daily oscillation (Aronson ef af. 1994,
Duniap 1993}. A variety of clock-controlled genes have been identified, the inactivation of which does not alter rhythrnicity (Bell-
Pedersen et al. 1996). Resetting the clock occurs when induction of frg by light overcomes negative autoregulation, resulting in
phase delay or advance, depending on the iime of day {Crosthwaite er al. 1995). Photoresponse tegulator genes (white-collar-/ and
-2) are essential in assembly or operation of the frg feedback loop (Crosthwaite er al. 1997). Demonstration that entrainable and
free runming rhythmicity can persist in the absence of frg and we gene-products has suggested increasingly sophisticated models
(Merrow eral. 1999, Lakin-Thomas and Brody 2000, McWatters er al. 1999). For reviews see Bell-Pedersen (1998}, Lores (1998),
Dunlap {1999}, Lakin-Thomas (2000).

Extensive information has been obtained on genes the expression of which is under photo-, circadian, or developmental
control. (See Lauier 1996, Bell-Pedersen er al. 1996, Ebbole 1995). Genes bave been isolated and characterized that specify
a_subunits of heterotrimeric GTP binding proteins (Turner and Borkovich 1993, Baasini er al. 1997, Kays ¢ af. 1998). Numerous
genes that encode putative signal transduction proteins have been identified (Margolis and Yanofsky 1998).

Significant contributions have been made to the molecular genetics of fungal photabiology, with the identification and
charactenization of phetemutants and genes regulated by blue light {reviewed by Lauter 1996). The two whire collar genes are
globat regulators of photoresponses, enceding blue-light-activated transcription factors and participating in the blue-light signal
transduction pathway (Ballario and Macine 1997, Schwerdtfeger and Linden 2000). A gene homologous to archaeal rhodopsins
provides the first example of an opsin in eukaryotes other than animals; the gene-product is a photochemically reactive member
of the archaeal rhodopsin family (Bieszke er al. 1999a).

Thke ascus-dominant expression of the ascospore-maturation gene Asm-/ bas been shown to result from failure of
ransvection, wherein chromosome rearrangements or ectopic placement of a gene disrupts pairing of allelic chromoesomal genes
dunng the sexual phase and results in a mutant phenotype, even in spores that carry the normal allele {Aramayo and Metzenberg
1996). This discovery provided a clear demonsiration that transvection occurs in an organism very different from Dresophila..

Study of the UV-sensitive mutant mus-/8 has identified a novel DNA endonuclease that initates an excision repair
pathway compleiely different from previously known DNA-repair mechanisms (1shii e7 al. 1991; see Yasui and McCready 1998
for review). A UV-sensitive muiant, mus-38, 15 impaired in the previously known highly conserved nucleotide excision repair
pathway (Ishii et al. 1998),

Evidence has accurnulated that RIP (repeat-induced point mutation) serves as a genome defense sysiem (see Selker 1997).
While only one active fransposon has been found in Neurospora, sequences have been discovered that represent several different
wansposon families, with unmistakable hallmarks of RIP (Cambareri er al. 1998, Kinsey er al. 1994, Margolin er al. 1998, Bibbins
and Conaerton 1998). Characterization of centromeric DNA {Centola and Carbon 1994) has revealed the presence of complex
repeats repuniscent of the centnic heterochromatin of Drosophila (Cambareri er al. 1998). Defective ransposable elements of
several types are present among the repeats, and these show evidence of having been inactivated by RIP.

RIP bas been used extensively for gene disruption. Null mutations of RIP-inactivated essential genes can be recovered
by using a meiotic mutant that produces heterokaryotic ascospores (Metzenberg and Grotelueschen 1992; Harkness ef af. 1994).

RIP was shown frequently to generate signals for de novo methylation. Evidence was also obtawed for maintenance
methylation in Neuwrospora (Singer ef al. 1995), Further analysis of methylaton resultng from RIP led fo the discovery of an
unexpected connection between protein acetylation and DNA methylation (Selker 1998). Mutants defective in DNA methylaton

~ {dim mutants) have been isolated (see Foss er al. 1998). Mutations in dim-2, which is thought to encode a DNA. methyltransferase
(E. Kouzminova and E. U, Selker, personal communication}, result in loss of all detectable methylation, at least wn the vegetanve
phase. (No known mutation in any other eukaryote completely abolishes DNA methylation.) Identification of dim- 2 indicated that
DNA methylation is not essential in Neurospora. The mutant has been used to demonstrate that methylation can either interfere
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with gene expression (Irelan and Selker 1997, Rountree and Selker 1997) or promote it indirectly (Cambareri ef al. 1996), that
methyladon can inhibit transcript elongation in vive (Rountree and Selker 1997), and that gene silencing in the vegetative phase
("quelling™) does not rely on DNA methylation (Cogoni er al. 1996). —_

Reversible silencing (quelling) can occur when additional copies of a gepe are introduced by transformation {Rom
and Macino 1992, Pandit and Russo 1992; reviewed by Irelan and Seiker 1996). Both the introduced and the resident copies are
affected. Silencing 1s posttranscriptional and is dorninant in heterokaryons {see Cogoni e al. 1996, Cogoni and Macino 1997, and
references therein). Quelling-deficient mutants in which transgene-induced gene silencing is impaired have been used to show that
quelling requires a protein homelogous to RNA-dependent RNA polymerase (Cogoni and Macino 1999z, 2 Rec(Q) DNA helicase
(known to be wavelved in repair and recombination in other organisms) {Cogoni and Macino 1999b), and 2 hornolog of C clegans
rde-i, which controls the degradation of double-stranded RNA (Catalanotio et af. 2000).

Mitochondrial tRNA synthetase has been shown to mediate RNA self-splicing. Two mitochondrial plasmids are
retroelements that share properties of RNA viruses and mitochondria! introns. The novel transcriptases they encode possess
characienistics suggesting how present-day reverse transcriptases and DNA polymerases couid have evolved { Wang and Lambowitz
1993},

Regulated ribosome stalling has been demonstrated (Wang and Sachs 1997).

Vescicles from the outer mitochondrial membrane have been purified on 2 massive scale and the preprotein translocase
(TOM complex) has been shown by electron microscopy to contain centers interpreted as pores that represent protein-conducting
channels (Kiinkele e af. 1998).

Over 4600 cultures from natural populations throughout the world are now available for study (Turner and Perkias 2000).
Wild-collected strains have provided information on species distribution, ecology, genetc diversity, population structure, and
meiotic drive systems. They have alse been & source of genetic variants for a variety of laboratory investigations.

Surveys of sirans from nature have revealed the widespread occurrence of mitochondrial plasmids, which belong 10
discrete families (Yang and Griffiths 1993, Arganoza et al. 1994). New examples have been discovered of plasmids thar cause
senescence (Yang and Griffiths 1993, Marcinko-Kuehbn et al. 1994, He er al. 2000; reviewed by Griffiths 1992, 1993, 1998).

Investigations with the pseudohomothallic species M. tetrasperma bave revealed novel features of this unique genetic
system (Merino er gl. 1996, Gallegos et al. 2000, Metzenberg and Randall 1993, Raju and Perkins 1994).

Integration of wansforming DNA was shown to be accompanied by new gross chromosome rearrangements, many of
which have breakpoints associated with vector DNA (Perkins ef al. 1993). —_

Morphological mutants called ropy were shown 1o be defective n specifying subunits of dynein and related molec
motors (Plamann ef a/. 1994) Mutations at ropy loci are selectable as suppressors of the morphoiogical mutant coz-/. Similarly,
mch (microcycle biastoconidiation) acts as a suppressor of the morphological mutant crisp (Bruno et al. 1996). Mutations of mch
affect growth polarity. Secretion of extraceltlular enzymes in mcb cultures is increased to the high level that is charactenstic of the
hyphal tip in wild type cultures (Lee ef a/.1998)

Understanding of meiotic recombinaton has been advanced by high-resoluton experiments using molecular markers (e.g.,
T. Randall ard D. R. Stadler, in preparation). The recombinator gene cog has been cloned and two alleles have been sequenced
(Yeadon and Catcheside 1995). Intragenic recombination appears to be initiated at cog* (Yeadon and Catcheside 1998), which is
3" of the am locus (Bowring and Catcheside 1991). Intragenic recombination has been studied using sinouitaneously both closely
linked RFLP markers and more distant classical genes to flank the am gene (Bowting and Catcheside 1996, 1998) and the Ais-3
gepe (Yeadon and Catcheside 1998). In both cases, conversion tacts frequently are interrupted. Although about one third of gene
conversions at fiis-3 are accompanied by a crossover, this apparent association is tenuous at am where recombination frequencies
are much lower. This observation casts doubt on the widely hetd assumption that both conversion and reciprocal crossing over anise
from the same event. Evidence has been obtained that conversion eveats at am stimwlate crossing over nearby (Bowring and
Catcheside 1999). Smudies with closely linked molecular markers show that the genetic criteria previously used o establish the order
of intragenic sites is flawed when differentially spaced conventional mutants are used as flanking markers (Bowring and Catcheside
1993).

Substantia! progress has been made in understanding the organjzation and functiorn of genes at the maring type locus (now
called idiomorphs in recognution of their fack of homology). The mar g idiomorph contains a single open reading frame, while mar
A contains three (Ferreira ef al. 1996). For reviews see Staben (1996), Coppin et al. (1997). Both mat A-7 and mat a-7 appear 10
be essential for rmating and for sexual development, while mar 4-2 and mat-A3 increase fecundity but are not essential (Ferriera
et al. 1998).

Genes responsible for vegetative {heterokaryon) incornpatibility (fef genes) have been clored and sequenced (Saupe er
al 1996, Smith et al. 1996, 1999, 2000; Shiu and Glass 1999). The same multiple alleles of Aer-c that are found in M. crassa are
also present in other Neurospora species and in related genera, indicating that they were derived from a common ancester and have
beer conserved during evolution (Wu ef al. 1998). -

The o] gene has been cloned and sequenced (Shiu er al. 1999). A functonal allele of tof (tolerani) is required ...
expression of the maring-type mediated vegetative incornpanbility phenotype that results when mar A and mar a idiomorphs are
together in heterokaryons or heterozygous pardal diploids. Vegetative incompatibility reactions mediated by genes other than
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mating type do not require the presence of 2 functional fof allele (Leslie and Yamashiro 1998). An active o/ allele is normally
present in the heterothallic outhreeding specics V. erassa, and the gene was originaliy identified in that species as a recessive mutant
thal suppresses 4 + g vegetative incorpatibility. The species V. tefrasperma, which normally exists as a self-fernle {mar 4 + mat
a) beterokaryon, was shown to possess an inactive fof allele (Jacobsen 1992). The active and inactive rof alleles have been
nterchanged between N. crassa and N. retrasperma.

Genes that served as morphological markers in constructing the first funga! genetic maps in the 1930°s have now been
cloned, sequenced, and characterized fanctonally (e.g., crisp-/ (Kore-Eda et al. 1991), fluffy (Bailey and Ebbole 1998).

Heterokaryons are being used to produce heterodimeric molecules that incorporate components originanng from
genetically different nuclei. Intact antibody molecules are formed by heterokaryons in which the light chain is produced and
secreted by one nuclear type and the heavy chain is produced and secreted by the other (Stuari 1997, 1998).

Genetc mapping has progressed substantizlly, using both classical and RFLP markers (Perkins 2000, Nelson er al. 1998,
Nelson and Perkins 2000).

Genome projects are under way. Expressed sequence tags (ESTs) have been obtained that identify genes expressed at
different stages of the life cycle or during different parts of the circadian cycle. More than half the expressed sequences show no
similarity to genes previously idenrified in the yeast genome or elsewhere, Over 2000 different genes have been identified in this
way {Nelson er g/, 1997, Dotan er al. 2000). Over 30% of these have no known homologs in any organism (Nelson and Natvig
1000). Physical maps of the genome are being constructed (Arnold, 2000), and DNA sequencing of the gencme is progressing
(Mewes er gl. 2000; http-/iwww.mips.biochem.mpg.de/proj/meurosporal).

At the turn of the century, Neurospora is genetically and biciogically the best known euascomycete. The rich resources
of information, brought together by Davis (2000) and by Perkins ef al. (2000), will speed progress in relating sequence data to
biologicatly mean:ngful problems.
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