Fungal Genetics Reports

Volume 44

Article 17

Identification and cloning of the Neurospora crassa glyceraldehyde-3-phosphate dehydrogenase gene, gpd-1

M. Sahni University of Kansas

J. A. Kinsey University of Kansas

Follow this and additional works at: https://newprairiepress.org/fgr

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 License.

Recommended Citation

Sahni, M., and J.A. Kinsey (1997) "Identification and cloning of the Neurospora crassa glyceraldehyde-3-phosphate dehydrogenase gene, gpd-1," *Fungal Genetics Reports*: Vol. 44, Article 17. https://doi.org/10.4148/1941-4765.1285

This Regular Paper is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Fungal Genetics Reports by an authorized administrator of New Prairie Press. For more information, please contact cads@k-state.edu.

Identification and cloning of the Neurospora crassa glyceraldehyde-3-phosphate dehydrogenase gene, gpd-1

Abstract

In work initially intended to use the am gene coding sequences as a reporter gene, 5' RACE PCR (Frohman *et al.*, 1988 Proc. Natl. Acad. Sci. USA. 85:8998-9002) with three gene specific nested primers was performed. The product was cloned and sequenced, but found not to represent the *am* gene. Comparison to sequences in Genbank revealed that the product could encode a product homologous to glyceraldehyde-3-phosphate dehydrogenase (GPD) from a variety of other organisms. Consequently the PCR product was used to screen a lambda gt-11 expression library (Sachs *et al.* 1986 J. Biol. Chem 261:869-873). The 1.3 kb insert from one cDNA clone was sequenced (Figure 1) and used to screen a Neurospora genomic library made in an EMBL-3 vector by E. Cambareri. All of the positive clones had a 7 kb *Bam*HI fragment. Relevant portions of one of the genomic clones was sequenced (Figure 1) revealing two introns. Although the complete genomic clone was not sequenced, comparison of restriction fragments from the cDNA and genomic clones indicated that no other introns are present in the Neurospora *gpd-1* gene.

Identification and cloning of the *Neurospora crassa* glyceraldehyde-3-phosphate dehydrogenase gene, *gpd-1*

M. Sahni and J. A. Kinsey- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS 66160

In work initially intended to use the *am* gene coding sequences as a reporter gene, 5' RACE PCR (Frohman *et al.*, 1988 Proc. Natl. Acad. Sci. USA. **85**:8998-9002) with three gene specific nested primers was performed. The product was cloned and sequenced, but found not to represent the *am* gene. Comparison to sequences in Genbank revealed that the product could encode a product homologous to glyceraldehyde-3-phosphate dehydrogenase (GPD) from a variety of other organisms. Consequently the PCR product was used to screen a lambda gt-11 expression library (Sachs *et al.* 1986 J. Biol. Chem **261**:869-873). The 1.3 kb insert from one cDNA clone was sequenced (Figure 1) and used to screen a Neurospora genomic library made in an EMBL-3 vector by E. Cambareri. All of the positive clones had a 7 kb *Bam*HI fragment. Relevant portions of one of the genomic clones was sequenced (Figure 1) revealing two introns. Although the complete genomic clone was not sequenced, comparison of restriction fragments from the cDNA and genomic clones indicated that no other introns are present in the Neurospora *gpd-1* gene.

Southern blot analysis of restriction enzyme digested DNA from Oak Ridge and Mauriceville strains revealed a polymorphism of kpnI sites at or near the gpd-1 locus, allowing RFLP mapping using the small set of tester progeny as described by Metzenberg *et al.* (Metzenberg *et al.* 1984, Neurospora Newsl. **31**:35-39). The results shown in Table 1 indicate that gpd-1 is located on linkage group IIR near the arg-12 locus. Northern blot analysis using gpd-1 cDNA as probe revealed a single strong band of 1.3 kb in length (data not shown).

One interesting question is how did we clone the gpd-1 fragment by 5' RACE when we were using a nested set of three specific am primers for the amplification? When the sequence was analyzed it became apparent that each of the primers had 3' ends with five-to-six base pairs of perfect complementarity to sequences near the 5' end of the gpd-1 message and that these sequences appeared in the same order in the gpd-1 message as did the "specific" sequences in the am message. Given the abundance of gpd-1 message this made amplification of the 5' end of the gpd-1 gene probable during the 5' RACE experiment. Clones with either cDNA or genomic inserts are available from the Fungal Genetics Stock Center.

GENE arg-12	11 (O)	12	13	14 M	15 M	16 (M)	17 M	18 M	19	20
gpd-1	(0)	0	0	M	M	(M)	M	M	0	0
gpa i	21	22	23	24	25	26	27	28	29	30
arg-12	М	0	М	0	0	М	0	0	М	М
gpd-1	М	0	М	0	0	М	0	0	М	М

Table 1. RFLP mapping of *gpd-1*a.

aA comparison of the segregation of the *gpd-1 Kpn*I RFLP with segregation data for *arg-12* which is located on LGIIR; strains numbered 11-30 represent FGSC strains 4411-4430. O or M in a particular strain indicates a fragment identical to that of the Oakridge or Mauriceville strain respectively. Strain 4411 is the Oak Ridge (O) parent and strain 4416 is the Mauriceville (M) parent.

```
CCCGGTGACGGAGTGCTCTGGCTGCTTGTTGGGAATTGCCGAGGCTCGCAACTGGAGCAG60TCAGCAATGTCAGCATCGACATGTTCAAGTTGACTCATTTCAGTTGGTATTACAAAGACT120GAACCCGTGAAGCACATAGCGTGACCGAATCACGGATTCTCCGGCAAGGAGCTTGTTTCA180TTGTTGCCTCTTGTCGGCGGCTTTCAAAGCAAAAAAGGATGGGAATCTCTTCATGCCAAG240GCCGCGGCCGAGTACTGCGCTAACACTAGACGCCAAGCCATTGGAGAGTGGCCCCACCTC300ATCCCACCATGTCCCACCACCACAGCCCACCATGGAGCAAAGCGTATGATGCAACCACGA360TGGGAGGCGGCTGGTGGGATGGAAGGAACGAGCAAAACCACCCACCCATTGACCACCCCA420
```

Fungal Genetics Reports, Vol. 44 [1997], Art. 17

CCCTCAAACC CGTTCAGGGG TACCACAGGC AGATAATAGA <u>CTTC</u> ATCATC 720	GGTGA TGATA TAGTA ATCCT	TGAGG A ACCAG A CAAGA A CGCGA	AGCTCCCC ACTGGACG ATCTCCTC IACCAAGI	CC AC TC CT CG AG <u>CT GC</u> TC AC	CTTTT CAGGG <u>CTCCC</u> TTCCA	TGA (GCC (CAG (AAC 7 ACC 4	CATT CCTC CTGG <u>TTTT</u> AAAA	TGGC. CTTG AGTC <u>TTCT</u> CCCT	AG G CC G GG C TT C TC T	ACTO TGGO <u>TTTC</u> TCCA	GGGGA GAAA(CTCTT AAAC(AT CT IG	ļ	480 540 600	
CATCAGGTAT			CCCTCGCA									СТ		780	
TCCAATCATC	GTCAC'	TTCCC :	TTGTCAGC	GG CG	GCGGC.	AGC A	AGCA	GCAG'	ta g	CAGA	AAGC	- AG	8	340	
AAGCAGAAGC	AGCAG	CTACC (CCGCACCI	TC CT	GACCC	CGT (CCCG.	ACCC	CG T	CCCF	ATCTO	CA	1	900	
TCCTCAGTCA	GTTCC	TCCCG	CCTCGCTG	CC AA	GCTGC	GCA (CAGC.	ATCT	GG T	GTCI	GCGI	rC		960	
TGTTTCCCCC	CAAGA	GGAAG :	rggacgag	AC TC	AGATC	GGA (CTGG	CATG	GA T	GCTO	GTGC	- GT	102	20	
GGTGGCGGCA			TCCTCGO										108	30	
CCCTCCGTGT	TTTGG	GCGCT (CCTCGTGI	CC AA	TTGTT	CTG (CCAC	GCAA	AC A	TGTO	GAACA	AG	11	40	
ACGAGACCGA													120	00	
TCCTTCATCC	TACCA	CTCAT (CATCATCI	TA CA	ACCTT	CAA (CAAC	TTGC	 TT C	ACAF	AGGTO	CT	12	60	
TGATACTTAC AAC 13 GGT TTC GG0 1371	818				М	V	V	K	V	. (ĞΙ	1			
G F I E				G	R	-	Ι	V		F	R		Ν	A	
ATC CAC ATC 1425 I H K Y	I A	V	A	V	Ν	Ι	C	Ρ		F				Ρ	
GGCC TCGCT CTTA CAG G 1541 N F ATC GAG GT	CACAT Z CT TAC K	AGATCCO ATG C A G	CTTG TCI IC CGC I Y T	CATAT AC GA M	GACAA C ACC L	CTCAC ACC R	GAC CAC Y	TCTG. GGC	ACCA AAC D	TC 7 TTC T	C AAC	g gg(T	C ACC H		G 1595
I E K V	V K	D F	G	A	D D		ыдс . L	V		V	N	110	G	K	1000
ACT GAT GCO T D G A	C GAC (A D	CCC GC D Y	I GCC AI P I	A	A	I		Ρ	W		S	1	Ξ	Т	1649
GTC GAG TO 1703	CC ACT	GGT GI	IC TTC A	.CC AC	C ACC	GAG	AAG	GCC	TCC	GCC	CAC	C TT(g aag		
V E S A	S H	T L	G K	V	F	-	Г	Т		Т	E		K	A	
GGT GGT GCC G G D A	C AAG Z A P	K		C TCT V	GCC I	CCC I	ГСТ	GCT (S		GCC A	CCC P	ATG	TAC S	A	1757
GTT ATG GG V M	G	V			GAT E	GGC I T		GCC (Y	GAC D	GTC	ATC G	TCC S	AAC	A	1811 D
V I GCC TCT TGG A S V I ss://newprairiepress I: 10.4148/1941-476	C H .org/fgr/vo	T D	C TGC TI T N		CCC C				GTC P		CAC L			K	1865

Sahni and Kinsey: Identification and cloning of the Neurospora crassa glyceraldehyd

TTC F	ACC	ATC T	GTC I	GAG	GGT V	CTC E	ATG		ACC L	GTC		TCC T	TAC	ACC T	GCC V	ACC	CAG H	S	1919
Y	Т		А	Т		Q													
AAG	ACC	GTC	GAT	GGT	CCT	TCC	GCC	AAG	GAC	TGG	CGC	GGT	GGC	CGC	ACT	GCT	GCT		1973
K	Т		V	Ι	D	G]	2	S	A		K	D		W	R	G	1	G
R		Т	A		A														
				CCC			ACT			GCC			GTC			GTC			2027
Q	1	-	I		Ι	_ P		S	S		Т	G		A	A		K	A	
V	G		K	V		I													0.0.0.1
			-		-		-		-		ATG			CCC			AAC		2081
PDLNGKLTGMAMRV											V								
P	Т		A	N						a a		0.05		100	— • •	0 m	a a		0105
GTC		GTT																~	2135
V	S		V	7	V	D]		Т	1	Ŧ	R]	L	Ε	ł	X	G	
A	T	010	Y	D		E		— — —	010			0.00							0100
-	AAG			-	-	-		-					GCT		-	CTT		-	2189
I	0	K	E	Ŧ	V	I		K	K		А	S		Е	G		Ρ	L	
A	G	010	I	L	~~~	A	mam	шаа	010	3 8 9		000		000	000	шаа	maa		0040
	ACC												AAC				TCC		
Y		Т	E		D	臣		V	V		S	S		D	М	Ν		G	Ν
Р		А	200	-	S	CCM	лma	шаа	000	770	770	770	mma	сто	770	~~~~	CIIIC		2207
ATC	TTC	GAT F	GCC	AAG	GCT A	GGT K	-	A		AAC	-	-	TTC	GTC L	-	CIT		NT	2297 F
T V	,	г К	U I	-	A V	r		А	G		T	S		Ц	Ν		K	Ν	Ľ
•			-	_	•	тсс	CCC	mλC	ΨĊΨ	CCC	CCT	CTTC	CTC	CAC	CTTC	አምሮ	TCC		2351
	S	W	GAC		DAG	N		E		(Y		GAC	R	R	V	,	2331 L
D		-	I	_	S	IN		Ľ	VV	(3	T			1	I	v		Ш
_	_	_	_			GCC	AAG	AAG	CCT	ተ አ አ	a The co	<u>מ</u> ר י	IGCGI			າດດຫາ	гъ		2408
Y	-	TCC T	-	JIC	-	V	-) D	A	IAA	-	K K	A	IACCU	JGCA	JGGI.	IA		2400
TG AAGTAATGGT CTTTTCCTAG ATATGAAGAA AAAAAAAGGG CAATGATTCC GTGGGATT 2468																			
GAACTCGAGCAT GTTGGATCTC GGGCAGTCCT GCTTAAAGTA AAATAATATC CGAACTCAA 2528																			
												2552							
-			-			1-1 of	ene '	The s	eanei	ice n	resen	ted r	enres	ents :	a con	hina	tion c	of sec	uences fro

Figure 1. Sequence of the *gpd-1* gene. The sequence presented represents a combination of sequences from cDNA and genomic DNA. The first nucleotide of the cDNA sequenced is at 677. This is 5 nucleotides downstream of a consensus fungal transcriptional start site at position 666-673 (Bruchez *et al.* 1993 Fungal Genet. Newsl. **40**:89-96). The pyrimidine box characteristically found upstream of the transcriptional start sites of fungal genes is underlined. The two introns are indicated by dashed overlining. There was no polyadenylated tract in the cDNA sequenced