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OPTIONS FOR ANALYZING UNBALANCED SPLIT-PLOT EXPERIMENTS: A CASE STUDY 

Marta D. Remmenga 
Department of Experimental Statistics 

New Mexico State University 
Las Cruces, NM 88003 

Dallas E. Johnson 
Department of Statistics 
Kansas State University 

Manhattan, KS 66502 

ABSTRACT 

Unbalanced split-plot experiments present many analysis problems. 
This paper discusses some of the difficulties by comparing the results 
of the analysis recommended by Milliken and Johnson (1984) to a set of 
minimal sufficient statistics using a small experiment from Milliken 
and Johnson as a case study. The estimators used by Milliken and 
Johnson are not necessarily the best (smallest variance) estimators. A 
set of minimal sufficient statistics is used to show that the whole 
plot error term suggested by Milliken and Johnson does not have a 
distribution that is proportional to an exact chi-square distribution 
and is not always independent of parameter function estimators. Other 
options for analyzing unbalanced split-plot experiments and unbalanced 
repeated measures experiments in which the repeated measures satisfy 
the Huyhn-Feldt (1970) conditions are proposed. 

Keywords: random effect, mixed model, variance component, Huyhn-Feldt 

1. INTRODUCTION 

The purpose of this paper is to identify options for analyzing 
unbalanced split-plot experiments and unbalanced repeated measures 
experiments where the repeated measures satisfy the Huyhn-Feldt (1970) 
conditions. A case study will be used to investigate the relationship 
between a set of minimal sufficient statistics and the estimates of 
effects and error terms obtained by applying the procedures for 
analyzing unbalanced split-plot experiments described by Milliken and 
Johnson (1984). 

Consider an example given by Milliken and Johnson (1984). This 
unbalanced split-plot experiment has unequal numbers of whole plot 
experimental units in the two treatment groups and has some subplot 
measurements missing. 

Example 1. 

From a group of five depressed patients, three received a drug 
and two received a placebo. The patients were scored on a test 
designed to measure depression one week after treatment and two weeks 
after treatment. Some patients did not return for the second 
examination resulting in n = 8 observations. The data are reported in 
Table 1. The means model for an observed response in this example is 

for i=1,2; k(1)=1,2; k(2)=3,4,S; and j=1,2. It is assumed that the 
error contributed by the jth week of the kth patient in the ith 
treatment group, e~, is distributed N(O,o;). It is also assumed that 
the error contributed by the kth patient in the ith treatment group, 
0kro' is distributed N(O,~)and that all error terms are distributed 
independently of each other. 
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Table 1. Treatment Received and Depression Scores 

SCORE 

Pat;ient; Treat;ment; Week 1 Week 2 

1 Placebo 24 18 
2 Placebo 22 
3 Drug 25 22 
4 Drug 23 
5 Drug 26 24 

In matrix notation this model can be written as Y X/-I + Zc5 + E 

where 

YIII 24 1 0 0 0 1 0 0 0 0 

YII2 22 1 0 0 0 0 0 0 1 0 

Y\2I 18 0 1 0 0 1 0 0 0 0 
Y Y213 25 X 0 0 1 0 z 0 1 0 0 0 

Y214 23 0 0 1 0 0 0 0 0 1 
Y21S 26 0 0 1 0 0 0 1 0 0 

Y223 22 0 0 0 1 0 1 0 0 0 

Y22S 24 0 0 0 1 0 0 1 0 0 

EIII 

r 1-

01(1) EI12 

1111 O2(1) EI21 

/-I 1112 c5 03(2) , and E = E 213 

1121 04(2) E214 

/-122 OS(2) E 21 S 

E223 

E 22S 

2. A SET OF MINIMAL SUFFICIENT STATISTICS 

In this section a set of minimal sufficient statistics for 
Example 1 are given. The minimal sufficient statistics were obtained 
in Remmenga (1992) using procedures described by Hultquist and Atzinger 
(1972), hereafter referred to as HA. 

HA require that the observation vector y be transformed via a 
full rank transformation, denoted by R, so that the transformed 
covariance matrix is diagonal. Denote Var[y] by ~, then R is chosen so 
that 

Var[Ry] = R~R' = R(o~ZZ' + o;I)R' 

will be a diagonal matrix. Next, HA partition R into s submatrices so 
that R' = [RI ', R2 ', ••• Rs'l with each Re having dimension me x n, where 
CI' £ = 1, 2, ... s are the distinct diagonal elements of R~R' and me 

is the multiplicity of Ce· r 1 
Ge(l) 

For each £, HA require that an orthogonal matrix G£ = ---- of 
G/2) 

dimension me x me be found such that G/I) has dimension qe x me and G/2)ReX/-I 
= 0, where q, is the rank of ReX. When they exist, the statistics G/1)Rey 
are denoted by U e and the statistics y'Re'G/2)'G/2)Rey are denoted by Ve' 

For Example 1, in which s = 3, one set of choices for R, ~, G2 , 

and G3 result in the statistics 
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U I [ UII 

1 [ rl;(YIII + YI2I) 

Yn,) 1 ul2 !:!( Y213 + Y223 + Y215 + 

U 2 [ U 21 

1 
[J~(Y214 + Yll2)l' 

U 22 J ~ (Y214 Y214) 

U 3 [ U 31 

1 [ J!; (Yill - Y121) 

y",) l' U 32 ~(Y2!3 - Y223 + Y215 -

VI {!:!(Y213 + Y223 ) - !:! (Y2IS + Y22S)}2, and 

V3 {!:!(Y213 + Yns) !:! (Y223 + Y2I5) }2 (V2 does not exist.) 

It can be shown that 

[ UII 

1 
- N r [I~IP" + p,,) 1 ' [ a; + 2a~ 0 II ' U l2 ( J.l.21 + J.l.22 ) 0 a; + 2al 

[ U 21 

1 
- N r [I ~ IP" + p,,) 1 ' [ a; + a2 0 l] , 0 

U 22 J !:! (J.l.21 J.l.1I) 0 a; + a2 
0 

[ U 31 

1 N r [I~IP" - J.l.IZ) 1 ' [ a; 0 II ' U 32 ( J.l.21 J.l.22 ) 0 a; 

VI V3 

a2 , + 2at 
- X2(1)' and 

a2, 

- X2(l). 

The statistics U II ' U 12 ' U 21 ' U 22 ' U 31 ' U 32 ' VI and V3 are also stochastically 
independent by the HA procedure. Because the set {'e- I : fL = 1, 2, 3} is 
a linearly independent set of distinct diagonal elements of (Rl:R') -I, 

the statistics u ll ' U 12 ' U 21 ' U 22 ' U 31 ' U 32 ' VI and V3 are minimal sufficient 
statistics for the parameters J.l.11' J.l.12' J.l.21' J.l.22' a; and a~. 

3. MILLIKEN AND JOHNSON'S ANALYSIS 

This section restates some results given in Analysis of Messy 
Data, Volume 1: Designed Experiments, in which the example from section 
1 was analyzed according to the procedures described by Milliken and 
Johnson (1984), hereafter referred to as MJ. 

First, consider the estimators of the parameters J.l.1I' J.l.12' J.l.21 

and J.l.22. The estimator of J.l.1I given by MJ is 

J.l.1I = (YIII + Yll2)/2 with var[~'ll = (a; + a~)/2. 

Before estimating J.l.12' the missing value Y122 is estimated in MJ. The 
missing value YI22 should be estimated in such a way that the between 
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patient error sums of squares and the within patient error sums of 
squares are not increased. Thus MJ take 

Y122 = Yll2 - YIII + Y121 

and give the estimator of J112 as 

J112 (Y121 + 1'122) [2 = (2Y121 + Yll2 - YIIl /2 
with Var [J112) = (3a; + a~) /2. 

The estimator of J1~ given by MJ is 

J121 = (Y213 + Y214 + Y215)/3 with var[~211 = (a; + a~)/3. 

To estimate J1nf the missing value Y2~ is estimated. MJ take 

Y224 = Y214 - (Y213 + Y215) /2 - (Y223 + Yns) /2. 

Then, one estimator of J1n is 

J122 (Y223 + Y224 + Y225) /3 
{Y223 A+ Y214 - [(Y213 + Y215)/2 - (Ym + Y225)/2)}/3 

with Var[J122) = (2a; + a~)j3. 

173 

Estimating functions of the parameters J111' J112' J121 and J1n can be 
achieved by taking functions of the estimated parameters. Estimates of 
some linear functions of the parameters, their variances and estimated 
standard errors for the data in Table 1 are reported in Table 2. 

Table 2. Parameter Estimates for Data in Table 1. 

Parameter Estimated 
Function Estimate Variance Standard Error 

J111 23 112 (a; + a~) 1.041 

J112 17 312 (a; + 1I3al) 1.155 

J121 24.667 113 (a; + a~) 0.850 

J122 22.167 2/3 (a; + 1I3al) 1.009 

]11' 20 112 (a; + a~) 1.041 

]12' 23.417 114 (a; + 4/3al) 0.837 

]11 . - ]12" -3.417 3/4 (a; + IO/9~) 1.336 

]1 . I 23.833 5124 (a; + a~) 0.672 

]1. 2 19.583 13124 ( a; + 5113~) 0.731 

]1. I - ]1. 2 4.25 3/4a; 0.807 

J111 - J112 - J121 + J122 3.5 3a; 1.614 

The variances of linear functions of estimated parameters are 
functions of the variance components a; and a~. One way to estimate 
these variances is to estimate the variance components. MJ recommend 
estimating the variance components by fitting the model sequentially; 
fitting all fixed effects before fitting the random effects. Then the 
estimator of a; given by MJ is the mean square error or 
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where W = [ X, z 1 and v2 = Tr! I - WW-). MJ estimate a~ by taking a 
linear combination of the sums of ~quares for Patient(Treatment), 
denoted SSPATIENT(TREATMENT), and a;. Fitting fixed effects in the 
model before fitting the random effects results in 

SSPATIENT(TREATMENT) = y'(WW- - XX-)y 

which has VI = Tr{WW- - XX-) degrees of freedom. Using the method of 
moments, MJ take a linear combination of SSPATIENT(TREATMENT) and ~; 
such that E[kl~; + k 2{SSPATIENT(TREATMENT)}) = a~. 

For Example 1, the expected value of SSPATIENT(TREATMENT) is 

E [SSPATIENT (TREATMENT) 1 = (4a~) /3 + a;. 

Thus the estimator of a~ is given by MJ as 

~~ = 3 {SSPATIENT (TREATMENT) - ~;}/4. 

For the data in Table 1, SSPATIENT(TREATMENT) = 2.806, VI = 3, ~; = 
0.25, v 2 = 1 and thus ~~ = 1. 917. 

Estimates of the variances or standard errors of the estimates 
are obtained by substituting the estimatesAfor a; and a~ for the 
parameters in Table 2. For example, s.e.[1122) = {(2/3)(a; + (1/2)a~)}'/2 
and is estimated by {(2/3)(0.25 + (1/2)1.917)}~ = 1.009 in Example 1. 

To test hypotheses, MJ recommend constructing an approximate 
t-statistic from the ratio of the estimate and its standard error. It 
is approximate since the variance of the estimate does not have a 
distribution proportional to an exact chi-square distribution. MJ 
estimate an approximate degrees of freedom for this t-statistic using 
Satterthwaite's approximation (Satterthwaite, 1941). 

4. MJ'S ANALYSIS IN TERMS OF THE MINIMAL SUFFICIENT STATISTICS 

The relationship between the minimal sufficient statistics given 
in Section 2 using Hultquist and Atzinger's procedure and parameter 
estimates given in Section 3 using the analysis suggested by Milliken 
and Johnson is investigated in this section. 

The estimators for 1111' 1112' 1121 and 1122 in Section 3 are linear 
functions of the minimal sufficient statistics given in Section 2. Let 
U' = [u ll U l2 U ZI U Z2 U 31 u 32 1, then 

1111 (1/4)i2 [ 1 0 1 -1 1 01 U, 

1112 (1/4)i 2 [1 0 1 -1 -3 01 U, 

1121 (1/6) [0 2 i2 i2 0 21 U, and 

1122 (1/6) [0 2 i2 i2 0 -4] u. 

It is immediately clear that there is more than one unbiased 
estimator for a given function of the parameters that is a function of 
the minimal sufficient statistics given in Section 2. For example, 
using the data from Table 1 and the statistics in Section 2, one has 
that 

i!;u ll = 21 estimates TIl' = !:i(1111 + 1112)' 

From Section 3, TIl" can also be estimated by 

PI' = !:i(~11 + ~12) = 20. 

Both PI' and i!;u II are functions of the minimal sufficient statistics. 
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The estimator given by MJ, PI" has smaller variance in this case since 

To investigate this further, consider unbiased estimators of ~12 

which are functions of the minimal sufficient statistics. The 
objective is to find C' = [cI c2 c3 c 4 Cs C 6 1 such that E[C'U] = ~12' 
This equation implies that the following 4 equations with 6 unknown 
variables must be true: 

c I J2 + c s, 

c 3 -J~ - C s - J2c2 , 

c 4 J~ + C s - J2c2 , and 

c 6 c 2 • 

Since Var[C'U] can be written as, 

C' (Var [U] ) C 

(c~ + d + c~ + d + c; + c~) a; + (2c? + 2c~ + c~ + c~) a~ 

= (3 + 4J2cs + 4c;+ 4c~) a; + (5 + 6J2cs + 4c; + 6c~) a~ 

one must at least take c 2 = 0 to minimize Var[C'U]. 
Clearly there are an infinite number of unbiased estimators of ~12 

which are functions of the minimal sufficient statistics. The minimum 
variance unbiased estimator of ~12 which is a function of the minimal 
sufficient statistics is uniquely determined when a; and a~ are known or 
more specifically when the ratio aVa; is known. Letting p = aVa;, the 
Var[C'U] written as a function of p is 

When p is known, the minimum variance unbiased estimator of ~12 can 
be obtained by taking 

c I J 2 (p + 2) / {4 (p + I)}, 

C2 0, 

c 3 J 2 p / {4 (P + I)}, 

c 4 -J2p/{4(P + I)}, 

Cs -J2(3p + 2)/{4(p + I)}, and 

c 6 0, 
which results in C'U = P(Y1l2 - Ylll )/{2(p + I)} + Y121' 

The unbiased estimator of ~12 given by MJ, ~12 = (Y1l2-Ylll)/2 + Yl2l' 
is obtained by taking Cs = -(3J2)/4 and is the minimum variance 
unbiased estimator when p/{2(p + I)} = 1/2, i.e. as p ~ 00. The 
unbiased estimator of ~12 given by Y121' the ordinary least squares 
estimator, is obtained by taking Cs = -1/J2 and is the minimum variance 
unbiased estimator when p/{2(p + I)} = 0, i.e. as p ~ O. 

In comparing the error terms obtained in Section 3 to the minimal 
sufficient statistics in Section 2, note that (V2)~; = V3' However, 
SSPATIENT(TREATMENT) ~ VI' Note that the sums of squares for 
Patient (Treatment) , often referred to as the whole plot error sums of 
squares, has three degrees of freedom in Example 1 while VI has only 
one degree of freedom. Also, note that there are eight minimal 
sufficient statistics, U ll ' u l2 , U 21 ' U 22 ' U 31 ' U 32 ' VI and v3, to estimate 
the six parameters ~ll' ~12' ~21' ~22' a; and ai. Thus, it seems reasonable 
that two degrees of freedom of information about the between-patient 
error remains in U in the form of comparisons. If they exist, the two 
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comparisons, denoted by WI and W21 must be functions of U such that 
E[wIl = 0, E[W2l = 0, and Cov[w" w2l = o. 

Since E[u ll + u3Il = E[U21 - U22 l = /2J-lll' a WI can be constructed by 
taking any multiple of (U II + U31) - (U21 - U22 ). Letting WI = PI'U and 
taking PI to be the normalized vector 

PI' [1/2 0 -1/2 1/2 1/2 01 

one has E[wtl = 0 and Var[~l = a; + a~. 
Since E[U I2 + U32 l = /2E[u21 + U22 l =_2J-l21' a w2 can be constructed 

by taking any multiple of (u l2 + U32 ) - /2 (U21 + u 22 ). Letting w2 = P2'U 
and taking P2 be the normalized vector 

one has E [w2l = 0 and Var [w2l = a; + a~. Also, Cov [w" w2l = o. 
Now (wd 2 and (W2)2 each provide one degree of freedom for the 

whole plot error sums of squares. The sums of squares for 
Patient (Treatment) can be then be obtained from the set of minimal 
sufficient statistics as 

It can be shown that (wd 2/(a; + a~)- X2, (w2)2/(a; + a~)- X2, and w" 
w2f VI and V3 are independently distributed. We already have that v l / (a; 
+ 2a~)- X2. Thus, V3 = (V 2 );; and SSPATIENT(TREATMENT) are independently 
distributed. However, since SSPATIENT(TREATMENT) is the sum of two 
random variables with expectation a; + a~ and one with expectation a; + 
2a~, SSPATIENT(TREATMENT) does not have a distribution that is 
_proportional to an exact chi-square distribution. It should also be 
noted that although COV(WI' w2) = 0, WI and w2 are not necessarily 
distributed independently of all fixed effects. For example, COV(WI' 
~12) = -/!.;a;, thus SSPATIENT(TREATMENT) and ~12 (the 
MJ estimator of J-ll2) are not independently distributed. 

5. SUMMARY OF OPTIONS 

The comparisons in Section 4 show that the analysis of unbalanced 
split-plot designs suggested by MJ is not necessarily the best 
analysis. However, examination of the minimal sufficient statistics 
for Example 1 does not reveal a better procedure for analysis of the 
example either. 

The estimator of the vector of parameters J-l, (J-l' = [J-lIP J-l12' J-l2lf 
J-lJ ) or of functions of J-l suggested by MJ is only one of an infinite 
number of unbiased estimators. The MJ estimator assumes that the 
random effect of a patient within a treatment group is the same for 
both weeks which would seem desirable. Computationally, the MJ 
estimator of J-l can be obtained by treating the random effects of the 
patients, 0, as fixed. 

Let T' = [J-l' 0'1 Then T' = [~' 6'1 = w·y where W = [x,zl 
estimates the J-lij's (~) and the "fixed" effects of the patients (6). The 
MJ estimator of J-l is found by taking p = B'T = [I(4)' B2 '1 T, where I (4) is 
the 4x4 identity matrix and l 1/2 

1/2 
o 
o 

1/2 0 0 
1/2 0 0 
o 1/3 1/3 
o 1/3 1/3 

The matrix B2 ' treats the estimated effects of the patients 
within a treatment group equally for Week 1 and Week 2. The MJ 
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estimator, ~, is the same estimator one would obtain using the SAS® GLM 
statements: 

PROC GLM; 
CLASS PATIENT TRTMENT WEEK; 
MODEL RESPONSE=TRTMENT PATIENT(TRTMENT) WEEK TRTMENT*WEEK; 
LSMEANS TRTMENT*WEEK; 

If there were no missing subplot measurements in Example 1 (if 
all patients had returned for the second examination) the estimator 
suggested by MJ using the matrix B, would be equivalent to both the 
ordinary least squares (OLS) estimator of ~ and the generalized least 
squares (GLS) estimator of ~. This is not the case when subplot 
measurements are missing. 

When there is unbalancing in the subplot experimental units the 
OLS estimator of ~, given by p = X-y, does not take into account the 
random effect of the patients within the treatment groups. In section 
4, the OLS estimator of the parameter function Pl· = ~ (~ll + ~12) was 111· 
= {!;U Il = 21, whereas the MJ estimator was PI. = 20. Although, for this 
particular parameter function the MJ estimator had smaller variance 
than the OLS estimator, this is not always true. 

The uniformly minimum variance unbiased estimator of ~ is given 
by the GLS estimator j1 = (X'1:"IX)-X'1:"ly when 1: is known. Since 1: depends 
on the unknown values of a; and a~, the GLS estimator j1 must be 
estimated. When there are no missing subplot measurements, the 
estimator suggested by MJ, the OLS estimator and the GLS estimator are 
all equivalent and thus the UMVUE estimator of ~ can be obtained from 
either OLS or from the MJ estimator without knowing a; or a~. 

The comparisons in Section 4 not only illustrate various options 
for obtaining estimates of the fixed effects, but suggest options for 
making inferences about the fixed effects. To construct a confidence 
interval or test hypotheses about a function of parameters, h'~, it is 
necessary to find the variance of the estimator of h'~. A 

In the analysis suggested by MJ, the variance of h'p is given by 

Var[h'~) = (Bh) 'W1:WBh = k(a; + ca~) 

where c = Tr( WW--(W-{I-(Bh)-Bh}) (W-{I-(Bh)-Bh}r) and k = (Bh) I (W'W)-Bh. 
MJ recommend estimating the variance components a; and a~ using the 
method of moments to estimate var(h'~l. The distribution of Var(h'~l 
is approximated using results about the distribution of linear 
combinations of independent random variables with distributions 
proportional to chi-square distributions given by Satterthwaite (1941). 
Comparisons made in Section 4 show that this approximation may not be 
appropriate for unbalanced split-plot designs since the whole plot sums 
of squares does not always have a distribution that is proportional to 
an exact chi-square distribution. 

MJ recommend constructing hypothesis tests and confidence 
intervals about h'~ using an approximate t-statistic obtained from the 
ratio of the estimate and its standard error. This approximation may 
not be appropriate for some fixed effects when the whole plot sum of 
squares is not distributed independently of the estimator h'~. 

A The results of Section 4 might suggest estimating the variance of 
h'~ using the set of minimal sufficient statistics, ve, since these 
statistics are all independently distributed with distributions 
proportional to chi-square distributions. Also, since the MJ 
estimators for fixed effects are all functions of the minimal 
sufficient statistic vector, U, and the ve statistics are distributed 
independently of U, the ve are independent of the MJ estimators. For 
Example 1, the statistics VI and V3 could be used in place of ~; and 
SSPATIENT(TREATMENT) in the method of moments to estimate a; and a~. 

There is the potential for an unbalanced split-plot design to 
have more than two v-statistics {VI: fl = 1, 2, ... s}. Let 1/ = me - qr 
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which is the degrees of freedom for ve. The expected value of velfe is 
given by (e = a; + nea~ where (£I fl. = 1, 2, .•. s, are the distinct 
diagonal elements of R~R'. When more than two ve's exist, the method 
of moments will not result in unique estimates for a; and a~. One 
option, in this case, is to apply the method of moments to two selected 
v-statistics (perhaps those with the largest degrees of freedom). 

In almost all cases one of the (e's will be equal to a;. Without 
loss of generality, let this one be t. Then ns=O and (,=a;. Another 
possible solution is to take 

s-I s-1 

v* = I;ve and f* = I;ff 
£=1 £=1 

where the expectation of v* is a; + n·a~ and 
s-I s-1 

n* = ( EneIc) I( Efc) 
£=1 £=1 

The method of moments can then be applied to vslfs and v·lf" to obtain 
unique solutions for ~ and ~. 

To make inferences about the fixed effects in an unbalanced 
split-plot example using the GLS estimator of ~, the variance of h'P, 

Var[h'Pl = h' (X'~-IX)-h, 

must be estimated along with the GLS estimator h'P since a; and a~ and 
therefore ~ are unknown. The method of moments estimators suggested by 
MJ or the method of moments estimators using the minimal sufficient 
statistics can be used to estimate the variance components for use in 
the GLS analysis. Some other ways of estimating a; and a~ include the 
maximum likelihood, restricted maximum likelihood (Harville, 1977), and 
MINQUE methods (Rao, 1971). To test hypotheses or construct confidence 
intervals about h'~, the statistic h'P/{Var[h'Pl}~ is used. However, 
the distribution of h'P/{Var[h'Pl}~ is unknown and can be approximated 
by the standard normal distribution only when the whole plot and 
subplot sample sizes are sufficiently large. 

A number of options for analyzing unbalanced split-plot designs 
have been suggested in this paper. However, it has not yet been 
determined how these procedures compare to each other in terms of size 
or power. Some of these options are compared by Remmenga (1992). 
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