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ABSTRACT: Published prediction equations for fat-free lean mass are widely used by 
producers for carcass evaluation. These regression equations are commonly derived under the 
assumption that the predictors are measured without error. In practice, however, it is known that 
some predictors, such as backfat and loin muscle depth, are measured imperfectly with variance 
that is proportional to the mean. Failure to account for these measurement errors will cause bias 
in the estimated equation.  In this paper, we describe an empirical Bayes approach, using 
technical replicates, to accurately estimate the regression relationship in the presence of 
proportional measurement error. We demonstrate, via simulation studies, that this Bayesian 
approach dramatically improves the accuracy of the estimated equation in comparison to the fit 
from Ordinary Least Squares regression. 
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1. Introduction

To expedite pork carcass valuation, equations are often used to predict fat-free lean (FFL) 
content from quickly measurable characteristics, such as backfat depth (BFD). Of the multiple 
measuring tools that exist for measuring BFD, operator error of the optical probe can lead to 
readings with error variance that is proportional to the true backfat value (Boland et al., 1995; 
Schinckel et al., 2010). 

When proportional measurement error exists and an analysis is used that assumes the 
independent variables are measured without error (e.g. Ordinary Least Squares (OLS) 
regression), it results in a biased regression equation. For example, when the true relationship is 
linear, this type of measurement error greatly increases the probability of a false positive 
quadratic term in the prediction equation (Schinckel et al., 2007). Furthermore, the false positive 
quadratic term is convex, suggesting that the predicted response, such as FFL eventually 
increases as the predictor, BFD, increases (Schinckel et al., 2010). 

This result has raised concerns about the accuracy of the published equations that have 
used backfat data collected with an optical probe and feature convex quadratic terms (Johnson et 
al., 2004; Schinckel et al., 2005; Schinckel et al., 2010; Schinckel, 2012). Previous research 
introduced an empirical Bayes approach that accurately recovers the true regression coefficients 
from data with proportional measurement error (Hass et al. 2014). That work, however, assumes 
prior knowledge of the measurement error proportionality constant K, which allows the 
necessary decomposition of the observed variability in BFD measurements between population 
and error-induced variability. 

Although such knowledge may reasonably be obtained ahead of time (e.g., a pilot study), 
we now extend this approach to situations when K is unknown.  This extension is possible 
provided there are replicate measurements on a subset of pigs. Thus, the objectives of this paper 
are to propose an empirical Bayes model to estimate carcass composition prediction equations in 
the presence of proportional measurement error with unknown constant K, provide a relative size 
rule regarding the size of the subset of pigs with replicate measurements, and compare results 
against the equations estimated from OLS regression.  

2. Background and Methods

2.1. Measurement Error

In a typical regression setting, it is assumed that the predictors X are measured without 
error.  There are times, however, when instead of a true predictor 𝑋𝑋𝑖𝑖, we observed  𝑋𝑋𝑖𝑖∗, which is a 
perturbed version of 𝑋𝑋𝑖𝑖 due to measurement error. The additive measurement model takes the 
form 𝑋𝑋𝑖𝑖∗ = 𝑋𝑋𝑖𝑖 + δi and assumes 𝐸𝐸(𝛿𝛿𝑖𝑖) = 0 and 𝑉𝑉𝑉𝑉𝑉𝑉(𝛿𝛿𝑖𝑖) = 𝜎𝜎𝛿𝛿2. The multiplicative (or
proportional) measurement error model takes the form 𝑋𝑋𝑖𝑖∗ = δi𝑋𝑋𝑖𝑖 and assumes 𝐸𝐸(𝛿𝛿𝑖𝑖) = 1 and 
𝑉𝑉𝑉𝑉𝑉𝑉(𝛿𝛿𝑖𝑖) = 𝐾𝐾. The difference between the two models is highlighted by their conditional 
variances. In the additive case, 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑖𝑖∗|𝑋𝑋𝑖𝑖) = 𝜎𝜎𝛿𝛿2 and in the multiplicative case,  𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋𝑖𝑖∗|𝑋𝑋𝑖𝑖) =
𝐾𝐾𝑋𝑋𝑖𝑖2. 
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When measurement error occurs, it will bias the resulting regression equation. How it biases the 
regression equation, however, depends on the type of error.  Figure 1 illustrates these differences 
using a simple linear relationship. The black (solid) line represents the true linear model, as well 
as the average line obtained using OLS (fitting a quadratic model) provided there is no 
measurement error.  The blue (dotted) line represents the average line obtained when using OLS 
(quadratic model) given additive measurement error.  Finally the red (dashed) line represents the 
average line obtained using OLS (quadratic model) given there is proportional measurement 
error. The amount of measurement error in both cases is such that the correlation between the 
true and observed predictor is approximately 0.75.  

Additive measurement error reduces the perceived linear association between the two 
variables, thereby reducing the slope of the line towards zero (Carroll et al., 2006). Proportional 
error, on the other hand, not only reduces the degree of association but also introduces a convex 
curvature to the relationship (Schinckel et al., 2007). An excellent description of a contrived 
proportional measurement error problem is given by Hwang (1986).  

Several methods have been developed to adjust for additive measurement error but all 
require an estimate of the measurement error variance. Methods such as SIMEX introduce 
additional measurement error to extrapolate what the 𝛽𝛽 coefficients would be if there were no 
error (Carroll, et al., 2006).   Others such as regression calibration shrink the observed values 𝑋𝑋∗ 
towards the overall mean using the reliability ratio, which is the relative amount of variability in 
the latent X over the variability in 𝑋𝑋∗ (Carroll, et al., 2006).  

Extensions of these ideas to the proportional measurement error setting exist. The 
regression calibration concept can be adapted so that each 𝑋𝑋∗ has its own reliability ratio as in 
Hass et al. (2014). Three different ways of approaching the problem with SIMEX are compared 
through simulation in a discussion paper by Biewen et al (2008). All approaches, however, rely 
on an estimate, or knowledge of, the measurement error variance.  Additionally, estimation of the 
uncertainty in parameter estimates requires techniques such as the delta method, jackknife, or 
bootstrap.  

We propose a Bayesian approach that treats the X as an additional unknown.  The 
resulting posterior distribution provides a straightforward method to assess estimation 
uncertainty in both K and regression parameters 𝛽𝛽.  Furthermore, provided the experimenter is 
able to obtain a subset of technical replicates, our model is able to differentiate between a true 
linear or true quadratic relationship. 
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Figure 1: Expected effects of measurement error when fitting OLS 

The black line is the true relationship to be estimated between a predictor X and some response. 
The blue line represents the expected quadratic model fit using Ordinary Least Squares (OLS) 
when the predictor has additive measurement error. The red line represents the expected 
quadratic model fit using OLS when the predictor has proportional measurement error. The 
correlation between X and 𝑋𝑋∗, the perturbed predictor, is 0.75 for both types of measurement 
error.  
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2.2. Statistical Model 

For simplicity, suppose we want to estimate the relationship between BFD (the predictor, X) and 
FFL (the response, Y) using a data set of N pigs.  The measured, or observed, BFD is designated 
by 𝑋𝑋∗ because it is measured with error.  Furthermore, we assume that R ≤ N pigs have their 
BFD measured S times and every other pig has it measured just once.  

To estimate the regression relationship between BFD and FFL, we adopt a Bayesian 
inference approach. We want to estimate the posterior distribution π(𝛽𝛽,𝜎𝜎𝜖𝜖2,𝐾𝐾,𝑋𝑋|𝑋𝑋∗,𝑌𝑌), where 𝛽𝛽 
is the regression coefficients, K is the unknown proportionality constant, and 𝜎𝜎𝜖𝜖2 is the regression 
error variance. To account for the measurement error, it is helpful to include the latent variable 
X, the Actual Backfat Depth (ABFD), as an additional unknown in the calculations. This 
inclusion requires specifying a prior for X. 

We consider a Normal prior for X and use the data to estimate its mean and variance. 
Technically, X can only be positive, suggesting a log-Normal or gamma prior.  In practice, 
however, there are very few measurements near zero, suggesting the use of a Normal prior would 
not be a problem.  Because  𝐸𝐸(𝑋𝑋∗) = 𝑋𝑋 in the usual measurement error context, we estimate the 
prior mean using 𝜇̂𝜇𝑋𝑋 = 𝑋𝑋�∗, the average of the N pig sample means. For the prior variance 𝜎𝜎𝑋𝑋2, we 
need to remove the measurement error from the observed variance sX∗

2 . This requires an estimate 
of K.  

We initially estimate K from the information in the technical replicates using Equation 1. 
This equation arises from the fact that the variance of X is proportional to the mean. Let Sxi∗

2  be 
the sample variance of the  𝑖𝑖th pig’s technical replicate values measured with error. Similarly 𝑋𝑋�𝑖𝑖∗
is the  𝑖𝑖th pig’s sample mean. If R pigs are measured S times then 𝐾𝐾� is the average of the R ratios 
of each pig’s sample variance and mean. We investigated other estimators of K and found this 
estimator to have the lowest variance. 

𝐾𝐾� = ∑ (
𝑆𝑆𝑥𝑥𝑖𝑖

∗2

𝑋𝑋�𝑖𝑖
∗2)/𝑅𝑅𝑖𝑖  ;  𝑆𝑆𝑥𝑥𝑖𝑖∗

2 = ∑ �𝑋𝑋𝑖𝑖𝑖𝑖
∗ −𝑋𝑋�𝑖𝑖

∗�2

𝑆𝑆−1
𝑆𝑆
1   and 𝑋𝑋�𝑖𝑖∗ =  ∑ 𝑋𝑋𝑖𝑖𝑖𝑖

∗

𝑆𝑆
𝑆𝑆
1  (1) 

Using 𝐾𝐾� we estimate the prior variance with Equation 2, a method of moments estimator. 
Note that we now use 𝑆𝑆𝑋𝑋∗

2 , without secondary subscript, to be the sample variance across pig 
BFD measurements. For simplicity, we use only the first replicate measurement from those pigs 
measured multiple times.  

σ�x2 = Sx∗
2 −K�x�∗2

K�+1
;  Sx 

∗
2 = ∑ �𝑋𝑋𝑖𝑖1

∗ −𝑋𝑋� 
∗�2

𝑁𝑁−1
𝑁𝑁
𝑖𝑖  and 𝑋𝑋� 

∗ =  ∑ 𝑋𝑋�𝑖𝑖
∗

𝑁𝑁
𝑁𝑁
𝑖𝑖 (2) 
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For the regression parameters we use Jeffrey’s prior 𝜋𝜋(𝛽𝛽,𝜎𝜎𝜖𝜖) ∝ 1
𝜎𝜎𝜖𝜖2

 to minimize this 
prior’s influence on the results and “mimic” least squares regression (Kass and Wasserman, 
1995). For K we use an exponential prior with scale parameter 𝜆𝜆 = 0.04 to encompass the likely 
range of correlations between X and 𝑋𝑋∗. Sensitivity analysis using other 𝜆𝜆 values did not greatly 
impact results. 

Given these priors, we estimate the desired posterior distribution using Markov chain 
Monte Carlo (MCMC).   We take a Gibbs sampler approach, updating the unknown parameters 
𝛽𝛽,𝜎𝜎𝜖𝜖2,𝐾𝐾, and 𝑋𝑋 sequentially while keeping the remaining parameters fixed at their current values. 
For more details on Gibbs Sampler see Casella and Edwards (1992). 

For the regression parameters the updates are sampled directly from their full conditional 
distributions (see Equations 3 and 4).  The 𝜒𝜒2 stands for the chi-square distribution with degrees 
of freedom equal to the number of pigs. For the updates of X and K, a Metropolis-Hastings (MH) 
step is used. The conditional distributions are given in Equations 5 and 6. Here and throughout, 
𝑁𝑁(𝜇𝜇,𝜎𝜎) stands for the Normal distribution with mean and standard deviation. Gamma 
distributions, designated by Gam, are given with shape and scale parameters, respectively. Note 
that the assumed Gamma distribution for the observed predictor 𝑋𝑋∗ implies that 𝛿𝛿 follows a 
Gamma distribution with shape = 1

𝐾𝐾
 and scale = 𝐾𝐾. We used a Normal random walk proposal for 

each MH step, the symmetry of which means only the conditional posterior distributions are 
needed to form the MH acceptance ratio (Christensen et al., 2011). Subscripts stand for the 𝑖𝑖𝑡𝑡ℎ 
pig and 𝑡𝑡𝑡𝑡ℎ iteration. 

𝜋𝜋(𝛽𝛽𝑡𝑡+1|𝑋𝑋𝑡𝑡,𝑌𝑌,𝜎𝜎𝜖𝜖𝜖𝜖2 )~𝑀𝑀𝑀𝑀𝑁𝑁𝑝𝑝 � (𝑋𝑋𝑡𝑡𝑇𝑇𝑋𝑋𝑡𝑡)−1𝑋𝑋𝑡𝑡𝑇𝑇𝑌𝑌,  𝜎𝜎𝜖𝜖2 �𝑋𝑋𝑡𝑡𝑇𝑇𝑋𝑋𝑡𝑡�
−1
�  (3) 

𝜋𝜋�𝜎𝜎𝜖𝜖2𝑡𝑡+1�𝛽𝛽𝑡𝑡+1,𝑋𝑋𝑡𝑡,𝑌𝑌�~(𝑌𝑌 − 𝑋𝑋𝑡𝑡𝑇𝑇𝛽𝛽𝑡𝑡+1)𝑇𝑇(𝑌𝑌 − 𝑋𝑋𝑡𝑡𝑇𝑇𝛽𝛽𝑡𝑡+1) 1
𝜒𝜒2(𝑁𝑁)  (4) 

𝜋𝜋(𝑋𝑋𝑖𝑖𝑖𝑖+1|𝛽𝛽𝑡𝑡+1,𝑌𝑌,𝜎𝜎𝜖𝜖𝜖𝜖+12 ,𝑋𝑋∗) ∝  𝑁𝑁(𝑋𝑋; 𝜇𝜇𝑋𝑋 ,𝜎𝜎𝑋𝑋)𝑁𝑁(𝑌𝑌;𝑋𝑋𝑡𝑡 𝑇𝑇𝛽𝛽𝑡𝑡+1,𝜎𝜎𝜖𝜖 𝑡𝑡+1)𝐺𝐺𝐺𝐺𝐺𝐺(X∗; 1
𝐾𝐾𝑡𝑡

,  𝐾𝐾𝑡𝑡𝑋𝑋𝑖𝑖𝑖𝑖)    (5) 

𝜋𝜋(𝐾𝐾𝑡𝑡+1|𝛽𝛽𝑡𝑡+1,𝑌𝑌,𝜎𝜎𝜖𝜖𝜖𝜖+12 ,𝑋𝑋∗,𝑋𝑋𝑡𝑡+1) ∝  ∏ 𝐺𝐺𝐺𝐺𝐺𝐺�𝑋𝑋∗; 1
𝐾𝐾𝑡𝑡

,𝐾𝐾𝑡𝑡𝑋𝑋𝑖𝑖𝑖𝑖+1 �𝑁𝑁
𝑖𝑖 𝐺𝐺𝐺𝐺𝐺𝐺 �𝐾𝐾; 1, 1

25
�  (6) 

We run the Markov chain for 80,000 iterations with a 30,000 iteration burn-in. Posterior 
means of 𝛽𝛽 and 𝜎𝜎𝜖𝜖 were used to describe the estimated prediction equation. Uncertainty in the 
estimates for a given data set were characterized using 95% credible intervals such that the 
probability of a parameter being above the interval was equal to the probability of it being below 
(the 2.5th and 97.5th percentiles of the posterior distribution).  
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2.3. Simulation Study 

To assess performance of the model in recovering the true regression coefficients, we 
used a simulation study. All data generation, modeling, and analysis was done using R v3.1.1. 
1000 data sets were simulated for each of nine scenarios, crossing three levels of measurement 
error with three experimental unit sizes. Measurement error was set such that the correlation 
between true and observed X were approximately 0.75, 0.85, and 0.94 and is controlled by the 
constant of proportionality designated by K (0.06, 0.03, 0.01 respectively).  These ranges are 
derived from previous literature (Hass et al., 2014; Schinckel et al., 2007; Schinckel et al., 2010). 
The number of pigs (experimental unit size) was set to 250, 500, and 1000 pigs to represent a 
medium study, a large study, and a multi-site study (Johnson et al., 2004). 

The true predictor, ABFD,  was sampled from a truncated Normal distribution with a 
mean of 28 mm and standard deviation of 8 mm with left truncation at 0 (Schinckel et al., 2007). 
The probability of a negative draw is very small without truncation, but truncation avoids 
computational and interpretation issues. Measurement error proportional to the mean was 
introduced by sampling BFD values for pig i from a Gamma distribution with mean of ABFDi

and variance of 𝐾𝐾 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖2. The response variable, FFL, was generated from Equation 7 for the
primary results and from Equations 8 and 9 for the secondary results. In all three equations the 
error term (𝜖𝜖) came from 𝑁𝑁(0, 3.57).  These equations and error standard deviation were derived 
from previous research (Hass et al., 2014; Johnson et al., 2004; Schinckel et al., 2007). 

𝐹𝐹𝐹𝐹𝐹𝐹 = 56.2 − 0.4 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 𝜖𝜖 (7) 

𝐹𝐹𝐹𝐹𝐹𝐹 = 54.46 − 0.543 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 + 0.006 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2 + 𝜖𝜖  (8) 

𝐹𝐹𝐹𝐹𝐹𝐹 = 56.2 − 0.315 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 0.003 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2 + 𝜖𝜖  (9) 

For each simulation, we consider fitting a quadratic relationship between BFD and FFL 
using both our approach and OLS. To examine the performance of our approach, we compare the 
distribution of posterior means of 𝛽𝛽,𝐾𝐾,𝜎𝜎𝑥𝑥, and 𝜎𝜎ϵ against the true equation values. For inference 
about the quadratic term, we use a 95% equal-tailed credible interval for each data set. If 0 falls 
outside the interval for the quadratic term (𝛽𝛽2) then we incorrectly infer the presence of a 
quadratic relationship for that dataset.  For OLS, we use the P-value of the t test 𝐻𝐻0: 𝛽𝛽2 = 0.  
Percentage of false positives (Type I error) across all data sets is compared against the target rate 
of 5%. 

Secondary analyses focus on testing the models’ performance when the underlying model 
is truly quadratic and K is unknown. Two scenarios were tested. The first scenario generated 
from a convex quadratic relationship similar to those fit with optical probe data (Johnson et al., 
2004) and the second from a concave quadratic relationship where the loss in FFL is greater per 
unit increase of BFD as BFD increases. Data were generated as before, this time with only 250 
pigs and K = 0.06. The posterior mean (or least-square estimate) of coefficients were saved for 
each data set and the mean across all data sets were compared graphically. 
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Figure 2: Impact of Proportion of Twice Measured Pigs on Parsing Variability in BFD (𝑿𝑿∗) 

The figure on the left describes the distribution of the posterior mean of K� across 1000 datasets 
for different proportion of pigs out of 250 measured twice. The figure on the right does the same 
for the empirically measured prior σ�x. All data were generated using K = 0.06, a constant of 
proportionality that implies a correlation of 0.75 between Actual Backfat Depth (ABFD) and 
measured Backfat Depth (BFD) depth. The ability to correctly parse observed variability in BFD 
between these two parameters is key to removing the negative effects of proportional 
measurement error. These plots inform what proportion of pigs must be measured twice. 
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3. Results

3.1. Number of Units Measured Twice 
Our first study examined the impact of the proportion of pigs measured twice (S=2) on 

the posterior mean estimates of K and 𝜎𝜎𝑥𝑥 . We focus on only two measurements because it 
represents the fewest additional measurements per pig.  The left panel of Figure 2 displays the 
estimated distribution of the posterior means for both estimators at various proportions of 250 
pigs measured twice for 1000 datasets and K equal to 0.06. As expected, the variability of the K 
estimate goes down as the proportion of pigs measured twice increases. However, there are 
diminishing returns suggesting measuring roughly a third of the pigs twice should give 
reasonable results. This size is further supported by the right panel in Figure 2, which shows the 
distribution of the estimate σ�x used in the prior for X. It is nearly unbiased and its variability 
ceases to decrease noticeably once around a third of the pigs are measured twice. Similar patterns 
were found for different levels of measurement error and number of pigs. Thus, for the 
remainder of the simulation study, we consider  1

3
 of the pigs as measured twice. 

3.2. True Linear Relationship 
Our second study compares our Bayesian model against least squares regression. Table 1 

gives the average estimated parameter values from the Bayesian model, with data generating 
values presented in the column header. Within each scenario, the model is basically unbiased for 
the model coefficients, regression variance, the amount of measurement error and the variability 
in the predictor variable. Correctly parsing apart the sources of variation leads to Type I error 
rates very near the target of 5%.  

Table 2 gives the results of ignoring the measurement error and fitting the least squares 
regression. Ignoring the measurement error is equivalent to assuming K = 0, dictating that all of 
the variability in X arises naturally. The result is that the estimated standard deviation of X 
increases, the coefficients become biased, and Type I error increases dramatically. The Type I 
error rate worsens as both measurement error and experiment size increase. Bias in the estimated 
regression line tends to increase as the amount of measurement error increases, within a given 
sample size. 

A visualization of the mean fit between the two methods is given for two scenarios in 
Figure 3. The plot on the left shows the fit when K = 0.06 and the number of pigs is 250. The 
plot on the right gives the mean fit for K = 0.01 and 1000 pigs. The larger K or increased 
measurement error, leads to greater bias in the coefficients as seen in the increased curvature of 
the line. 
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Table 1: Comparison of parameter estimates across scenarios for Bayesian model 

Number 
of Pigs 

K 𝛽̂𝛽0
𝛽𝛽0 = 56.2 

𝛽̂𝛽1
𝛽𝛽1 = −0.4 

𝛽̂𝛽2
𝛽𝛽2 = 0 

Type I 
Error 

𝜎𝜎�𝜖𝜖
𝜎𝜎  =  3.57 

𝐾𝐾� 𝜎𝜎� 𝑥𝑥
 

𝜎𝜎𝑥𝑥 = 8 

250 0.01 56.17 -0.395 -0.0001 6.0% 3.56 0.010 7.98 

250 0.03 56.29 -0.403 0.0000 5.0% 3.58 0.031 8.01 

250 0.06 56.26 -0.397 -0.0002 5.4% 3.57 0.061 8.03 

500 0.01 56.12 -0.392 -0.0002 4.3% 3.56 0.010 8.00 

500 0.03 56.25 -0.400 0.0000 4.7% 3.57 0.031 8.00 

500 0.06 56.28 -0.403 0.0000 4.7% 3.57 0.060 8.05 

1000 0.01 56.14 -0.394 -0.0001 3.5% 3.55 0.010 7.99 

1000 0.03 56.26 -0.404 0.0001 6.2% 3.56 0.030 8.02 

1000 0.06 56.27 -0.405 0.0001 5.9% 3.57 0.060 8.06 

Each row represents a scenario of a set number of pigs and amount of measurement error. In 
each scenario, 1

3
 of the pigs were measured twice. Each scenario contains 1000 randomly 

generated data sets. All table entries represent  the average posterior mean except for Type I 
error, which is the proportion of data sets when  the equal tailed credible region for 𝛽𝛽2� failed to 
contain 0. The constant of proportionality (K) stands for the amount of measurement error, K = 
0.01, 0.03, and 0.06 stands for correlation between actual backfat depth (ABFD) (X) and 
measured backfat depth (BFD) (𝑋𝑋∗) of 0.94, 0.85, and 0.75 respectively. The 𝛽𝛽 values are the 
parameters from the regression model of Fat Free Lean (FFL): FFL = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋  +  𝛽𝛽2𝑋𝑋2  +  𝜖𝜖, 
where 𝜖𝜖 ~ 𝑁𝑁(0,𝜎𝜎𝜖𝜖), they are estimated by their posterior means. The estimated residual standard 
deviation is given by 𝜎𝜎�𝜖𝜖 and the estimated standard deviation of BFD is given by 𝜎𝜎�𝑋𝑋. The former 
is a posterior mean estimate, while the latter is estimated through method of moments. 
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Table 2: Average estimated parameter values from the regression model ignoring measurement error 

Number 

of Pigs 

K 𝛽̂𝛽0
𝛽𝛽0 = 56.2 

𝛽̂𝛽1
𝛽𝛽1 = −0.4 

𝛽̂𝛽2
𝛽𝛽2 = 0 

Type I 
Error 

𝜎𝜎�𝜖𝜖  
𝜎𝜎𝜖𝜖 =  3.57 

𝜎𝜎�𝑥𝑥  

𝜎𝜎𝑥𝑥 = 8 

250 0.01 56.66 -0.488 0.0024 17.8% 3.72 8.49 

250 0.03 55.88 -0.499 0.0035 45.6% 3.92 9.44 

250 0.06 54.04 -0.427 0.0033 55.5% 4.11 10.70 

500 0.01 56.60 -0.483 0.0022 29.5% 3.73 8.51 

500 0.03 55.93 -0.503 0.0036 75.6% 3.93 9.44 

500 0.06 54.13 -0.432 0.0033 86.0% 4.12 10.70 

1000 0.01 56.62 -0.486 0.0023 53.6% 3.72 8.51 

1000 0.03 55.95 -0.504 0.0036 96.6% 3.93 9.45 

1000 0.06 54.11 -0.431 0.0033 98.9% 4.11 10.71 

Each row represents a scenario of a set number of pigs and amount of measurement error. Each 
scenario contains 1000 randomly generated data sets. All table entries represent the average 
estimate except for Type I error, which is the proportion of data sets when the p-value on the 
quadratic term was less than 0.05. The constant of proportionality (K) stands for the amount of 
measurement error, K = 0.01, 0.03, and 0.06 stands for correlation between Actual Backfat Depth 
(ABFD) (X) and measured backfat depth (BFD) (𝑋𝑋∗) of 0.94, 0.85, and 0.75 respectively. The 𝛽𝛽 
values are the parameters from the regression model of Fat Free Lean (FFL); FFL = 𝛽𝛽0  +  𝛽𝛽1𝑋𝑋  
+  𝛽𝛽2𝑋𝑋2  +  𝜖𝜖, where 𝜖𝜖 ~ 𝑁𝑁(0,𝜎𝜎𝜖𝜖). The estimated residual standard deviation is given by 𝜎𝜎�𝜖𝜖 and
the estimated standard deviation of BFD is given by 𝜎𝜎�𝑋𝑋.  
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Figure 3: Comparison of Bayesian and least squares mean fit 

Figure 3 shows the average fit when accounting for measurement error (Bayesian fit) and when 
ignoring it (OLS fit). In both plots, the black (solid) line is the true relationship. The green 
(dotted) line is the average Bayesian model fit and the red (dashed) line is the average OLS fit 
across 1000 data sets. . Both methods assume a quadratic relationship between Backfat Depth 
(BFD) and the response, fat free lean (FFL). The figure on the left uses datasets of 250 pigs and 
K = 0.06 (correlation between Actual Backfat Depth (ABFD) and measured Backfat Depth 
(BFD) of 0.75) and the one on the right uses datasets of 1000 pigs and K = 0.01 (correlation of 
0.94). 

Figure 4: Performance of Bayesian model when data arises from quadratic relationship 

The figure on the left displays the mean estimated relationship across 1000 data sets generated 
from a convex quadratic relationship.8 The black line is the true relationship, the green line is the 
Bayesian model estimate, and the red line is the OLS estimate. The figure on the right is the 
same, but data were generated from a concave quadratic relationship. Fat free lean (FFL) is on 
the Y-axis. Both figures used datasets with 250 pigs and a constant of proportionality of 0.06 
(correlation between true and measured backfat depth of 0.75). 
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3.3. True Quadratic Relationship 
All of the results given so far are based on data generated from a true linear relationship. 

Previous research demonstrated that when K was known, the Bayesian model accurately 
estimated the equation when the true relationship was quadratic as well as linear (Hass et al., 
2014). To verify that this holds when K is unknown, we examined two scenarios where the data 
generating model was quadratic, one with a concave relationship and one with a convex 
relationship. Results across 1000 data sets are pictured in Fig. 4 and numerically in Table 3. In 
the convex case ignoring measurement error moderates the relationship and in the concave case 
ignoring measurement error flips the relationship back to convex. In both cases the Bayesian 
model accurately recovers the true relationship. Table 3 shows the Bayesian model estimates are 
nearly unbiased with superior coverage of the quadratic term compared to OLS results. 

4. Discussion

Ignoring proportional measurement error leads to biased estimation of regression 
equations that can be very misleading. Without knowledge of K, it is impossible to know if the 
observed curvature is due to measurement error or to a truly convex quadratic relationship. If the 
true relationship is linear, proportional measurement error will introduce a convex quadratic 
shape (3.2). If the true relationship is quadratic with a convex shape, failing to account for 
proportional measurement error will lead to a moderated curve. In the case of a true concave 
shape, the error will flip the curve to convex (3.3). 

Published equations have found a convex shape which originally aroused concern that 
measurement error might be present as discussed in Schinckel et al. (2012). The convex 
relationship is unlikely, as it would seem implausible that eventually greater BFD indicates 
greater lean mass, but the concave relationship, indicating greater loss of lean mass as BFD 
increases might be reasonable. In the case of unlikely convex relationships found in the data, it is 
quite probable that the true relationship is linear or quadratic and concave, but proportional 
measurement error is bending the curve. Proper use of OLS regression alone will not detect or 
correct for this problem. 

If proportional measurement error is suspected, some correction must be made to avoid 
biased results.  Our Bayesian model is effective for correcting the bias, provided there is 
knowledge of the amount of variability in the predictor due to the measurement error. This 
knowledge can be expressed either through prior knowledge of the variability in X or in the 
correlation between true and observed values in the measurement process or both. This would 
take the practical form of directly specifying σX or K in the model (2.2) as in Hass et al. (2014). 
In the absence of such knowledge, collecting technical replicates by measuring as few as a third 
of pigs twice is sufficient to be nearly unbiased for both the amount of measurement error and 
the true relationship between X and Y (3.1), which is the extension presented in this paper.  

This paper focused on just two measurements per selected pig because it represents the 
fewest number of additional measurements per pig.  Additional technical replicates per pig (S > 
2) will lead to a more precise estimate of 𝐾𝐾, but whether this increase in precision is worth the
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Table 3: Comparing Bayesian model and least squares for quadratic data 

Estimation 

Method 

𝛽̂𝛽0
𝛽𝛽0 = 54.46 

𝛽̂𝛽1
𝛽𝛽1 = −0.543 

𝛽̂𝛽2
𝛽𝛽2 = 0.0060 

Coverage 𝜎𝜎�𝜖𝜖
𝜎𝜎 𝜖𝜖

 =  3.57 

𝐾𝐾�

K = 0.06 

𝜎𝜎�𝑥𝑥  

𝜎𝜎𝑥𝑥 = 8 

Least 
Squares 

50.58 -0.335 0.0035 55.2% 3.72 - 10.69 

Bayesian 

Model 

54.66 -0.553 0.0061 97.4% 3.54 0.061 8.03 

𝛽̂𝛽0
𝛽𝛽0 = 56.2 

𝛽̂𝛽1
𝛽𝛽1 = −0.315 

𝛽̂𝛽2
𝛽𝛽2 = −0.003 

Least 
Squares 

55.16 -0.472 0.0032 4.7% 4.36 - 10.69 

Bayesian 

Model 

56.35 -0.321 -0.0030 93.4% 3.56 0.060 8.05 

Each row represents a scenario of 250 pigs, 1
3
 of them measured twice and proportionality 

constant (K) of 0.06 (correlation between Actual Backfat Depth (ABFD) (X) and measured 
Backfat Depth (BFD) (𝑋𝑋∗) of 0.75). Each scenario contains 1000 randomly generated data sets 
The table entries are the average estimate except for coverage, which is the proportion of data 
sets when the procedure correctly inferred that 𝛽𝛽2 = 0. The 𝛽𝛽 values are the parameters from the 
regression model of Fat Free Lean (FFL); FFL = 𝛽𝛽0 +  𝛽𝛽1𝑋𝑋  +  𝛽𝛽2𝑋𝑋2 + 𝜖𝜖, where 𝜖𝜖 ~ 𝑁𝑁(0,𝜎𝜎𝜖𝜖). 
The estimated residual standard deviation is given by 𝜎𝜎�𝜖𝜖 and the estimated standard deviation of 
BFD is given by 𝜎𝜎�𝑋𝑋. There were two underlying regression relationship tested, the first three 
rows refer to a convex quadratic relationship, and the last three rows refer to a concave quadratic 
relationship. Least squares refers to Ordinary Least Squares (OLS) regression estimates that 
ignore the presence of measurement error while the Bayesian model takes the measurement error 
into account. 
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additional cost and time in collection is debatable given how well this method worked with S=2.  
If multiple measurements per pig are not an issue, alternative measurement designs that focus on 
more technical replicates on a smaller proportion of pigs may prove beneficial.   

Our Bayesian approach very accurately estimates the equation regardless of whether the 
true relationship between X and Y is linear or quadratic. This approach naturally provides 
measures of uncertainty for any of the sampled quantities including 𝛽𝛽 and 𝐾𝐾. Alternative 
estimators of K exist although not discussed in this work. Prediction equations often feature 
additional predictors and this model extends easily for the inclusion of those predictors measured 
without error. The motivating example for this work is the prediction of pork carcass 
composition, but the framework should generalize more broadly to any carcass evaluation using 
a measurement containing proportional measurement errors. 

It should be noted that a danger of the method of moment variance estimator in Equation 
2 is the possibility of a negative estimate. This is possible if the correlation between true value 
and measurement degrade considerably (around 0.45 in our setting) without inflating the 
variance of the observed values above the variance of the true measurements. Since this is a clear 
violation of the assumptions of our model, we advise the reader who encounters a negative 
estimate in Equation 2, to adjust the modeling assumptions or look into alternative solutions. 

Our largest simulation study size of 1000, representing the size of previous studies that 
have combined multiple sites did not simulate data as if from multiple studies. If the reader has 
data with such a structure, it is necessary to model the potential correlation within a site. 

In addition to valuation, prediction equations for carcass lean mass are also used 
commercially by pork producers, for teaching, research, and Extension. They play important 
roles at swine shows and for 4-H livestock projects. Estimated FFL is used to predict the dietary 
lysine requirements of grow-finish pigs. Bias in the equations used for that purpose has been 
estimated, in one case, to decrease profitability by $5.40 per pig (Schinckel et al., 2012). 
Therefore, it is important for economic as well as educational purposes that these equations be 
accurate. This can only be accomplished if measurement error is properly accounted for. 

All results are based on simulation study and therefore do not speak to any practical 
issues that may arise when working with data collected from an actual live animal experiment. 
Particularly the difficulties of taking multiple measurements on a single carcass with an evasive 
instrument. Measurements of loin muscle depth are similarly prone to measurement error and are 
correlated with BFD as discussed in Olsen et al (2007) and Schinckel et al (2010). The focus of 
future work should be on the adaptation of this model to handle such data. 

Acknowledgements 

This research did not receive any specific grant from funding agencies in the public, commercial, 
or not-for-profit sectors. 

87

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2016/proceedings/7



References 

Boland, M. A., Berg, E. P., Akridge, J. T., & Forrest, J. C. (1995). The impact of operator error 
using optical probes to estimate pork carcass value. Review of Agricultural Economics, 17(2), 
193-204.

Biewen, E., & Rosemann, M. (2008). Multiplicative Measurement Error and the Simulation 
Extrapolation Method. Sandra and Rosemann, Martin, Multiplicative Measurement Error and 
the Simulation Extrapolation Method (January 1, 2008). 

Carroll, R. J., Ruppert, D., Stefanski, L. A., & Crainiceanu, C. M. (2006).Measurement error in 
nonlinear models: a modern perspective. CRC press. 

Casella, G., & George, E. I. (1992). Explaining the Gibbs sampler. The American 
Statistician, 46(3), 167-174. 

Christensen, R., Johnson, W., Branscum, A., & Hanson, T. E. (2011).Bayesian ideas and data 
analysis: an introduction for scientists and statisticians. CRC Press. 

Hass, Z., Z. Zhou, B.A. Craig. (2014). Developing Prediction Equations for Carcass Lean Mass 
in the Presence of Proportional Measurement Error. Conference on Applied Statistics in 
Agriculture Proceedings. 26, 115-129. 

Hwang, J. T. (1986). Multiplicative errors-in-variables models with applications to recent data 
released by the US Department of Energy. Journal of the American Statistical 
Association, 81(395), 680-688. 

Johnson, R. K., Berg, E. P., Goodwin, R., Mabry, J. W., Miller, R. K., Robison, O. W., ... & 
Tokach, M. D. (2004). Evaluation of procedures to predict fat-free lean in swine 
carcasses. Journal of animal science, 82(8), 2428-2441. 

Kass, R.E., and L. Wasserman. 1995. A Short Course on Applied Bayesian Statistics. Self 
Published, Pittsburgh, PA. 17-18. 

Olsen, E. V., Candek-Potokar, M., Oksama, M., Kien, S., Lisiak, D., & Busk, H. (2007). On-line 
measurements in pig carcass classification: Repeatability and variation caused by the operator 
and the copy of instrument. Meat science, 75(1), 29-38. 

88

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2016/proceedings/7



Schinckel, A. P. (2005). Critique of “Evaluation of procedures to predict fat-free lean in swine 
carcasses”. Journal of animal science, 83(12), 2719-2720. 

Schinckel, A. P., Einstein, M. E., Foster, K., & Craig, B. A. (2007). Evaluation of the impact of 
errors in the measurement of backfat depth on the prediction of fat-free lean mass. Journal of 
animal science, 85(8), 2031-2042. 

Schinckel, A. P., Wagner, J. R., Forrest, J. C., & Einstein, M. E. (2010). Evaluation of the 
prediction of alternative measures of pork carcass composition by three optical probes. Journal 
of animal science, 88(2), 767-794. 

Schinckel, A. P., & Rusk, C. P. (2012). The need for accurate prediction equations for the 
carcass lean content of pigs. Journal of Extension, 50(3). 

89

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2016/proceedings/7


	DEVELOPING PREDICTION EQUATIONS FOR FAT FREE LEAN IN THE PRESENCE OF AN UNKNOWN AMOUNT OF PROPORTIONAL MEASUREMENT ERROR
	Recommended Citation

	tmp.1493310827.pdf.7uDcp

