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SIMULATION COMPARISON OF STATISTICAL METHODS USED IN ASSESSING 
VACCINE EFFICACY IN VETERINARY BIOLOGICS 

Kenneth Wakeland, Iowa State University, Department of Statistics 

Brian J Fergen, Boehringer Ingelheim Vetmedica, Inc 

Abstract: 

In veterinary biologics, clinical studies conducted to support the licensure of a vaccine generally 
include a demonstration of efficacy in the species of interest. Typically, these studies are 
designed to assess a vaccine’s ability to prevent or mitigate clinical disease. Study designs utilize 
two or more treatment groups, and often incorporate blocking structure restrictions to 
accommodate animal housing or litter-related effects. When assessing a vaccine’s ability to 
prevent clinical disease, the prevented fraction (PF), a function of the group proportions of 
affected animals, is often utilized. Typically the sample size per treatment group is limited, and 
each block is represented by only a few experimental units per treatment group. Thus, it is a 
common occurrence for group proportion estimates to be 0 or 1 at the block level. Typical 
methods utilized in analyzing study data include generalized linear mixed model with delta 
method for confidence interval (GLMM), Cochran-Mantel-Haenszel (CMH) and Gart & Nam 
(GN). Through simulation, we compare the performance characteristics (power, bias, coverage) 
of these methods for a range of study designs, sample sizes and PF values, including an 
assessment of type 1 error rates.  Simulation results suggest CMH generally performs well 
whereas the GN can perform poorly with regards to type 1 error. GLMM performance varies, 
depending on the simulated situation. Further, upon closer investigation of GN simulated results, 
it was determined that the method does not always result in a unique solution.  

Keywords: Prevented Fraction, binomial response,  

1 Introduction 
In veterinary biologics, clinical studies conducted to support the licensure of a vaccine generally 
include a demonstration of efficacy in the species of interest. Typically, these studies are 
designed to assess a vaccine’s ability to prevent or mitigate clinical disease. Prevention generally 
is assessed through evaluation on an individual animal basis a binary outcome associated with a 
case definition of disease which dichotomizes outcomes into the categories of affected and 
unaffected. Binary outcomes are aggregated across groups to estimate the proportion of affected 
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animals in each group. When conducting the study to achieve a license in the USA, the USDA 
suggests the Prevented Fraction (Reference VSM 800.202) be estimated. The Prevented Fraction 
(PF) can be found using an estimate of the relative risk.  Specifically, 1 , where 

/  is the relative risk.  Information regarding the precision of the estimate is captured in 
the form of a confidence interval. A conclusion that a statistically significant vaccine effect has 
been demonstrated results when the confidence interval does not include 0.  

 Efficacy studies often utilize two treatment groups, where one group will be a control group 
used to assess the overall virulence of the challenge and the second group measures the effect of 
administration of a vaccine. Routinely, blocking structure restrictions to accommodate animal 
housing or litter-related effects are necessary, and generally need to be considered in the 
statistical method utilized to estimate the PF and CI. Due to the magnitude of effectiveness 
offered by most veterinary vaccines and the robustness of challenge virulence in the control 
group, the sample size per treatment group is typically small, and each block is represented by a 
limited number of experimental units per treatment group. Thus, it is a common occurrence for 
group proportion estimates to be 0 or 1 at the block level. Statistical methods utilized necessarily 
must be able to successfully address these situations. Methods historically utilized in analyzing 
these study data include generalized linear mixed model with delta method for confidence 
interval (GLMM), Cochran-Mantel-Haenszel (CMH) and Gart & Nam (GN). Due to the general 
lack of knowledge on how the performance characteristics for typical vaccine studies, there is 
obvious value in an evaluation of the methods via simulation, which is reported herein. In this 
simulation, we assess power, bias, coverage and nominal type 1 error rates for these methods 
using experimental designs, sample sizes and PF values reflective of typical efficacy studies in 
the US veterinary biologics industry. 

2 Methods 
This section describes the methods used to obtain estimates of the PF and the corresponding 
confidence intervals.  The first method to be considered is the method proposed by Gart and 
Nam (1988). 

2.1 Gart and Nam 
The Gart and Nam method begins by assuming the data arise from two independent groups that 
follow binomial distributions, 

~	 , ; 		 0,1. 

In this paper, group 0 will denote the control group and group 1 will denote the vaccine group.  
The end goal of this method is to produce an estimate and confidence interval for the relative risk 
ratio,  
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.  (1) 

Using (1),  can be reparameterized as .  This leads to the log likelihood 

, log 	 logit log 1

logit log 1 	 (2) 
Using (2), the score functions are  

,
,

,	 (3) 

,
,

,  (4) 

where 1  and 1 .  Substituting  into (4), the maximum likelihood 
estimate of 	, , can be obtained from the quadratic equation  

0,  (5) 
where , ,	and	 .  The MLE of , , is 
obtained for a given value of 	as	 .  Using the Score function defined in (3), Gart and 
Nam give an estimate for the variance of (3) based on (Bartlett, 1953) 

,
1
,

, (6) 

, . 

With (3) and (6), the approximate 1  confidence limits can be found using 

,

, , ⁄ .  (7) 

Taking the square root of (7) gives a normal deviate based on the Score function 

, ⁄ ⁄ .  (8)

A skewness correction factor for (3) can be found based on (Bartlett, 1953).  The skewness 
correction factor can lead to closer to nominal coverage for certain experimental designs detailed 
in (Gart and Nam, 1988).  The skewness correction facor for (3) is provided by  

, ⁄ . 
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The skewness corrected confidence limits for a 1  confidence interval are the solutions to  

⁄ 1

6
,  (9) 

where 	is	  with 	and	  substituted for 	and	 . 

Up to this point, the assumptions on the data are that there are two independent groups (control 
and vaccine) and the responses from these groups are binomial distributions.  However, it is very 
common in actual studies to have blocking or stratification associated with housing of animals 
and/or the multiparous nature of some species.  Gart and Nam provide a method to incorporate 
this stratified structure.  It is fortunate the general procedure for fitting data with stratification is 
similar to fitting data with none. 

The assumptions when stratification is present becomes  

, ~Bin , , , ; 0,1; 1, …	, ;	

where, group 0 is the control group, group 1 is the treatment group, and  is the total number of 
strata present.  The score function for  for all strata is 

. , , , 	 , , , . 

That is, the score function of  for the entire data set is simply the sum of the score functions of 
 for each stratum.  The variance of this score function is approximated by  

. ,
1

, , ,

, , ,
1

,

, ,

,

, ,

.	

Similar to the non-stratified case, the approximate, uncorrected, 1  confidence limits are 
given by 

. ,

. ,
	 , , , ∑ , , ,

,
⁄ 		 (10) 

The skewness corrected 1  confidence limits are  
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,

∑ , , , , , , , , , , , , ,

∑ , , ,
⁄

, ⁄ 1

6 ⁄   (11) 

Equation (10) is used for more than just the confidence limits however.  Due to the added 
complexity of the stratification, it is necessary to use (10) to obtain a point estimate for the 
relative risk ratio .  This is done by letting	 0. 

The point estimate and confidence interval for the relative risk, , can be used to find the point 
estimate, specifically 

1 . 

The confidence interval is given by 

1 ⁄ , 1 ⁄ . 

Solutions for the  functions described in this section require the use of an iterative numeric 
optimization method.  This is, in part, due to the fact estimates of  are needed for 	and	 , 
which are in turn needed to estimate	 . Gart and Nam suggest using the Secant method to 
perform this task, as such that is the method implemented in both R (package “PF”, version 9.5, 
2013-08-29) and the SAS macro used in this paper.  For more details on exact implementation 
and proofs of the relations for this method see (Gart and Nam, 1988). 

As a final note, it is important to note that in finding solutions to (8), (9), (10) and (11) there is an 
implicit assumption the functions have a unique solution, and thus are 1-to-1 (and invertible).  If 
such an assumption were not met, there would be multiple confidence limits, at most one of 
which would be able to have the correct coverage. 

2.2 Cochran-Mantel-Haenzel 
The second method discussed here is the Cochran-Mantel-Haenzel (CMH) method for finding 
common relative risks.  This method differs slightly from the Gart and Nam method discussed in 
the previous section, in that, this method requires the data to be stratified.  The assumptions for 
this method are the data have to be a 2 2  contingency table, i.e., the data are stratified 
2 2 contingency tables.  An example of the type of table required for CMH relative risk 
estimates is displayed in Table 1. 

The CMH method is similar to the Gart and Nam method for stratified data in that a sum of 
stratum level information is used.  Specifically, the estimate of the relative risk is 
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∑ .⁄
∑ .⁄

,	

the variance of which is estimated using the Greenland and Robins (1985) variance estimate of 
log  

ln
∑ . . ∙ / 	
∑ ./ / ∑ ./

	.

This makes the 1  confidence interval for the PF 

1 ∗ exp , 1 ∗ exp  

This method is implemented in SAS (using PROC FREQ, SAS ver. 9.4) and R (using package 
“epiR” ver. 0.9-62). For this paper, the SAS implementation is used. 

2.3 GLMM (Delta Method) 
The last method of estimating PF and the corresponding confidence intervals is a method based 
upon the use of the delta method with logistic regression.  Similarly to the previous two methods, 
this method estimates the relative risk, which can then be used to obtain estimates and 
confidence intervals for the PF.   

As mentioned, this method begins with a logistic regression model 

logit ; 0,1,  (12) 

or in the case of stratified data 

logit , ; 								 0,1; 	 1, … , ,  (13) 

~ 0, . 

Note here that the strata are being treated as a random block in this method.  Using either the 
models described by (12) or (13), SAS (using PROC GLIMMIX) or R (using “glmer”) can 
produce estimates for 	and	  as well as the covariance of these estimates	Σ.  These can be 
used in 

, log log log 1 log	 1 exp , 

the log relative risk ratio.  The variance of this is estimated using the delta method to be 

Σ . 

This means the confidence interval of the relative risk is 
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Strata h X (affected?) 

Trt 

Group 

0 (no) 1(yes) 

1 nh11 nh12 

0 nn21 nh22 

Table 1: Example of level h contingency table required for CMH relative risk estimates. 

Litter Group #affected total
74 0 4 4 
74 1 1 4 
116 0 4 4 
116 1 1 4 
635 0 2 4 
635 1 3 4 
796 0 4 4 
796 1 3 4 
801 0 3 4 
801 1 1 4 
872 0 4 4 
872 1 3 4 

Table 2: Table of example data used to illustrate each estimation method 

Method PF
Estimate

95%  
Lower Bound 

95% 
Upper Bound 

Score 0.455 0.122 0.655
Skew Corrected 0.455 0.254 0.662 

GLMM 0.429 0.121 0.629 
CMH 0.429 0.126 0.631

Table 3: Results from each method 
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exp , ∗√ , exp , ∗√ ,  (14) 

where ∗
/
∗  is the /2 critical value of the Normal distribution.  Notice expression (14) 

does not have any direct reliance on which model is being considered, stratified or non-stratified.  
This is due to the fact the difference between these two models are contained entirely within the 
covariance of the parameter estimates,	Σ. 

3 Example 
Table 2 displays data from a realistic example, which is used to illustrate these methods.  The 
example reflects a design with blocking on litter and randomizing of 4 animals/litter to each of 
two treatment groups.    The results from each of the methods above are presented in Table 3.  
The “Score” and “Skew Corrected” entries in the table refer to the Gart and Nam method.  The 
“Score” entry refers to the uncorrected confidence interval while the “Skew Corrected” entry 
refers to the skewness corrected confidence interval.  The PF values will always be the same for 
these two entries.  The estimates of the PF are consistent across methods, however the 
confidence intervals are not consistent across each method.  The upper 95% confidence limits 
display a similar level of consistency to that of the PF estimates, while the lower 95% confidence 
limits do not.  The skewness corrected confidence limit is over twice as large as the estimates of 
the lower limits for the other methods.  This could be explained by a difference in estimation 
methods, but Table 4 shows this is not the case.  Table 4 illustrates a difference in the 
implementation from R to SAS.  The R package “PF” that was initially used to fit this data 
rounds the root of (5) to 8 decimal places, while the SAS macro rounded the root to 16 decimal 
places.  When the root of (5) was rounded to 16 instead of 8, the results are more in line and 
consistent with the results from the other methods, and the uncorrected confidence limits from 
the same method.  The first line of thought was the	 	function for this data was very jagged 
and this was the reason for the discrepancy.  While this is true, the jaggedness of the	
	function was only part of the story.   

Figure 1 is a display of the 	function for these data.  The story the plots displayed in 
Figure 1 tell is troubling.  The plot on the left is the 	function when the root of (5) is 
rounded to 8 decimal places.  The plot on the right is the 	function when the root is 
rounded to 16.  Both plots are actually points, with no lines connecting them, with ~10-5 distance 
between points.  The plot on the right shows a very jagged function from ~.65, ~.78 , 
where the value of	 	actually jumps from the lower “line” to the upper “line” for small 
changes in .  The reason the functions using two different rounding options converge to a 
different value can be seen using the debugging options in both R and SAS.  That is, both 
functions start at the same place, but by the third step, the function that rounds (5) to 16 decimals 
has left the lower “line” and, in fact, has left the jagged area completely.  This seems to call into 
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Method PF 
Estimate

95%  
Lower Bound 

95%  
Upper Bound 

Rounding: 
 

Score 0.455 0.122 0.655
Skew Corrected 0.455 0.254 0.662 

Rounding: 
 

Skew Corrected 0.455 0.0990 0.662 

Table 4: Results for Score and Skew Corrected methods when the rounding was changed from 8 to 16. 

# of Strata (i)
Subjects/block/treatment k=4 k=6 k=8

2 - - 

3 -  

4   

Table 5: Strata and subjects/strata combinations used in the simulation study 

Figure 1: 	function for the lower confidence interval of   for the data in Table 2 
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question which rounding value should be used, 16 was chosen initially in SAS (16 digits is the 
default precision in SAS), the reasoning for rounding (5) to 8 is not clear. 

The rounding issue aside though, Figure 1 shows a more troubling aspect of the Gart and Nam 
method.  That is, the	 function is not always 1-to-1.  This is a serious concern, because as 
we noted above, if the 	function is not 1-to-1, and hence does not have a unique inverse, 
then it is possible to obtain confidence limits (and point estimates) which are not unique.  This 
leads to the question which limit would produce the correct coverage, and how would the user be 
able to determine said limit?  As a further example of this type of problem with the Gart and 
Nam method, see Figure 2.  This figure displays the function for a recent vaccine efficacy 
study.  Equation (5) was rounded to 8 decimals, and yet the function produce looks far 
worse than the two displayed in Figure 1.  There are 4 roots to this function, the algorithm 
returns the third root ( ~1.5 , where the GLMM and CMH method return a result close to the 
first root ~0.97 .   

4 Simulation Study 
The issues surrounding the Gart and Nam method apparent in realistic data examples motivated a 
more in depth investigation of each method presented so far.  The specific investigation 
presented here is a simulation study in data are simulated from a logit normal distribution of the 
nature 

, 	 	 0,1 ; 0,1; 1, … , ; 

logit , 	 ∗ , ; 

where  denotes the treatment group (0 control, 1 vaccine),  denotes the strata or block.  Values 
of the block to block variability, , used were (0, 0.25, 0.50).  The level of the control, , was 
held constant at logit(0.90).  The levels used for treatment group, ,  were logit(0.90), 
logit(0.60), and logit(0.30).The number of blocks used were 4, 6, and 8, and the subjects per 
block per treatment used were 2, 3, and 4.  However, a minimum number of subjects per study 
was set at 32, thus some combinations of number of strata/subjects per strata were not used.  The 
combinations used in the simulation study are displayed in Table 5.  There are a total of 54 
experimental designs proposed, and for each experimental design, 10,000 datasets were 
simulated.   

4.1 Selected Simulation Results 
The results for the experimental design that consisted of 8 blocks, 4 subjects/block/treatment, 
variances 0 and 0.5, and PF=2/3 ( 0.3) are displayed in Tables 6 and 7.  Table 6 displays 
the results for the convergence and accuracy of the methods, while Table 7 focuses on the 
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Figure 2: 	for the lower confidence interval of  for study data described in Section 3. 
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Convergence and  Accuracy (Bias) 

=0 =0.5 

Method Convergence 
Rate 

PF Estimate Convergence 
Rate 

PF Estimate 

Mean Median Mean Median 

CMH 1.000 0.665 0.667 1.000 0.651 0.655

GLMM 0.967 0.668 0.670 0.973 0.656 0.658
Gart and Nam 0.998 0.667 0.670 0.990 0.653 0.657

Table 6: Simulation results for accuracy and convergence for PF=2/3, # of blocks=8, #subjects/block/treatment=4 

=0 =0.5 

Method Coverage Power Coverage Power 
CMH 0.947 0.9997 0.917 0.9987
GLMM 0.958 0.9995 0.932 0.9978

Score 0.944 0.9940 0.918 0.9821
Skewness Corr 0.946 0.9970 0.921 0.9878 

Table 7: Simulation results for coverage and power for PF=2/3, # of blocks=8, #subjects/block/treatment=4 

Convergence and  Accuracy (Bias) 

=0 =0.5 

Method Convergence 
Rate 

PF Estimate Convergence 
Rate 

PF Estimate 

Mean Median Mean Median

CMH 1.000 0.664 0.667 1.000 0.648 0.667

GLMM 0.808 0.664 0.667 0.833 0.650 0.667

Gart and Nam 0.981 0.667 0.678 0.977 0.650 0.658
Table 8: Simulation results for accuracy and convergence for PF=2/3, # of blocks=8, #subjects/block/treatment=2 
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coverage and power of the methods.  It is important to note, for these tables and all tables that 
follow, the results are conditioned on the method converging.  If the method did not converge, 
the PF estimate and confidence interval was not included in the respective summaries.  It is also 
worth mentioning here the Gart and Nam method is not broken into “Score” and “Skew 
Corrected” for Table 6, as only the PF estimate and the convergence is being examined.  Because 
the skewness correction only effects the confidence interval, it is possible to simply for this table.  
Table 7, however, does make the distinction again as this table is displaying characteristics of the 
confidence interval. 

The models perform well and are consistent with each other in terms of accuracy for this 
scenario.  Each method produces PF values that are centered close to the true PF when the block 
variance is 0.  When the block variance increases to 0.5, the distribution of the estimated PF’s is 
biased down slightly.  The convergence rate for the models is not as well behaved.  The GLMM 
performs slightly worse than the other two methods, but this can be explained.  That is, the 
GLMM will fail to produce a result when all subjects in one treatment group are affected, or 
unaffected.  In the case where the PF=2/3, the probability of all subjects in one group being 
affected is approximately 0.034.  This corresponds to the convergence rate observed for the 
GLMM.  The few failures to converge of the Gart and Nam method here are related to the secant 
method failing to find a solution. 

The results displayed in Table 7 show the methods are performing well compared to each other, 
with the CMH and GLMM methods having slightly better power than the Gart and Nam method.  
The coverage is also close to 0.95 for each method when the block variance is 0, but decrease 
when the block variance is 0.5.  In the situation with 0.5, the GLMM outperforms the other 
2 methods. 

These results are, for the most part, mirrored when the number of subjects/block/treatment are 
reduced to 2.  These results are displayed in Tables 8 and 9.   The only notable deviations are the 
convergence rate of the GLMM, which still corresponds to the probability of all subjects in a 
treatment group being affected (~0.185) , and the coverage for all the methods are now very 
close, with the Gart and Nam method outperforming the other two slightly when 0.5. 

The results change dramatically when we consider these same experimental designs, but with a 
PF=0.  These results are displayed in Tables 10 and 11.  The convergence rate for the CMH and 
GLMM methods are now lower than in Table 6, but this can again be explained by the 
probability of all the subjects of either group being affected.  The situation in which all subjects 
are affected is the only situation in which the CMH fails to produce a result here.  The Gart and 
Nam method appears to be behaving poorly overall when PF=0, however.  The convergence is 
far lower than can be explained by a failure of the secant method to converge, and the bias in the 
distribution of estimated PF values is much larger than previously observed.  These concerns are 
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=0 =0.5 

Method Coverage Power Coverage Power 

CMH 0.955 0.960 0.938 0.938 

GLMM 0.954 0.916 0.938 0.870 

Score 0.957 0.860 0.948 0.831 

Skewness Corr 0.960 0.880 0.950 0.846 
Table 9: Simulation results for coverage and power for PF=2/3, # of blocks=8, #subjects/block/treatment=2 

Convergence and  Accuracy (Bias) 

=0 =0.5 

Method Convergence 
Rate 

PF Estimate Convergence 
Rate 

PF Estimate 

Mean Median Mean Median

CMH 0.999 -0.005 0 1.000 -0.004 0

GLMM 0.933 -0.004 0 0.973 -0.004 0
Gart and Nam 0.594 -0.669 0.000 0.593 -0.749 -0.016

Table 10: Simulation results for accuracy and convergence for PF=0, # of blocks=8, #subjects/block/treatment=4 

=0 =0.5 

Method Coverage Power Coverage Power 

CMH 0.955 0.045 0.950 0.050 

GLMM 0.989 0.011 0.982 0.018 
Score 0.444 0.556 0.454 0.546 

Skewness Corr 0.529 0.471 0.551 0.449 
Table 11: Simulation results for coverage and power for PF=0, # of blocks=8, #subjects/block/treatment=4 

188

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2016/proceedings/13



matched by Table 11 where coverage is not close to the value that is expected.  Further 
investigation of this issue exposes similar issues to the phenomenon observed in the previous 
section. 

Consider the data displayed in Table 12.  If the naïve estimate of the PF is used (∑  ,  / ∑  , ), 

the PF would be -0.156, nearly the same as the estimate of the PF for CMH and the GLMM 
shown in Table 13.  However, the result for the Gart and Nam method are not close to that value.  
The result shown in Table 13 is actually a “failure to converge” error.  The macro returned an 
error code indicating the method failed to converge and a solution could not be found, and the 
results of the last iteration were returned.  Figure 3 provides some insight on the reason for this 
result.  The plot displayed in Figure 3 is the -function for the data in Table 12, the 

horizontal line in this figure represents the point estimate of  (  0 .  It is very clear this 
function does not have a root at 0, and in fact, is monotone increasing for 1.4.  This case is 
far from unique, and in fact, represents many of the failures to converge when the true PF value 
was 0.  Such situations were still prevalent when the true PF was greater than 0 however.  The 
common thread between these errors seems to be if the observed PF is close to 0, the chances for 
the Gart and Nam to produce a -function of this kind increase.  It should be noted as well, 
the plot of  displayed in Figure 3 is also not invertible, and this, too, is common when these 

failures occur.  Errors such as those described above do help us understand how common 
situations similar to our example data occur, and unfortunately, they are common when the 
observed PF gets closer to 0 for these sample sizes. 

4.2 Overall Results 
Simulation results that aggregated over various variables are displayed in Tables 14, 15 and 16.  
Table 14 shows a breakdown of the results by PF value, Table 15 displays a breakdown of the 
results by  value, and Table 16 displays a breakdown of the results by number of strata and 
subjects per strata.  Each PF value and  value, have 180,000 simulated experiments, while 

each strata/subject breakdown has 90,000 simulated experiments.  The results for block-to-block 
variability seem promising, in that CMH and Gart and Nam seem to perform similarly in the 
presence of block to block variability as they do when there is no variability between blocks.  
The GLMM should be best suited to deal with these issues, and in terms of bias and MSE, the 
GLMM does perform the best, narrowly edging out CMH.  The coverage for the GLMM is 
conservative, on average, however.  The convergence rate, coverage and the MSE echo the 
concerns raised above with the Gart and Nam method. 

This concern is mirrored in Table 16.  The results for CMH and the GLMM correspond to the 
expected behavior of these methods when sample sizes are increased, that is, the bias and the 
MSE have a negative relationship with the sample size.  The coverage remains roughly the same 
for all methods, though as in Table 15.   
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Figure 3: - function used to estimate the PF for data displayed in Table 9 
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Strata Control ( ) Vaccine( ) n/group 

1 3 4 4

2 3 4 4

3 3 3 4

4 3 3 4
Table 12: Problematic data for the Gart and Nam method 

Method PF 95%
Lower Bound 

95% 
Upper Bound 

Score -1.59E14 -1.447 0.168
Skewness Corr -1.59E14 -227.790 0.162 

GLMM -0.167 -0.636 0.168
CMH -0.167 -0.636 0.168

Table 13: Results for the data displayed in Table 9 

True 
PF 

Method Convergence 
Rate 

Mean 
Estimated 

PF 

MSE Bias Coverage Power 

0 CMH 0.984 -0.010 0.013 -0.007 0.960 0.040
0 GLMM 0.791 -0.010 0.010 -0.005 0.994 0.006 
0 Score 0.499 -0.440 6.888 -0.440 0.443 0.557
0 Skewness Corr 0.501 -0.440 6.857 -0.438 0.531 0.469 

1/3 CMH 1.000 0.329 0.019 -0.004 0.940 0.595 
1/3 GLMM 0.886 0.321 0.019 -0.012 0.939 0.481 
1/3 Score 0.935 0.264 0.816 -0.069 0.943 0.684 
1/3 Skewness Corr 0.935 0.263 0.831 -0.070 0.946 0.628 
2/3 CMH 0.998 0.658 0.015 -0.009 0.943 0.976 
2/3 GLMM 0.884 0.661 0.015 -0.005 0.950 0.943 
2/3 Score 0.994 0.660 0.016 -0.006 0.943 0.945 
2/3 Skewness Corr 0.994 0.660 0.016 -0.006 0.944 0.951 

Table 14: Simulation Results broken down by PF used for simulation 
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Table 14 better explores the convergence rate, coverage and MSE concerns.  The convergence 
discussed here is the proportion of simulates in which the model produced usable results (that is, 
no errors were produced).  The CMH method did the best in terms of this measure, followed by 
the GLMM and then the Gart and Nam method.  The vast majority of the convergence failures in 
the GLMM can be explained by the argument above, however, there are some cases when PROC 
GLIMMIX does not converge but not all subjects in either treatment group were affected.  In 
these cases, PROC GLIMMIX options such as an alternative optimization procedure and/or 
evaluation over a grid of starting values may increase convergence rates, but was not pursued for 
this simulation.  In addition to the situation described above, the CMH method will fail to 
produce a result when the denominator (the control group in this case) is entirely unaffected (this 
does not happen here), or all subjects of the vaccine group are unaffected.  These three cases 
encompass the entirety of the failures to converge of the CMH method. 

Refer to Table 14, when the true PF used in the simulation was 2/3, the convergence results, all 
the results in fact, for each of the methods look similar, and there is not strong evidence to say 
one method is better than the others.  But there is cause for concern when the true PF is 1/3, in 
that the MSE for the Gart and Nam method is so much higher than the other two methods.  The 
concern is heightened when looking at the results for a true PF of 0.  In this case, the MSE is 
orders of magnitude larger than the other two methods, and the coverage is not close to 0.95.  
This is paired with the fact the method failed to converge half of the time.  These results, 
combined with the other results in this paper, clearly lay out concerning behavior in the Gart and 
Nam method.   

5 Discussion 
When considering all of the results presented in this paper from the simulation study, the CMH 
method seemed to be the most robust and the method with the fewest drawbacks.  This method 
had the best power when PF=2/3, and was on par with the Gart and Nam, which performed the 
best, when PF=1/3.  However, it is important to note that this was conditioned on the method 
converging.  If the trials where the Gart and Nam method are counted as failures for power, the 
CMH method would be much higher than the Gart and Nam method.  This is assisted by the fact 
that the CMH method was the most likely to produce usable results.  That is, the CMH method 
has the fewest situations that result in a PF not being estimated, or a confidence interval not 
being produced.   

The GLMM is slightly less attractive than the CMH method in part because the coverage under 
the null is generally too conservative.  The convergence rate for the GLMM was also not as high 
as the CMH method due to the decreased number of data combinations that result in an estimable 
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 Method Convergence 
Rate 

MSE Bias Coverage 

0 CMH 0.994 0.014 -0.004 0.954 
0 GLMM 0.846 0.014 -0.005 0.965 
0 Score 0.811 1.709 -0.109 0.846 
0 Skewness Corr 0.812 1.718 -0.109 0.863 

0.25 CMH 0.994 0.015 -0.006 0.950 
0.25 GLMM 0.852 0.015 -0.007 0.962 
0.25 Score 0.809 1.645 -0.115 0.843 
0.25 Skewness Corr 0.810 1.645 -0.115 0.861 
0.5 CMH 0.995 0.017 -0.009 0.939 
0.5 GLMM 0.863 0.017 -0.010 0.952 
0.5 Score 0.807 1.855 -0.135 0.833 
0.5 Skewness Corr 0.808 1.859 -0.135 0.854 
Table 15: Simulation Results broken down by block to block variability used for simulation 

# 
Strata 

Subjects 
per group per 

Strata 

MethodMethod Conver
Rate 

MSEMSE Bi Coverage

4 4 CMH 0.988 --0.00  0.020 0.9508   
4 4 GLMM 0.769 --0.01  0.020 0.9562
4 4 Score 0.781 1.603 -0.090 0.867 
4 4 Skewness Corr  0.781 1.603 --0.09 0.8910
6 3 CMH 0.992 --0.00  0.018 0.9497
6 3 GLMM 0.816 --0.00  0.018 0.9609
6 3 Score 0.780 1.678 --0.11 0.8518
6 3 Skewness Corr  0.780 1.678 --0.11 0.8738
6 4 CMH 0.998 --0.00  0.013 0.9455
6 4 GLMM 0.901 --0.00  0.013 0.9606
6 4 Score 0.829 1.716 --0.14 0.8414
6 4 Skewness Corr  0.829 --0.14  1.716 0.8714
8 2 CMH 0.988 0.019 --0.00 0.9518
8 2 GLMM 0.777 --0.01  0.019 0.9601
8 2 Score 0.764 1.288 --0.05 0.8400
8 2 Skewness Corr  0.770 1.320 --0.05 0.8363
8 3 CMH 0.998 0.013 --0.00 0.9466
8 3 GLMM 0.901 0.013 --0.00 0.9636
8 3 Score 0.841 --0.12  1.783 0.8236
8 3 Skewness Corr  0.841 --0.12  1.783 0.8406
8 4 CMH 1.000 0.010 --0.00 0.9445
8 4 GLMM 0.959 --0.00  0.010 0.9604
8 4 Score 0.860 2.282 --0.17 0.8249
8 4 Skewness Corr  0.860 --0.17  2.282 0.8479

Table 16: Simulation results broken down by number of Strata and number of subjects per strata. 
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PF.  Another consideration is that the GLMM model produces subject specific estimates, which 
requires one to consider carefully the interpretation of the resulting estimate.  Here we are using 
the relative risk estimate for the average stratum, which is not equal to the average relative risk 
due to the non-linearity of the model and the variability associated with subject-level information 
and estimator.  From Table 15, one can see the bias observed in these simulations is limited, and 
relatively similar to the CMH method.  An additional simulation considering even larger block 
variance (  1,  0.3, PF = 2/3, 8 blocks and 4 subjects per treatment per block), resulted 

in a mean MF estimate of 0.640, which suggests the bias is still limited for relatively large 
variances. While this is only one small example, it provides additional confidence in the general 
use of the relative risk of the average stratum.  However, we do need to be cognizant of what 
exactly we are measuring when using this method.   

For the simulations parameters considered here (Table 14 specifically), the Gart and Nam method 
performed relatively well when the PF was 1/3 and 2/3.  One cannot, however, ignore the 
method’s inability to approximately hold the nominal type 1 error rate when the PF =  0 
(coverage in Table 14). The interpretation of statistical methods, which cannot hold nominal type 
1 error rates, is difficult, at best. Here, with 44.3% (Score) and 53.1 % (Skewness Corr) 
coverage, these methods result in a type error rate ~10 times the nominal of 5%, which would be 
considered unacceptable in most situations.   As mentioned above, the power of this method was 
actually the highest when PF=1/3, but the bias and the MSE were the worst universally.  This is 
due, in part, to the fact that the -function can fail for any value of the true PF, it is simply 

more likely to occur when the true PF value is small.  This also leads to the situation where the 
Gart and Nam had the highest chance to not produce a result.  There is also the issue of the fact 
the -function is not invertible in general.  This can, and will, lead to situations where the 

method would not be able to produce a unique confidence limit and/or point estimate for the PF.   

The CMH and GLMM seem to be the easiest methods to use, as the implementation of each is 
largely built into SAS/R.  The CMH method is an option implemented in PROC FREQ and in 
the epiR package.  The difficult part of the GLMM (the Generalized Linear Mixed Model) is 
implemented in SAS using PROC GLIMMIX and in R using glmer.  The construction of the 
confidence interval is a straightforward application of the delta method, which can be readily 
programmed in SAS or R.  For the Gart and Nam method, user options include programming the 
method in SAS, or through the PF package in R. 

In conclusion, the Gart and Nam method has many challenges and issues concerning its 
operating characteristics.  The issues described in this paper have lead us to conclude that either 
the GLMM or CMH methods would be more appropriate to analyze data for which the PF and a 
confidence interval need to be estimated. 
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