Kansas Agricultural Experiment Station Research Reports

Volume 0 Issue 10 *Swine Day (1968-2014)*

Article 750

1998

Determining feed budgets for farm-specific nutritional programs (1998)

Michael D. Tokach

Robert D. Goodband

Jim L. Nelssen

See next page for additional authors

Follow this and additional works at: https://newprairiepress.org/kaesrr

Part of the Other Animal Sciences Commons

Recommended Citation

Tokach, Michael D.; Goodband, Robert D.; Nelssen, Jim L.; and Dritz, Steven S. (1998) "Determining feed budgets for farm-specific nutritional programs (1998)," *Kansas Agricultural Experiment Station Research Reports*: Vol. 0: Iss. 10. https://doi.org/10.4148/2378-5977.6590

This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright 1998 the Author(s). Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer.

Determining feed budgets for farm-specific nutritional programs (1998)

Authors

Michael D. Tokach, Robert D. Goodband, Jim L. Nelssen, and Steven S. Dritz

DETERMINING FEED BUDGETS FOR FARM-SPECIFIC NUTRITIONAL PROGRAMS

M. D. Tokach¹, S. S. Dritz², R. D. Goodband, and J. L. Nelssen

Summary

Use of feed budgets simplifies feed delivery and improves the accuracy of delivering diets to the correct pig weight ranges during the nursery and finishing periods. Little information has been available for determining farm-specific feed budgets in the past. In this paper, we will outline simple methods to customize a feed budget for individual farms using feed efficiency from past closeout records.

Procedures

Several steps must be considered when developing farm-specific feed budgets. The first step is determining whether the budget must be changed with season. If feed efficiency is seasonal, the amount of feed to be fed during each particular phase of the growing period must be changed. The data in Figure 1 indicate the seasonality of average daily gain and average daily feed intake. These data were derived from a study at the University of Minnesota. The data include 528 batches of pigs with approximately 10 closeouts for each week of the year. These data were converted into a ratio relative to the mean to determine an adjustment factor for gain, feed intake, and feed efficiency (Figure 2). Feed intake varies 5% above and below the mean. The variation for gain is also about 5%; however, the seasonal patterns for gain and intake are quite similar. Thus, the seasonal adjustment for feed efficiency is relatively small (1 to 2%) and of little importance in assigning feed budgets.

Because the seasonal impact on feed efficiency is small, the same feed budget can be used throughout the year. To establish the feed budget, we must know the amount of feed used to reach each weight break and determine the quantity to feed during each stage by difference in the end points. Using the results of several trials, we have developed a standard feed usage curve to use in the finishing period. This curve can be expressed with the following equation:

Total feed used = $0.00463 \times \text{weight}^2 + 1.68 \times \text{weight} - 22.05.$

This curve has a base feed efficiency of 3.069 from 50 to 250 lb. This curve can be scaled up or down to the level of feed efficiency measured in a particular production system. In order to adjust the curve to a particular system, the feed efficiency from 50 to 250 lb must be determined. Because past closeouts rarely begin and end at exactly 50 and 250 lb, respectively, the following equation can be used to determine the adjusted feed efficiency:

Adjusted feed efficiency = Actual F/G -((Initial wt-50)×0.006)+ ((250-final wt)×0.006).

The total feed used by each weight is divided by 3.09 and multiplied by the adjusted feed efficiency to determine the amount of feed used for the adjusted feed efficiency. To simplify these calculations, we provide Table 1 with total feed used calculated for several adjusted feed efficiencies.

¹Northeast Area Extension Office, Manhattan, KS.

²Food Animal Health and Management Center.

These numbers can be used to determine individual feed budgets for any weight breaks. An example is provided in Table 2. We also have developed a spreadsheet to easily calculate the budget and help with feed deliveries. The spreadsheet is in Microsoft Excel format and can be obtained from Mike Tokach at 785-532-2032.

Two problems can occur with this approach. First, we assume that all farms have similar shapes for feed efficiency curves. Although this assumption is too simplistic, the error that it causes does not prevent us from developing relatively accurate feed budgets. The second problem is that this approach does not consider wide variations in energy content or change in diet form from one phase to the next; for example, if pelleted diets or high energy diets are used in one phase and not in another. The relative feed efficiency during the phase with the pelleted or high energy diets would be lower than calculated. Conversely, the feed efficiency will be higher than calculated in the other stages. If the various growing-finishing stages do not have similar energy levels, the feed budget may need to be adjusted accordingly.

How to improve on the feed budget? We recommend using these methods to determine an initial feed budget. Then you can test weigh pigs when diets are changed to determine if they have reached or exceeded the target finishing weight for each stage and adjust the budget accordingly.

	Adjusted Feed Efficiency ^a						
Pig Weight, lb	2.4	2.6	2.8	3.0	3.2	3.4	
50	0	0	0	0	0	0	
60	17	19	20	21	23	24	
70	35	38	41	44	47	50	
80	54	58	62	67	71	76	
90	73	79	85	91	97	103	
100	93	101	108	116	124	132	
110	114	123	133	142	151	161	
120	135	146	158	169	180	191	
130	157	170	183	197	210	223	
140	180	195	210	225	240	255	
150	204	221	238	255	272	289	
160	228	247	266	285	304	323	
170	253	274	295	317	338	359	
180	279	302	326	349	372	395	
190	306	331	357	382	407	433	
200	333	361	388	416	444	472	
210	361	391	421	451	481	511	
220	390	422	454	487	519	552	
230	419	454	489	524	559	594	
240	449	487	524	561	599	636	
250	480	520	560	600	640	680	
260	512	554	597	640	682	725	
270	544	589	635	680	725	771	
280	577	625	673	721	769	817	
290	611	662	713	763	814	865	
300	645	699	753	807	860	914	

 Table 1.
 Cumulative Feed Usage (lb/pig) during the Finishing Period

^aAdjusted feed efficiency is adjusted to the period from 50 to 250 lb using the following equation: Adjusted $F/G = Actual F/G - ((Initial wt-50) \times 0.006) + ((250-final wt) \times 0.006).$

 Table 2.
 Example Feed Budgets (lb/pig) Based on Adjusted Feed Efficiency

Pig Weight, lb	Adjusted Feed Efficiency ^a							
	2.4	2.6	2.8	3.0	3.2	3.4		
50 to 80	54	58	62	67	71	76		
80 to 120	81	88	96	102	109	115		
120 to 160	93	101	108	116	124	132		
160 to 200	105	114	122	131	140	149		
200 to 250	147	159	172	184	196	208		

^aAdjusted feed efficiency is adjusted to the period from 50 to 250 lb using the following equation: Adjusted $F/G = Actual F/G - ((Initial wt-50) \times 0.006) + ((250-final wt) \times 0.006).$

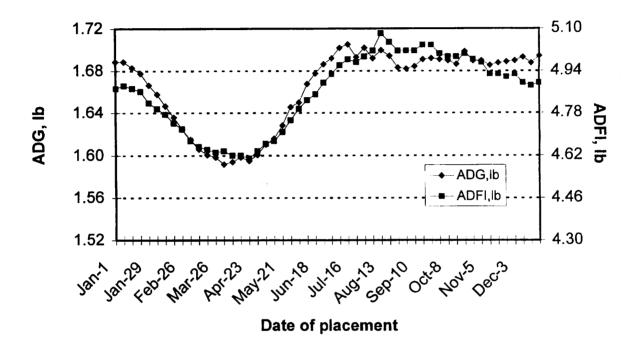


Figure 1. Influence of Season on Average Daily Gain and Feed Intake

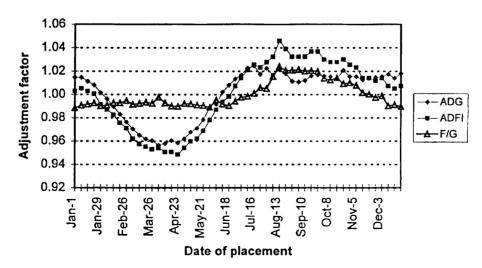


Figure 2. Adjustment Factors for the Influence of Season on Growing-Finishing Performance