•  
  •  
 

Abstract

Doping of zinc with silver, palladium, and gold was found to increase reactivity towards carbon tetrachloride in water. Commercial zinc dust, cryochemically prepared zinc metal particles (SMAD nanoparticles), and zinc dust pressed into pellets (mechanically activated zinc) were employed. Reduction products detected were methane, ethylene, acetylene, and other hydrocarbons along with products of partial dechlorination such as chloroform, methylene chloride, and methyl chloride. Dichloroethylenes (DCEs) and long-term reactions traces of trichloroethylene (TCE) were also detected. The use of zinc dust doped with palladium, gold, and silver resulted in 4-10 fold increases in carbon tetrachloride degradation rate and conversion into methane. Up to 30% of carbon tetrachloride was converted into methane by the Zn dust / 2 mol % Ag bimetallic system after the first six hours of reaction. Doping of activated forms of zinc, both cryoparticle and pellets, caused a further increase in methane formation and decrease in the concentration of methylene chloride. The data show that bimetallic enhancement with Pd, Ag, Au, as well as cryo and mechanical activation of zinc, enhances the metal surface reactivity and changes the priority of reaction pathways such that fully reduced products are favored. The “non-catalytic” gold metal was especially effective and this suggests that electron transfer, not catalytic hydrogenation, is rate determining.

10.4148/1090-7025.1006

Share

COinS
 

Rights Statement

Rights Statement

In Copyright. URI: http://rightsstatements.org/vocab/InC/1.0/
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s).