Presentation Type

Contributed

Start Date

19-12-2018 9:00 AM

Keywords

IPHWR, Boiler Feed Pump (BFP), Steam Generator (SG)

Abstract

700 MWe Indian Pressurized Heavy Water Reactor (IPHWR) is a horizontal channel type reactor with two loops of Primary Heat Transport (PHTS) system. Three (two operating and one stand by) main boiler feed water pumps (BFP) supply feed water to Steam Generators (SGs). In the event of one of the running BFP trip, standby comes on line on auto. Transient analysis for this event is performed using in- house computer code ATMIKA.T .The transient has been initiated by tripping one of the pumps.

Two cases are postulated:

1: BFP Trip and Standby BFP available on auto
2: BFP Trip and Standby pump not available.

This paper provides timelines of following sequence of events which is important for operator’s action to maneuver the event, and the main findings of the study are:

Following the tripping of one BFP, feed flow reduces and SGs level start falling. As SGs level fall, feed control valves open up in level control mode and system resistance in feed water circuit reduces. If the standby pump comes on auto, the SGs level recovers with a slight dip in level. The feed flow increases and settles down to normal value. Subsequently all the parameters converge to steady state value. Reactor continues to operate at 100% FP.

In the event of main BFP trip without the availability of standby BFP, feed flow rate drops. SGs pressure rise slightly due to reduction in sub cooled feed flow and SGs level start to decrease. Reactor setback starts as SG level goes below set back limit. SG level continues to fall and reactor trips on SG Level very very low trip setting.

Share

Import Event to Google Calendar

COinS
 
Dec 19th, 9:00 AM

Transient Analysis of Primary Feed Pump Trip for 700 MWe IPHWR

700 MWe Indian Pressurized Heavy Water Reactor (IPHWR) is a horizontal channel type reactor with two loops of Primary Heat Transport (PHTS) system. Three (two operating and one stand by) main boiler feed water pumps (BFP) supply feed water to Steam Generators (SGs). In the event of one of the running BFP trip, standby comes on line on auto. Transient analysis for this event is performed using in- house computer code ATMIKA.T .The transient has been initiated by tripping one of the pumps.

Two cases are postulated:

1: BFP Trip and Standby BFP available on auto
2: BFP Trip and Standby pump not available.

This paper provides timelines of following sequence of events which is important for operator’s action to maneuver the event, and the main findings of the study are:

Following the tripping of one BFP, feed flow reduces and SGs level start falling. As SGs level fall, feed control valves open up in level control mode and system resistance in feed water circuit reduces. If the standby pump comes on auto, the SGs level recovers with a slight dip in level. The feed flow increases and settles down to normal value. Subsequently all the parameters converge to steady state value. Reactor continues to operate at 100% FP.

In the event of main BFP trip without the availability of standby BFP, feed flow rate drops. SGs pressure rise slightly due to reduction in sub cooled feed flow and SGs level start to decrease. Reactor setback starts as SG level goes below set back limit. SG level continues to fall and reactor trips on SG Level very very low trip setting.