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ON THE SMALL SAMPLE BEHAVIOR OF GENERALIZED LINEAR MIXED MODELS 
WITH COMPLEX EXPERIMENTS 

Julie Couton, Department of Statistics, University of Nebraska- Lincoln 
Walt Stroup, Department of Statistics, University of Nebraska- Lincoln 

ABSTRACT 

Generalized linear mixed models (GLMMs), regardless of the software used to implement them 
(R, SAS, etc.), can be formulated as conditional or marginal models and can be computed using 
pseudo-likelihood, penalized quasi-likelihood, or integral approximation methods.  While 
information exists about the small sample behavior of GLMMs for some cases- notably RCBDs 
with Binomial or count data- little is known about GLMMs for continuous proportions (e.g. Beta) 
or time-to-event (e.g. Gamma) data or for more complex designs such as the split-plot.  In this 
presentation we review the major model formulation and estimation options and compare their 
small sample performance for cases listed above. 

INTRODUCTION  

Agricultural experiments commonly use blocked designs or designs with split plot features. 
Analysis of variance (ANOVA), which assumes normality, is the standard tool for analyzing these 
experiments.  Frequently, response variables of interest are not normally distributed. 
Historically when confronted with non-normal data, statisticians either relied on the Central 
Limit Theorem as justification to assume ANOVA’s robustness or when ANOVA assumptions 
were clearly violated, transformations became a potential option.  As computational power 
improved and theory advanced, generalized linear models and generalized linear mixed models 
(GLMM) became practical alternatives.  Statisticians now face a dilemma.  Which method is 
appropriate and what are the costs of choosing an inappropriate one?  Specifically, how do 
these methods compare with sample sizes typical of agricultural research? 

This paper aims to shed light on the small sample behavior of untransformed and transformed 
ANOVA and applicable versions of the GLMM for analysis of complex experiments with non-
normal data.  Research, including Stroup (2013b), has examined the small sample behavior of 
analyses with Binomial, Poisson, and negative Binomial data.  This paper extends Stroup (2013b) 
to include response variables assumed to have Gamma and Beta distributions, discussed in 
context of a randomized complete block and split-plot experiments.   

The four resulting scenarios will be discussed including the process of simulation, methods of 
analysis and results.  Several models are considered for data analysis including untransformed 
ANOVA, transformed ANOVA, and various forms of GLMM.  The models will be compared using 
Type I error rate, power, average mean, average confidence interval bounds and coverage 
probability.  Discussion will focus on performance relative to current GLMM conventional 
wisdom and on any apparent advantages or disadvantages. 

As with Stroup (2013b), the intention of this paper is to demonstrate a method for performing 
realistic comparisons.  Only a limited number of scenarios were considered for this research; 
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this paper is not meant to be exhaustive.  Readers are encouraged to extend these methods to 
other scenarios involving the distributions considered here, where applicable to their research. 

SCENARIOS CONSIDERED 

We considered two different response variable distributions, the Gamma and Beta, and two 
designs, a randomized complete block design (RCBD) and split-plot, resulting in four total 
scenarios.  Each distribution will be discussed with relevant background information, data 
generation, models considered for analysis, and methods of comparison. 

Gamma Distribution 

1. Relevant Background

The Gamma distribution is a right skewed, non-negative function; the probability density 
function (PDF) can take on a variety of forms depending on the shape and scale parameters.  
The PDF can be written in two ways: the first is the form typically shown in mathematical 
statistics textbooks, e.g. Casella and Berger (2002), and the second is a GLM-friendly form 
following McCullagh and Nelder (1989). 

         
 

           
 

 
                                                                      

         
 

  
 
 
  

 
 

  
 
 

  
 

 
 
                                                                        

Note:        and       One common application of the Gamma distribution is to model 

time to event data.  In addition, the chi-square distribution is a special case of the Gamma 

distribution.  Because estimates of the variance use quadratic forms with approximate or exact 

chi-square distributions, the Gamma distribution is a common choice for modeling when 

variance is the response of primary interest.   

2. Randomized Complete Block Design

The first scenario involves a randomized complete block design (RCBD) with 8 blocks and 2 
treatments.  Stroup (2013b) presents an approach to data generation in which the researcher 
specifies the sources of variation that affect the response mean and whether the sources affect 
the mean on the data scale or link scale.  Stroup considered both data scale and link scale 
generation with count data.  In this study, only data generation on the link scale was considered. 
Following the notation of Stroup we have  

                    ;                                             
      

Note:  Since the Gamma is a two parameter distribution, having a unit level effect term (    ) is 

not appropriate.  Notice that (3) implies that     is perturbed by block and treatment on the link 

scale. 
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a. Data Generation and Simulation

Two cases were considered:  one with equal and another with unequal treatment means.  Figure 
1 shows the associated PDFs of       .  One thousand experiments were generated using the 

following process: 

 Step 1:  8 block effects          are generated from a       
   distribution with 

  
     . 

 Step 2:  Block-perturbed unit level     were computed for each experimental unit.  In 

the equal treatment case,          and for the unequal            
selected based on the example of flowering time given in Stroup (2013a).  Then
              as follows from equation (3). 

 Step 3:  Means were computed as         

 Step 4:  Rather than the equation (2) method of parameterization considered in this
scenario, the SAS® rangam function uses traditional    notation as in equation (1). 
Recall in equation (2) that            and    .    (or  )      and           . 

 Step 5:  Then observable values     were computed using the rangam function in SAS® 

                  . 

b. Analysis Models

Several analysis models could be used for a randomized complete block design with Gamma 
data.  Four common options include: 

 Option 1:  Untransformed ANOVA.  In this model, we assume that the sample mean has
an approximate normal distribution and fit the model:                 where

         
                

   

 Option 2:  Transformed ANOVA.

o The log transformation,                     where          
   

           
   

o The square root transformation,

                 where           
              

   

 Option 3:  Basic GLMM.                                             

where         
  

Many methods of estimation exist for this model.  In this paper, we considered 
restricted subject specific pseudo-likelihood (RSPL) and two forms of integral 
approximation, quadrature and Laplace. 

 Option 4:  Compound symmetry model alternatively known as generalized estimating

equation (GEE) or R-side model.  
  

   
                

  

   
    

  
  

  

l                    where   denotes the Gamma quasi-likelihood scale
parameter and   denotes the working compound symmetry correlation coefficient.
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As mentioned in Stroup (2013b), the basic GLMM (Option 3) targets the expected value of the 
conditional distribution of        i.e.    , whereas the untransformed ANOVA and GEE (Options 1 

and 4 respectively) target the expected value of the marginal distribution of    .  Also note that 

the target of estimation with the transformed ANOVA (Option 2) considered here is neither    

or the marginal mean.  A more in depth discussion of the aforementioned statements can be 
found in Stroup (2013b).   

3. Split Plot Design

The second scenario involves a split plot experiment with 12 blocks where   (the whole plot 
factor) and   (the subplot factor) both have two levels.  Thus we have 4 treatment 
combinations:                          For data generation purposes, following Milliken and 
Johnson (2009) we can view data generation as a 4-treatment incomplete block design:      
 Treatment 1,       Treatment 2,       Treatment 3, and       Treatment 4.  In 6 blocks, 
Treatments 1 and 2 appear together and in the other 6 blocks, Treatments 3 and 4 appear 
together.  At this point, we can use the same generation model presented in equation (3) and 
simulate 1000 experiments following this process: 

 Step 1:  12 block effects            are generated from a       
   distribution with 

  
     . 

 Step 2:  Block-perturbed unit level     were computed for each experimental unit.

Means were set to be 25 for treatments 1 and 4 and 35 for treatments 2 and 3, chosen
so that the average over factor A is the same (30) and the average over factor B is the
same (30).  This allows us to measure the Type I error rate for the main effects of A and
B and power for the test of interaction.  Then                as follows from

equation (3).

 Step 3:  Means were computed as         . 

 Step 4:  The scale parameter was set to       thus           . 

 Step 5:     were computed using the rangam function in SAS;                   . 

Analysis methods considered for the RCBD scenario were adapted for the split-plot. 

Beta Distribution 

1. Relevant background

The Beta distribution, commonly used for continuous proportions (values bounded between 0 
and 1), has a PDF that can take on a variety of shapes depending on the values of the shape and 
scale parameters.  The function can take on two parameterizations: one as in Casella and Berger 
(2002), and the second a form presented by Ferrari and Cribari-Neto (2004).   
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Note:                          and          The Beta distribution can also 

be obtained from a ratio Gamma random variables 
      

             
 resulting in a Beta(   ).  For 

consistency, the form presented in Cribari-Neto (2004) will be used for the duration of paper. 
 

2. Randomized Complete Block Design 
 

The third scenario is a randomized complete block design with 8 blocks and 2 treatments.  
Following the notation of Stroup (2013b) we have the following data generation model: 
 

                   ;                                                  
                

 
The Beta distribution is also a two parameter family, and thus having a unit level effect        is 

not appropriate.  Notice that the proportions are perturbed by the block and treatment effects 
on the link scale as in generation model (3).   
 

a. Data Generation and Simulation 

 

Two cases were considered:  one with equal and another with unequal treatment means.  Figure 

2 shows the associated PDFs; the combined distributions form a bathtub shape, a common 

occurrence with Beta data.  One thousand experiments were generated using the following 

process: 

 

 Step 1:  8 block effects            are generated from a       
   distribution with 

  
      . 

 Step 2:  Block-perturbed unit level     were computed for each experimental unit.  In 

the equal treatment case,            and for the unequal                 Then 

                 as follows from (6). 

 Step 3:  Proportions were computed as     
 

   
    

 . 

 Step 4:  For the equal treatment case            hence       
    

      
       

For the unequal treatment case,              which implies        and 

             which implies          Note that this ensure        in all cases 

satisfying a key GLIMMIX restriction that the scale parameter be constant over 

treatments. For data generation,   was set to the values shown above, where as   

reflected the block effects on     that is     
   

     
 which implies     

   

       
 . 

 Step 5:      were computed using the SAS rangam function  

                                        . 
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b. Analysis Models  

 

Several analysis models could be used for a randomized complete block design with Beta data.  

Four common options include: 

 Option 1:  Untransformed ANOVA; in this model, we assume the sample proportion has 

an approximate normal distribution.                 where 

          
                

   

 Option 2:  Transformed ANOVA.        
                 where            

   

           
   

 Option 3:  Basic GLMM.                                                 where 

         
   

This paper considers restricted subject specific pseudo-likelihood (RSPL) and two 

forms of integral approximation, quadrature and Laplace for estimation methods. 

 Option 4:  Generalized estimating equation (GEE).  

 
   

   
               

   

   
    

  
  

           l                      where   

denotes the Gamma quasi-likelihood scale parameter and   denotes the working 

compound symmetry correlation coefficient. 

The target of estimation for each option here is synonymous with those mentioned in the 

Gamma section of this paper. 

3. Split Plot Design 

 
The fourth scenario involves a split plot experiment with 12 blocks where   (the whole plot 
factor) and   (the subplot factor) both have two levels.  The four treatment combinations will 
be considered as a 4 treatment incomplete block design, as mentioned above.  The same 
generation model presented in equation (6) and 1000 experiments will be simulated:  

 Step 1:  12 block effects             are generated from a       
   distribution with 

  
      . 

 

 Step 2:  Block-perturbed unit level     were computed for each experimental unit.  

Proportions were set to be 0.2 for treatments 1 and 4 and 0.8 for treatments 2 and 3. 
Then                  as follows from (6). 

 

 Step 3:  Proportions were computed as     
 

   
    

 . 

 

 Step 4: For treatments 1 and 4,              which implies           for 

treatments 2 and 3              which implies             This ensures 
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       in all cases satisfying a key GLIMMIX restriction that the scale parameter be 

constant over treatments. For data generation,   was set to the values shown above, 

where as   reflected the block effects on     that is     
   

     
 which implies 

    
   

     
 . 

 

 Step 5:      were computed using the SAS rangam function  

                                    . 

Analysis methods considered for the RCBD scenario were adapted for the split-plot.   
 

RESULTS AND DISCUSSION 

Stroup (2013b) listed several items widely assumed to be true about ANOVA with non-normal 
data and about GLMMs.  Stroup referred to these as articles of conventional wisdom, and they 
are often based on limited information or special cases.  Relevant to this paper, little 
information exists about Gamma or Beta response variables.  Following Stroup, simulation 
results here are discussed in the context of information they provide to support or contradict 
conventional wisdom. 

The expected Type I error rate in the equal treatment case is 0.05 if   = 0.05.  Using standard 
margin of error methods, with 1000 simulated experiments we would expect to see rejection 
rates between 0.03 and 0.07; if rejection rates falls into this range, Type I error rate is 
considered to be adequately controlled for the associated method.  Among the methods that 
adequately controlled Type I error, power loss is calculated by comparing the power of a given 
analysis method to the analysis method with the highest power; this loss in efficiency is 
reported as a percentage.  Nominal confidence interval coverage is considered to be between 
0.93 and 0.97 again using standard margin of error methods with 1000 simulated experiments.  
Reported lower confidence interval limits are the average of the lower limits found in the 1000 
simulated experiments; similarly for the reported means and upper limits. For cases considering 
equal treatments, reported coverage probabilities are the average of the resulting coverage 
probabilities for the two treatments; due to the similarity in results, reporting both values is 
extraneous.  For the split-plot (SP) experiments 2 of 4 treatments were set to the same value 
(e.g. treatments 1 and 4 were set to the same value and treatments 2 and 3 were set to the 
same value).  One coverage probability is reported for treatments 1 and 4, and is calculated by 
averaging the coverage probabilities for each of the respective treatments individually; similarly 
for treatments 2 and 3.  All of the following conventional wisdoms reference Figures 3-22. 

 Conventional Wisdom Item 1 (CW1):  Standard ANOVA should provide sufficient Type I 
error control and confidence interval coverage in the equal treatment.  If there are 
problems, they will arise in the unequal treatment case. 

Standard ANOVA for the Gamma RCBD scenario showed acceptable Type I error and a slight 
power loss (4.8%).  Confidence interval coverage was nominal in the equal treatment case, 
however with unequal treatments coverage probability fell outside of the nominal range (0.985) 
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for treatment 1; also confidence intervals are clearly targeting the marginal mean.  With the 
Gamma SP, all coverage probabilities fell outside of the nominal range (0.978 for treatments 1 
and 4, 0.911 for treatments 2 and 3), also intervals are targeting the marginal mean.  For the 
RCBD Beta Type I error is acceptable and showed minimal power loss (1.5%).  All coverage 
probabilities fell within the nominal range, however with the equal treatment case the lower 
confidence bound was -0.016.  With the unequal treatment case, the lower limit for treatment 1 
fell below 0 (-0.014) and the upper limit for treatment 2 rose above 1 (1.019).  For the Beta SP, 
Type I error falls in the acceptable range and only slight power losses occur for determining 
simple effects (2-3%).  Coverage probabilities fall in the nominal range, but confidence interval 
bounds fall below zero and above one as in the RCBD scenario.  In summary, the principal 
concern with the equal treatment case was interval estimates outside of the plausible range; the 
majority of issues arise with the unequal treatment case. 

 CW2:  Transformations should help to stabilize the variance issues that arise with standard 
ANOVA in the unequal treatment case. 

For RCBD Gamma, both transformations (log and square root) have Type I errors within the 
acceptable range.   Both the log and square root show power losses of 7.1% and 3.3% 
respectively.  Coverage probability for the log fall within the nominal range, but treatment 1 for 
the square root has a coverage probability that falls outside of the nominal range (0.976).  
Preliminary study of the transformations for the SP Gamma shows that the power losses and 
coverage probability issues that surface in the RCBD were amplified, and thus results will not be 
discussed. For the RCBD Beta the arcsine square root transformation shows acceptable Type I 
error and a slight power advantage.  However coverage probability in the equal treatment case 
falls outside of the nominal range (0.904); in the unequal treatment case coverage probability 
falls outside of the nominal range for both treatments (0.911, 0.911).  Due to the 
aforementioned issues with the arcsine square root transformation in the RCBD Beta scenario, 
this transformation was not considered for analysis in the SP Beta scenario.  All interval 
estimates with the Beta distribution in both scenarios fall within the range of the data (0,1).   

 CW3:  GEEs are robust to model misspecification. 

With the RCBD Gamma, the GEE has acceptable Type I error rate and had the largest power of 
all estimation methods considered.  Coverage probabilities for both the equal and unequal 
treatment cases fall in the nominal range.  It is evident that the GEE is estimating the marginal 
means.  Figure 1 shows the PDFs of the treatments considered for the RCBD Gamma case.  
Because the GEE is targeting the marginal means, a power advantage is expected due to the fact 
that the marginal means are spread apart more than the conditional means.  The GEE has 
acceptable Type I Error with the SP Gamma; it shows a slight power loss with determining the 
simple effects of factor A (4.2%).  With the RCBD Beta, the GEE has acceptable Type I error but 
shows a power loss (11.0%).  Coverage probabilities fall out of the nominal range in the equal 
treatment case (0.978) and unequal case (0.979, 0.982).  A power loss is expected; the GEE is 
estimating the marginal means, which in this case are closer together than the conditional 
means (Figure 2).  The SP Beta reveals that the Type I error rate for the main effect of factor A 
fall outside of the acceptable range (0.0202) which may explain the power loss present for the 
simple effects of A (15.8%) and for the simple effects of B (18.3%). 
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 CW4:  Pseudo-likelihood has accuracy issues with certain GLMMs and quadrature should 
help address this. 

For the Gamma distribution scenarios, all Type I error rates fall in the acceptable range and 
coverage probabilities are nominal.  Only slight power losses occur (4.2% in RCBD and 4.9% in SP 
for simple effect of factor A).  RSPL appears to have variance component estimation issues with 
the Beta distribution.  For RCBD Beta, RSPL has an inflated Type I error rate (0.1024) and thus 
was discounted from other analyses including power and confidence interval coverage.  For SP 
Beta, RSPL had similar issues with Type I error with both the main effect of factor A (0.0157) and 
main effect of factor B (0.0741) following outside of the acceptable range.   

 CW5:  Quadrature is preferable to Laplace. 

In almost all instances, quadrature and Laplace had the same results; any estimates that differed 
were within 0.001 of each other.  Due to this equivalence, Laplace results will be reported.  Type 
I error for RCBD Gamma falls within the acceptable range and power loss of 3.2%.  All coverage 
probabilities are nominal.  For SP Gamma, Type I error falls outside of the nominal range for the 
main effect of factor A (0.0720).  There appears to be a slight power advantage for the simple 
effect of factor A (4.2%) however this may be due to the inflated Type I error.  Coverage 
probability falls outside of the nominal range (0.927 for Treatments 1 and 4).  For the Beta 
distribution with both the RCBD and SP all Type I Errors fall within the acceptable range.  
Coverage probabilities are nominal with the RCBD but with the SP fall outside of the nominal 
range for treatments 1 and 4 (0.924).   

CONCLUSIONS: 

This research focuses only on 1 set of specified means or proportions; before firm conclusions 
can be determined, the study should be expanded to include additional scenarios with varying 
means and proportions.   

CW1:  Preliminary findings of this experiment suggest that CW1 was accurate in assuming that 
issues would arise when treatments were unequal, however consequences also occur with the 
equal treatment case (e.g. interval estimates below 0).  If the interval were truncated to take 
this issue into account, it is unclear if the interval is truly estimating a 95% confidence interval.   

CW2:  Transformations did not clearly improve issues that arose with standard ANOVA in the 
unequal cases.  With the Gamma transformations, power loss and coverage probability issues 
occurred as with the standard ANOVA.  All interval estimates did fall within the plausible range 
(e.g. between 0 and 1 with Beta), however coverage probability was a large issue with the 
arcsine square root.  Finally, with standard ANOVA, it was apparent that procedures were 
estimating the marginal mean; with the transformations, it is unclear which parameter (marginal 
or conditional mean) the models are estimating.  A clear advantage is not apparent with the 
transformations.   

CW3:  It is imperative to reiterate that the GEE is targeting the marginal means.  It certain 
circumstances, this could result in a power advantage (e.g. RCBD Gamma) or a power loss (e.g. 
RCBD Beta).  Power and coverage probability issues increased as the structure of the experiment 
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increased.  Potentially the GEE may be sufficient with simple designs, but major issues appeared 
as the experiment grew in complexity.   

CW4:  There does not appear to be a major difference between RSPL and quadrature with the 
Gamma distribution scenarios.  However, RSPL did have issues with the Beta distribution.  
Further study is needed to determine if the issue stems from design complications or from the 
distribution itself (potentially values near the extremes).  Quadrature did perform better with 
the Beta scenarios; Type I error was not an issue as it was with RSPL.  Quadrature and Laplace 
did have issues with coverage probability in the SP Beta case.  Further investigation may reveal 
that a form of pseudo-likelihood may be preferred, but with this study it is unclear. 

CW5:  There were no meaningful differences between quadrature and Laplace; in almost all 
instances, results were identical.  Any differences that occurred were slight.  Computing time 
was much faster for Laplace and further study may reveal that it is a suitable replacement for 
quadrature. 

After reviewing the conventional wisdoms hopefully it has become apparent to the reader that 
rarely is a “one size fits all” methodology appropriate.  All methods studied produced irregular 
results, some in multiple instances.  Thus, before any model can be chosen to analyze the data it 
is the obligation of the researcher to first consider what process is giving rise to the data.  
Potentially a simulation study can be a first step in assessing power or estimation accuracy as a 
way to determine which model or method is appropriate.   

Further investigations need to evaluate the effects of different mean values (or proportions), 
specified scale parameters, or larger sample sizes in order to determine if the results found in 
this study are pervasive.   
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APPENDIX 

     Figure 1: 

 

 Figure 2: 
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Figure 3: 

Figure 4: 
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Figure 5:   

 

Figure 6: 
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Figure 7: 

Figure 8: 
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Figure 9: 

 
 
Figure 10: 
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Figure 11: 

 
Figure 12: 
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Figure 13: 

Figure 14: 
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Figure 15: 

 
 
Figure 16: 
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Figure 17: 

 
 
Figure 18: 
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Figure 19: 

 
 
 
Figure 20: 
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Figure 21: 

 
 
Figure 22: 
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