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Abstract 

Diverse soils and varying weather conditions not only affect overall performance of hybrid 

maize in multi-environment field studies, but can also cause strong genotype by environment 

interactions (GEI).  Modern maize breeding experiments utilize multilocation trials with 

augmented field designs to evaluate the performance of unreplicated test hybrids.  Augmented 

designs are resource efficient; however, these designs do not efficiently quantify or test GEI 

variation in the test hybrids.  New methods are being developed that use random regression 

models to incorporate multiple environmental effects into GEI models to increase their accuracy 

and predictive ability.  Incorporation of varying weather and soil physical variables into these 

models can be used to determine the potential causal factors of GEI.  The identification of causal 

factors can assist in developing clusters of locations where homogenous performance of hybrids 

can be expected.  The utility of the proposed approach is demonstrated with a real data analysis. 

Keywords:  genotype by environment interaction, hybrid maize, multi-environment trial, 

augmented unreplicated design, environmental variables, random regression models.  
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1. Introduction 

Maize (Zea mays L.– common name:  corn) is the most widely cultivated cereal food crop in the 

United States of America and is globally ranked first in production with approximately 316 

million metric tons (MT) in USA and 844 million MT globally (FAO, 2009).  Maize hybridizes 

freely (Martin, 1989) and productivity is substantially improved in hybrids as a result of 

heterosis.  Hybrid performance is influenced by the environment and genotype by environment 

interactions (GEI) are common for agronomically important traits.  

GEI are a challenge to plant breeders, agronomists, and crop producers because of the difficulties 

in selecting genotypes that perform well over diverse environments (Kang and Gorman, 1989).  

Understanding GEI and quantification of the resulting variation in response of crops would help 

to understand the genotypic characteristics in establishing breeding objectives, identify superior 

genotypes and their suitable environmental conditions, and establish better crop management 

practices (Signor et al., 2001; Yan and Hunt, 2001). Therefore, the cause and nature of 

significant GEI should be carefully considered before selecting the genotype (Gauch and Zobel, 

1996; Kang and Gorman, 1989) for a particular environment.   

To understand the extent of influence of environment and GEI, newly developed hybrids need to 

be tested in diverse environments before their commercial release into a particular target 

environment.  Multi-environment trials (MET) are being utilized in such scenarios that 

eventually  help in selecting the most suitable genotypes (Smith et al., 2005) for an environment.  

Based on MET, specific and broad adaptation of genotypes to environments can be illustrated.   

 

In order to better understand GEI from MET, it is important to understand the phenology of 

maize in relation to local environments.  Generally, thermal units (Warrington and Kanemasu, 

1983) are used for determining the phenology of maize, especially by considering temperature 

and maturity rate.  In this study, growing degree days (GDD) (Dwyer et al., 1999) are utilized for 

calculating heat sums and their relation to the phenology of maize.  The GDD measurement can 

be utilized for the timing of a particular phenological event, and suitability of the hybrid to a 

particular environment (Warrington and Kanemasu, 1983).  Analyzing the external 

environmental variables such as temperature, solar radiation, precipitation, and water holding 

capacity during various phenological phases helps to identify the potential causal factors of GEI 

(Signor et al., 2001).  These potential causal factors for GEI will help in categorizing genotypes 

for specific environments in which they can be adapted for better and more homogenous 

performance.  Linking a phenological and statistical understanding of the hybrids has potential to 

assist the categorization of genotypes for specific or broad adaptations to the environment.   

 

Historically, the first statistical method for partitioning and analyzing GEI from MET was a 

simple linear regression (LR) of individual genotype performance over environmental means.  

Although this approach depicts estimated regression lines for each genotype, and the 

heterogeneity of the lines illustrates interactions (Eberhart and Russell, 1966; Finlay and 

Wilkinson, 1963), it fails to explain a large proportion of variation due to GEI, even when the 

main effects are explained effectively (Gauch, 1992).  In order to effectively address the 

interaction term, a specific statistical model (Zobel et al., 1988) is required.  

2

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2012/proceedings/2



 
 

Modifications to the LR models for complex GEI (Piepho, 1997; Smith et al., 2001) come in the 

form of multiplicative models, such as an Additive Main effect and Multiplicative Interactive 

model (AMMI) (Zobel et al., 1988), Shifted Multiplicative Model (SHMM) (Gauch, 1992), and 

Sites Regression Model (SREG or GGE) (Cornelius et al., 1996).  In these models, GEI is 

partitioned by way of multivariate techniques, thus offering more insight in understanding and 

interpreting GEI compared to Analysis of Variance (ANOVA) and LR models.  The 

multiplicative terms in these models partition GEI (or Genotype main effect (G) + GEI) into 

more than one dimension when subsetting genotypes into homogenous groups of environments.  

Later, mixed model versions of these multiplicative models have also been developed for the 

analysis of GEI (Piepho, 1997; Smith et al., 2001).  These models have been extended by 

incorporating a large number of external variables (genotypic and environmental) for interpreting 

the potential causes of GEI.  The two most commonly used models are factorial regression (FR) 

(Baril, 1992; van Eeuwijk et al., 1995), and partial least square regression (PLSR) models 

(Aastveit and Martens, 1986).  

 

Although extensive work has been done on GEI methods, there are limitations in applying them 

to modern plant breeding evaluation techniques that use augmented field designs with 

unreplicated test hybrids (newly developed hybrids) in MET (Federer, 1961).  Based on the 

statistical models developed (Federer, 1961; Federer, 2002; Federer and Raghavarao, 1975; 

Williams and John, 2003) for the estimation of GEI from augmented field designs, the check 

hybrids (controls) can be utilized for local error estimates and adjusted estimates for test hybrids 

used for genotypic and environmental effects nested within an environment (Federer et al., 

2001).  Unfortunately, these methods do not take complete advantage of the variation among test 

hybrids, possible relationships among locations, and also do not explore any underlying structure 

within the observed GEI that can explain the potential causes.  

 

We developed nested random regression models (NRRMs), an extension of random regression 

models (Henderson, 1982), for field designs augmented with unreplicated test hybrids.  An 

estimate of genotypic and environmental effect of test hybrids is obtained independently from 

check hybrids.  In addition, estimates obtained for hybrids are not nested to particular locations, 

but are a function of hybrids across locations (by utilizing the possible relationship among 

locations).  NRRMs can be used to predict the performance of genotypes on modified 

environmental variables.  NRRMs can be implemented in two steps.  First, principal component 

analysis (PCA) is utilized for partitioning weather variables into orthogonal principal 

components (PC).  Second, PCs and other environmental indices are incorporated into NRRMs 

in order to estimate the variance caused by GEI to identify the potential causes of the variation.  

The candidate environmental indices from NRRMs can then be utilized in clustering the 

locations into homogeneous regions.  This helps in allocating hybrids to regions producing 

maximum homogenous yield which eventually would increase the net production across the 

cropping regions.  The NRRMs provide a more powerful tool for dissecting GEI and improving 

the efficiency of breeding programs when compared to the existing methods for analyzing GEI in 

augmented unreplicated field designs for MET.   
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2. Methods  

 

Phenology and phases of crop development 

Since the yield response of maize depends on its phenology, GDD is used as the criteria 

for partitioning crop development.  Based on GDD, crop development is partitioned into phases 

with an increment of 100 GDD centering on tasseling (flowering) and silking (fertilization) 

stages of the crop.  That is, the crop life is partitioned into phases starting from tasseling back to 

planting and silking to harvesting phases with an increment of 100 GDD on either side. 

 

Environmental indices 

A large number of variables represent the daily weather data measurements.  However, 

not all of them can be used directly in the model.  PCA is performed using proc princomp 

procedure in SAS 9.2 version, and is used to reduce the dimension of the standardized weather 

relationship matrix.  All of the PCs are utilized in model development irrespective of the amount 

of variation explained by their corresponding eigenvalues.  In addition to PCs, raw physical soil 

variables collected from each location are also used in the models as environmental indices.  

 

Structure of NRRM models 

General structure NRRMs that include an interaction term are developed and then 

compared to a base model,  

  

 

 

 

where, yij is the response variable (yield); μ is the overall mean; βi is the location effect for the i
th

 

location, βi ~ N(0, σ
2

β); αj is the genotype effect for the j
th

 genotype, αj ~ N(0, σ
2

α); α0j is the 

intercept of the random regression of environmental index Vk on the j
th

 genotype; αkj is the 

regression coefficient for the random regression of environmental index on the j
th

 genotype;  

εij is the experimental error, εij ~ N(0,σ
2
). 

 

 

 

Genotypes and locations are treated as random effects representing the number of levels in these 

variables.  This also compensates for the lack of replication of genotypes in individual locations.  

Additionally, in NRRMs for estimation of G and GEI across locations, each genotype has a 

random effect for intercept and interaction terms which is nested within the whole data and 

environmental index matrix.  If there are multiple indices, a unique combination of variables is 

used for fitting the models.  All models are  analyzed using the package ‘lme4’ in R/2.14.0 

(Bates and Maechler, 2010).  
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Evaluation and choice of NRRMs 

Evaluation and selection of the most appropriate NRRMs is performed in four steps.  

First, candidate models from the simplest (using one environmental index) NRRMs are selected 

based on goodness of fit after being compared to the base model using Akaike Information 

Criterion (AIC) (Dayton, 2003).  Second, the selected candidate models (NRRMs with lower 

AIC values) are assessed for the predictive performance using the leave-one-out cross validation 

technique (LOO-CV) (Brown, 2000).  In LOO-CV, the dataset is divided into training and test 

datasets, and the models are fit on the training dataset.  Solutions for the regression intercept and 

interaction coefficients of genotypes obtained from these analyses are utilized to calculate the 

estimate of the yield from the test dataset.  Third, the estimated values are tested for correlation 

against the response values (yield) in the test dataset.  Repetition of LOO-CV is performed as 

many times as there are number of locations, and thus every location is represented once in the 

test data.  An average of the correlations for a particular model across all the test data is then 

calculate and compared to that of the base model.  The NRRMs that exhibit an averaged 

correlation higher than that of the base model are filtered out.  Fourth, the number of 

environmental indices is increased in NRRMs, and the steps one to three are repeated.  At this 

stage, the third step is performed with a modification that correlation values are compared not 

just to that of base model but also to that of previous reduced NRRMs (i.e., NRRMs with lower 

number of environmental indices).  The fourth step is repeated until the most appropriate family 

of NRRMs is selected.  Based on the information from the final selected models, the 

environmental indices, specifically from a particular phase of the crop, are chosen as potential 

indicators of GEI.  

 

3. Real Data Analysis   

Data  

The NRRMs are tested on real data obtained from unreplicated MET of maize hybrids 

conducted by Dow AgroSciences across the middle part of the United States Corn Belt in 

Wisconsin, Illinois, Iowa, and Indiana (Figure 1).  The MET conducted in year 2009 consisted of 

13 locations and 114 test hybrids.  All hybrids were represented once in each location except for 

12 hybrids that were represented only in 12 locations.  A total of 1470 observations comprise the 

data.  Daily weather and soil physical characteristics variables were collected (Table 1) from 

each of these locations starting from the planting to the harvesting stage of the crops.  The crop 

development in each of these locations was classified into 21 phases centering on tasseling and 

silking stages based on the 100 GDD increment.  There were 273 orthogonal PCs calculated 

from the weather information for each location used in the analysis.  As the physical soil 

variables were onetime observations, those were used without any modifications.  The response 

variable, crop yield, was obtained at the end of cropping period.  The distribution of yield in each 

location is illustrated in Figure 2.  The primary objective of this part of the analysis is to identify 

potential weather and soil indices that explain the potential for GEI.  

 

Models and output 

The process of identifying the indices responsible for GEI initiated with the utilization of 

the simplest NRRM (NRRMs-1.1), which are the NRRMs with one PC index variable.  Thus, 
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273 NRRMs-1.1 are assessed.  A total of 173 indices are selected based on AIC values when 

compared to the base model.  The number of indices is reduced to 22 based on evaluating the 

predictive performance of the models via LOO-CV.  Simultaneously, 84 (variable) sets are 

calculated by the unique combination of three soil index variables at a time.  These models are 

denoted by NRRMs-3.1 and compared to the base model.  After LOO-CV, 12 NRRMs-3.1 

candidate models are selected.   

 

The selected indices from NRRMs-1.1 are included in NRRMs-1.2, where two variables can be 

incorporated simultaneously, after calculating all possible unique combination of 22 variables.  

AIC values from the 231 NRRMs-1.2 are compared to those of the base model, and 208 of them 

are relatively smaller.  The selected 208 NRRMs-1.2 models are tested for predictive 

performance, even though none of them had AIC values lower than those of the candidate 

NRRMs-1.1.  There are 36 models with higher predictability than that of the highest NRRMs-

1.1.  Three of these models have higher predictability than NRRMs-3.1 (Figure 3).  Additionally, 

the 22 selected PC indices from NRRMs-1.1 were combined with the 12 selected soil index sets 

from NRRMs-3.1, and thus 264 NRRMs-3.1.1 are assessed.  After comparing the AIC values 

(Figure 4A) and predictive performance six NRRMs-3.1.1 are selected.  Out of these six, two 

exhibited predicted the yield better than that of NRRMs-1.2 (Figure 4B).  Since inclusion of 

more indices failed to provide any more information, the model selection process is terminated. 

The final models selected were NRRMs-1.2 based on two PC indices, and NRRMs-3.1.1 which 

included three soil indices and one PC index.  The models are represented as: 

 

 

 

where, yij is the response variable (yield); μ is the overall mean; βi is the location effect for the i
th

 

location, βi ~ N(0, σ
2

β); α0j is the intercept of the random regression of PC indices V1, and V2 on 

the j
th

 genotype; α1j is the regression coefficient for the random regression of PC index V1 on the 

j
th

 genotype; α2j is the regression coefficient for the random regression of PC index V2 on the j
th

 

genotype; εij is the experimental error, εij ~ N(0,σ
2
). 

 

 

 

 

 

 

 

where, α0j is the intercept of the random regression of PC and soil indices V1, V2, V3, and V4 on 

the j
th

 genotype; α2j is the regression coefficient for the random regression of soil index V2 on the 

j
th

 genotype; α3j is the regression coefficient for the random regression of soil index V3 on the j
th
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genotype; α4j is the regression coefficient for the random regression of soil index V4 on the j
th

 

genotype;  

 

 

 

 

 

Based on the final selected model, there are 8 soil and 3 PC indices identified from NRRMs-

3.1.1, and 20 PC indices from NRRMs-1.2 (Table 2).  These indices can be translated as PC 

indices together with soil indices at the late vegetative stages (phases before tasseling with GDD 

increments of 200 and 400 from tasseling GDD) from NRRMs-3.1.1; PC indices in early 

vegetative stages (phase before tasseling with GDD increment of 1100 from tasseling GDD), 

midvegetative (phase before tasseling with GDD increment of 700 from tasseling GDD), late 

vegetative (phases before tasseling with GDD increments of 100, 200, and 400 from tasseling 

GDD), tasseling, silking, and throughout grain filling stages (phases after silking).  These 

selected indices can be considered as potential causal factors for GEI in this MET study.   

4. Summary 

As a primary objective of the analysis, the potential causal factors of GEI for this 

unreplicated MET study were identified by estimating GEI using the proposed nested random 

regression models.  These causal factors include both soil and weather indices from specific 

growth stages of the crop.  The soil indices were organic matter content, cation exchange 

capacity, texture of soil, water holding capacity, depth of water table, and slope.  The weather 

characters such as solar temperature, solar radiation, precipitation, wind velocity, atmospheric 

pressure, humidity, and evapotranspiration were identified from early vegetative, midvegetative, 

late vegetative, tasseling, silking, and throughout the grain filling phases.  It should also be noted 

that our approach revealed potential causal weather indices as obtained not just from the PCs 

explaining highest percentage of variation.  Considering the physiology of the crop, abiotic 

stresses on the phases identified, except the later grain filling stages, are critical to the reduction 

in yield (Grant, 1987; Kiniry et al., 1983; McWilliams et al., 1999).  Variation in the weather 

characteristics during these stages, across locations with diverse soil characteristics, can be 

considered as the cause of variation in performance.    

Thus far in the commercialization of newly developed hybrids, regions were identified based on 

the geographical proximity of the locations which may not be similar in their environmental 

characteristics, and then the hybrids are released to locations in each such region.  Due to the 

influence of environment on hybrid genotypes, their performance can vary within a region.  To 

alleviate this issue, our ongoing research will utilize the selected indices identified by our new 

method to identify locations similar in environmental characteristics to facilitate better allocation 

of hybrids to maximize homogeneous net production. .    
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Table 1:  Environmental factors that are used in modeling GEI.  

Daily weather variables Soil physical characteristics 

Temperature (max, min, avg, soil, and wind chill) Organic matter content 

Precipitation  

Atmospheric pressure 

pH 

Cation exchange capacity 

Evapotranspiration Texture (sand, silt, and clay) 

Wind speed (max, and avg) Water holding capacity 

Humidity Depth of water table 

Solar radiation (max, and avg) Slope 
Note:   maximum (max), minimum (min), average (avg). 

 

Table 2:  Selected environmental indices from 
a
NRRMs-3.1.1 and 1.2.  

NRRMs-3.1.1 

 Environmental indices Phase of the crop  
b
GDD increment value 

Weather 

indices 

c
PC 6 Before tasseling 

 

200 

PC 5 and 9 400 

Soil indices Organic matter content 

Cation exchange 

capacity 

Texture (sand, silt, and 

clay) 

Water holding capacity 

Depth of water table 

Slope 

  

NRRMs-1.2 

Weather 

indices 

PC 11 Silking   

PC 2, 3, and 7 

After silking 

 

 

 

100 

PC 1 and 5 200 

PC 1 300 

PC 5 400 

PC 7 500 

PC 2 600 

PC 3 and 6 Tasseling  

PC 12 

Before tasseling 

 

100 

PC 6 200 

PC 5, and 9 400 

PC 8 700 

PC 1, 4, and 7 1100 

Note:  
a
NRRMs – Nested Random Regression Models, 

b
GDD – Growing Degree Days, 

c
PC – 

Principal Component 
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Figure 1:  Distribution of locations across four states from the MET conducted in the Corn Belt.  

Locations are coded and their relative geographical positions are pinpointed.   

 

  

Figure 2:  Yield averages of hybrids at each location along with their standard deviation from 

the MET study.  The locations are arranged from left to right in the ascending order of yield 

averages.  The same set of hybrids performed differently in different locations due to potential 

influence of location and GEI.  
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Figure 3:  Correlation of predicted response of hybrids and GEI with observed response for 208 

NRRMs-1.2 models.  The red line indicates the threshold level from the base model, green from 

NRRMs-1.1, and dark blue from NRRMs-3.1.  Thirty six models exhibited higher predictability 

than that of the highest NRRMs-1.1 and three of these models had higher predictability than that 

of NRRMs-3.1.  

  
Figure 4:  A) 

a
AIC values of 264 NRRMs-3.1.1 compared to that of base and NRRMs-3.1.  

After comparison, 60 models were selected for predictability test.  B) Correlation test of 60 

selected NRRMs-3.1.1.  Six NRRMs-3.1.1 exhibited predictability higher than that of NRRMs-

3.1 and two of them were higher than that of NRRMs-1.2.  The light blue line indicates threshold 

level from NRRMs-1.2.  

Note:
  a

AIC – Akaike Information Criteria    

A B 
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