Therapeutic Peptide Sequences and Gatekeepers Loaded with Mesoporous Silica Nanoparticles

Dursitu Hassen
Kansas State University

Follow this and additional works at: https://newprairiepress.org/ksuugradresearch
Part of the Amino Acids, Peptides, and Proteins Commons, Cancer Biology Commons, Nanomedicine Commons, and the Therapeutics Commons

Recommended Citation

This Event is brought to you for free and open access by the Conferences at New Prairie Press. It has been accepted for inclusion in Kansas State University Undergraduate Research Conference by an authorized administrator of New Prairie Press. For more information, please contact cadis@k-state.edu.
Therapeutic Peptide Sequences and Gatekeepers Loaded with Mesoporous Silica Nanoparticles

Dursitu Hassen, Lauren Chlebanowski, Joseph Hammer, Sophia Leonard, Dr. Stefan H. Bossmann
Departments of Chemistry and Kansas State University, Manhattan KS, 66506

Introduction

• According to World Health Organization in 2018, nearly 9.6 million people worldwide are estimated to die from cancer.
• Although different kinds of cancer treatments exist, the research communities are continuously developing new ways of delivering anti-cancer treatments to ultimately decrease the side effects and increase the effectiveness of the anti-cancer drugs.
• In our lab, SA-K6L9-AS is enclosed in MSNs using peptide loaded MSN (P-MSNs) Synthesis.
• We then used a gatekeeper system to keep the cargo inside the MSNs and obtain the maximal loading capacity.

Objective

• Synthesize the self-assembling SA-K6L9-AS sequences
• Use MSN to “gift wrap” the peptide sequences
• Treat B16F10, GL26 and NSC cells with P-MSN, R-MSN, Tween P-MSN and Tween R-MSN
• Introduce a gate keeping system

Cell Lines

<table>
<thead>
<tr>
<th>Cell Line</th>
<th>Image</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSC</td>
<td>![NSC Image]</td>
</tr>
<tr>
<td>B16F10</td>
<td>![B16F10 Image]</td>
</tr>
</tbody>
</table>

Methods

• Solid Phase Peptide Synthesis

• MSN Synthesis
• Iron Oxide Nanoparticle Synthesis
• Lipid Bilayer Synthesis

TEM Images of P-MSNs and Tween P-MSNs

P-MSNs

Tween P-MSNs

MTT Assay

Future Work

• Solid Phase Peptide Synthesis
• MSN Synthesis
• Iron Oxide Nanoparticle Synthesis
• Lipid Bilayer Synthesis

Conclusion

The center of this project is to increase the maximal loading efficacy of the therapeutic peptide using Tween-based MSN and a gatekeeper. This strategy will prevent the drug from leaking from the MSN before it has reached the targeted site (primary tumor or metastasis).

References

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5535255/
https://www.who.int/cancer/en/
Lauren Chlebanowski, PhD Thesis, Kansas State University, 2019

Acknowledgments

• The Kansas Louis Stokes Alliance for Minority Participation
• Developing Scholar Program at Kansas State
• Department of Chemistry, Kansas State University

Data analyzed with Graphpad Prism 5. Non-linear fit, exponential one phase decay/ Linear fit