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ABSTRACT 
Replication and randomization and are the keys for statistically valid experiments. Both are 
necessary components for statistically valid experimentation. Yet it is an industry wide practicein 
weed science research to assign treatment in the first block of a randomized complete block 
design in a systematic order for reasons of convenience. We investigated this practice by 
comparing four randomization/analysis scenarios: (i) complete randomization in all blocks, (ii) 
systematic assignment of treatmentsin block 1, where the best treatment was assigned to the best 
plot, (iii) systematic assignment of treatmentsin block 1, where the best treatment was assigned 
to the worst plot,and (iv) systematic assignment of treatments in block 1 but not using it in the 
analysis. We created 1000 simulated datasets for three levels of experimental precision and two 
group sizes (t=3 and t=9). Results indicate that dropping block 1 from the analysis resulted in a 
loss of power, as did the best to worst assignment scenario. The best to best assignment resulted 
in increased power that would lead to an inflated Type I error. Differences between the drop 
block 1 and best to worst scenarios tended to become smaller as the experiment size increased 
and the experimental precision decreased. The recommendation for the practice would be (1) to 
follow proper randomization procedures, and (2) to add an extra block to the experiment for 
demonstration purposes only. 
 
 
INTRODUCTION 

Replication and randomization and are the keys for statistically valid experiments. 
Assigning treatments to at least two experimental units enables the estimation of experimental 
error, the variation among experimental units treated alike. Randomization is defined as the 
process of assigning experimental units to treatments under the assumption that each 
experimental unit has an equal chance of being assigned to a given treatment (Lentner and 
Bishop, 1993).  One of the earliest if not the earliest references to randomization is Fisher’s 
(1926) publication. It became more widely known in his now classic book The Design of 
Experimentspublished in 1935 (Fisher, 1966). The concept of randomization has greatly 
contributed to the advances of research in every field (Harville, 1975).As Hinkelmann and 
Kempthorne (2007) pointed out, “An experimenter who does not use randomization with 
variable material is widely regarded as incompetent”; use of randomization in experiments is 
now common practice. 
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Randomization means applying a well-understood random procedure to assign 
experimental units to different treatment groups. This procedure can be done by flipping a coin, 
rolling a dice, or using computer software with a good random number generator. Randomization 
ensuresthat factors not explicitly controlled for in the design do not exert an undue influence on 
the outcome of an experiment. Randomizationalso allowsus to make causal inferences and 
providesa probability model for drawing inferences. Randomization, and not the treatments, as a 
source for differences, is a measure of uncertainty associated with the confidence level (or P-
value) (Ramsey and Shafer, 2002). Therefore, the application of randomization into an 
experimental design makes an objective assessment of treatments possible.  

Yet, common practice often tends to ignore this idealized process. One such instance is 
aweed science industry-wide habit of not randomizing the first block in randomized complete 

block (RCB) field trials. The argument for such 
an approach is a practical one; treatments can be 
demonstrated more easily at field days with a 
systematic arrangement. This would not be a 
problem if the treatment list itself were 
randomized but field trial management software 
such as ARM (Gylling Data Management, Inc., 
Brookings, SD, USA) and others use a time-
saving approach to creating treatment list such as 
given in Table 1. Not only will the first block of 
such an experiment not have a random 
assignment of treatments to plots (= 

experimental units) but a split-plot restriction on the randomization of the underlying RCB 
design is induced through such action. This is not the fault of the software designersas ARM 
offers a radio button that will enable a randomized assignment of treatments in all blocks. The 
non-randomized first block default feature is due to customer demands.  

The potential statistical consequences of such an approach would probably be small if the 
number of complete blocks were quite large. But a standard agronomic trial typically has no 
more than four complete blocks. Having a non-random assignment of experimental units for 25% 
of the total experimental units could have severe consequences. Furthermore, blocks will likely 
not be homogeneous as field trial designsoften represent ‘convenience blocking’, i.e. the total 
experimental area is subdivided to arrive at a convenient blocking pattern, not to maximize the 
differences among blocks and minimize the differences within blocks. In many cases it is likely 
each blocks would consist of a single tier of plots with plots lined up like pearls on a string even 
though it has been know for decades that equilateral blocks would minimize within block 
variation. 

The objectives of this study were to assess the consequences of not-randomizing the first 
block on statistical power in simulated experiments. 
 
SIMULATION 

The underlying linear additive model for these simulated experiments was 
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𝑌𝑌𝑖𝑖𝑖𝑖 = µ + 𝛼𝛼𝑖𝑖 + 𝐵𝐵𝑖𝑖 + 𝑒𝑒𝑖𝑖𝑖𝑖 , 

 
whereμ is the overall mean of the experiment, αi is the effect of the ith treatment, Bjis the effect of 
the jth block and eij is the corresponding residual; i ranged from 2 to 9, and j from 3 to 10. A 
random block effect was created for each block of the simulated dataset. We then created a 
random interaction (= residual) and a random plot quality effect for each plot. To the sum of the 
block, interaction, and plot quality effects we added a fixed treatment effect to arrive at the 
“observed” value for Y. The magnitude of interaction and plot quality effects was set to 50, 75, 
and 100% of the maximum fixed treatment effect to represent a range of experimental 
conditionsfrom high precision to low. We generated 1000 simulated datasets for each treatment 
number x interaction magnitude x number of blocks combination, calculated the P-value for 
treatments and from these the power based on those 1000 datasets. 

We investigated four scenarios:(1) the first block of each basic dataset was either left as 
is (All random);(2) fixed treatments were added to the random components in block 1 only by 
rank, i.e. the best plot received the best treatment (Best to Best); (3) fixed treatments were added 
to the random components in block 1 only by reversed rank, i.e., the worst plot received the best 
treatment (Best to Worst); and (4) first block was dropped from the dataset. Our expectation was 
that compared to the all random arrangement, “Best to Best” would show increased power 
because treatment differences would be magnified, “Best to Worst” should show drastically 
reduced power because treatment differences would be minimized, and “Block 1 deleted” 
should have somewhat reduced power. 
 
RESULTS 
Effect on the overall F-test 

In very precise experiments there is a considerable loss of power when the number of 
blocks is low for either treatment number for Best to Worst assignment scenario (Fig. 1, 
Interaction 50%, green line) when compared to All Random. It took approximately twice the 
number of blocks to achieve 80% power under the Best to Worstscenario compared to a the All 
Random scenario. For a standard four-block RCB experiment the loss of power was a minimum 
of 53% (data not shown). The loss of power incurred under the Block 1 deleted scenario (blue 
dashed line in Fig. 1) compared to the All Randomwas less than half (24%) that number. As the 
residual error increased the penalty incurred for these two scenarios decreased, particularly with 
an increase in the number of treatments (Fig.1, lower right hand panel). However, under these 
conditions the Best to Best scenario (Fig. 1, red solid lineclearly showed a bias for a significant 
increased treatment effect when compared to All Random. 
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Fig. 1. Effect of block number on the power of the overall F-test for three and nine treatment groups based on the 
following experimental conditions: (i) All Random (solid blue line), where treatments were randomly assigned to 
plots in all blocks); (ii) Best to Best (red solid line), where the best treatment was assigned to the plot with the best 
inherent quality in Block 1; (iii) Best to Worst (green solid line), where the best treatment was assigned to the plot 
with the worst inherent quality in Block 1;and (iv) Drop Block 1 (dashed blue line), where there was some 
systematic assignment of treatments to plots in block 1 but that block was dropped from the analysis. The interaction 
term = residual was set to either 100, 75, or 50% of the maximum absolute treatment effect to simulate experiments 
of increasing precision in 1000 simulated datasets for each condition. 

The effect of Best to Bestincreased as the number of treatments increased. For a standard 
4-block RCB experiment with nine treatments the difference in power to a regular randomization 
was 27%, which essentially amounts to a Type I error rate of 27%, declaring far more tests 
significant than the underlying experiment would have warranted. 

Effect on the maximum contrast 
We also investigated the effect on the contrast between the best and worst treatment for t 

= 3 and 9, i.e. a theoretical difference of 20 units. As expected, the results magnify the results 
obtained for the overall F-test as this contrast contributes the majority to the treatment variance 

Groups = 3 Groups = 9 
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(Fig. 2). The effect of treatment number was also magnified. One aspect that warrants further 
investigation is the effect of dropping block 1 from the analysis. It appears that for larger trials 
with a large residual error this scenario performed worse than the best to worst assignment. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 2. Effect of block number on the power of the pairwise comparisons between the best and worst treatment 
(maximum treatment difference) for three and nine treatment groups based on the following experimental 
conditions: (i) All Random (solid blue line), where treatments were randomly assigned to plots in all blocks); (ii) 
Best to Best (red solid line), where the best treatment was assigned to the plot with the best inherent quality in 
Block 1; (iii) Best to Worst (green solid line), where the best treatment was assigned to the plot with the worst 
inherent quality in Block 1; and (iv) Drop Block 1 (dashed blue line), where there was some systematic assignment 
of treatments to plots in block 1 but that block was dropped from the analysis. The interaction term = residual was 
set to either 100, 75, or 50% of the maximum absolute treatment effect to simulate experiments of increasing 
precision in 1000 simulated datasets for each condition. 
 
Effect on the intermediate contrast 

The power of a test decreases as the expected difference between two means decreases, 
as was the case for the intermediate contrast where the expected difference was half the 
maximum treatment difference (Fig. 3).  In very precise experiments, which every experimenter 
strives for, the best to worst assignment in block 1 led to a drastic reduction in power. As the 

Groups = 3 Groups = 9 
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precision of the overall experiment decreased the differences among the four scenarios all but 
disappeared. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 3. Effect of block number on the power of the pairwise comparisons between the best and the center treatment 
(half maximum treatment difference) for three and nine treatment groups based on the following experimental 
conditions: (i) All Random (solid blue line), where treatments were randomly assigned to plots in all blocks); (ii) 
Best to Best (red solid line), where the best treatment was assigned to the plot with the best inherent quality in 
Block 1; (iii) Best to Worst (green solid line), where the best treatment was assigned to the plot with the worst 
inherent quality in Block 1; and (iv) Drop Block 1 (dashed blue line), where there was some systematic assignment 
of treatments to plots in block 1 but that block was dropped from the analysis. The interaction term = residual was 
set to either 100, 75, or 50% of the maximum absolute treatment effect to simulate experiments of increasing 
precision in 1000 simulated datasets for each condition. 

 
SUMMARY 

Not randomizing treatments in the first block of a field study conducted as an RCB seems 
to be a risky proposition. Under a Best to Best scenario there is an increased risk of committing 
a Type I error, i.e. declaring significance that are not warranted based on the underlying 

Groups = 3 Groups = 9 
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experiment. Under a Best to Worst scenario, there is a tremendous loss of power, particularly in 
small but precise experiments. Not utilizing the first block (Drop Block 1) results in a loss of 
power that might exceed the damage incurred under a Best to Worst scenario in large. 

The problem is that the experimenter rarely knows the true state of nature. The best 
course of action for the practitioner would seem to be to follow proper randomization procedures 
and to add an extra block to the experiment just for demonstration purposes. 
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