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BAYESIAN MCMC ANALYSES FOR REGULATORY ASSESSMENTS OF FOOD 
COMPOSITION 

 
Jay M. Harrison, Monsanto Company, 800 N. Lindbergh Blvd., St. Louis, MO 63167 
Derek Culp, SAS Institute Inc., SAS Campus Drive, Cary, NC 27513 
George G. Harrigan, Monsanto Company, 800 N. Lindbergh Blvd., St. Louis, MO 63167 
 

Abstract 
 
In order to gain regulatory approval to market a new seed product derived with biotechnology, 
grain and forage composition data must be collected from field trials, and summaries must be 
reported to various government agencies. Currently, both tests of differences in composition 
between a genetically modified organism (GMO) and its control and tests of equivalence of the 
GMO to conventional genotypes are required by regulatory agencies. Bayesian analyses offer an 
attractive option for regulatory assessments by expressing results that can be interpreted more 
easily by a wide audience and by providing more ways to examine various hypotheses of 
interest. In order to extend Bayesian methodology for application to different compositional 
analytes, and to take advantage of the information obtained in previous experiments, the use of 
informative prior distributions for composition studies is proposed. Methods for determining 
suitable informative prior distributions analytically are shown in four situations: (1) eliciting 
opinions from an expert, (2) finding the best fit from an overdetermined set of summary statistics 
from one previous study, (3) performing a meta-analysis of summary statistics from previous 
studies with an assumed common prior distribution, and (4) performing a different meta-analysis 
with the prior distribution determined by a mixture of different assumed prior distributions from 
previous studies. Examples from soybean composition studies are used to illustrate these 
techniques.  
 
Keywords: Bayes, Markov Chain Monte Carlo, Prior Distribution, Genetically Modified 
Organism, Regulatory, Composition  
 

1. Introduction 
 
Regulatory composition trials are typically conducted by planting different genotypes of the crop 
plant in multiple locations using randomized complete block designs, harvesting the plants at 
maturity, and conducting compositional assays on the  harvested grain and forage. In these trials, 
the newly derived genotype is compared against a control of a similar genetic background. Other 
genotypes, called references, can be included in the trials to represent the natural variation that 
occurs among commercially available or conventional genotypes. Different references may be 
used at different locations to accommodate for differences in growing conditions by region. 
 
Currently, various regulatory agencies require traditional frequentist hypothesis tests from 
analysis of variance (ANOVA) models for evaluating variation in composition. For example, the 
European Food Safety Authority (EFSA) currently requires both a test for the difference in 
composition between a genetically modified organism (GMO) and its control and a test of 
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equivalence of the GMO to conventional genotypes, or references, using a different ANOVA 
model (EFSA, 2010).  However, results of significance tests are not necessarily indicative of 
concerns with safety or nutritional wholesomeness, and the observed differences between the 
GMO and conventional comparators are small when compared to the natural variability in crop 
composition. A recent review of GMO corn and GMO soybean showed that over 97% of all 
comparisons in which a “statistically significant difference” (p < 0.05) between GM and 
conventional comparators was observed had a relative magnitude of difference less than 20% 
(Harrigan, et al., 2010). 
 
Guidelines for Bayesian analyses for regulatory composition studies have been proposed 
(Harrison, et al., 2011; Harrigan and Harrison, 2012). Advantages of Bayesian analyses that were 
cited in these articles include the simplified interpretation of the results for a wide audience, the 
elimination of the requirement to test for differences and equivalence with different procedures, 
and the capability to quantify differences with meaningful summaries, such as the posterior 
distribution of the percentage difference in means between a GMO and its control and the 
probability that a GMO mean lies within the range of means of the reference genotypes. The 
authors cited a guidance document produced by the U. S. Food and Drug Administration (U. S. 
FDA, 2010) for medical devices as a precedent for Bayesian analysis in a regulatory setting. The 
authors also stressed the importance of model diagnostics to evaluate the goodness of fit of a 
Bayesian model. 
 
Bayesian data analysis with Markov Chain Monte Carlo (MCMC) methods requires the 
specification of prior distributions for the parameters in the model. The prior distribution for a 
parameter reflects the degree of belief that the parameter will assume given values. Low-
information prior distributions, such as normal distributions with very large variances, are useful 
when there is absolutely no prior information for a parameter or when an objective approach is 
desired. Harrison, et al. (2011) used the fact that amounts of fat and protein in soybean 
composition studies are measured as percentages to justify the use of low-information uniform 
prior distributions over the range (0%, 100%) for the means of the soybean genotypes and over 
the range (-100%, 100%) for nuisance effects in the ANOVA model, such as location effects. 
Improper prior distributions, such as flat prior distributions that assign a constant value to all real 
numbers, can be used to perform the calculations, but some authors describe problems with such 
distributions. For example, Christensen, et al. (2011) demonstrated that flat prior distributions 
assign virtually all weight to parameter values that are larger than any reasonable value, and 
proper posterior distributions will not always result from the use of improper prior distributions 
(Gelman, et al., 2004; Carlin and Louis, 2009).  
 
Informative prior distributions define more narrow ranges of probable values for the parameter 
and assign regions of higher prior density to the more probable values. Philosophically, an 
informative prior distribution is the mathematical formalization of the scientific principle that 
knowledge is accumulated through experience, and new research is always presented in the 
context of previous research (Kruschke, 2011). The use of informative prior distributions 
provides other advantages for Bayesian analysis. For example, the United States Food and Drug 
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Administration (U. S. FDA) (2010) cited the potential for informative prior distributions to 
justify the reduction of sample sizes or durations of medical device trials.  
 
Harrison, et al. (2011) used linear models with multiple parameters to represent the genotype 
effects that were primarily of interest, as well as nuisance effects for locations, replicates within 
locations, genotype-by-location interaction, and random error. Informative prior distributions 
may be needed when a model has many parameters in order to obtain convergence of the 
posterior distributions. Gelman, et al. (2004) wrote that there are no clear general principles for 
defining noninformative prior distributions for models with many parameters. Carlin and Louis 
(2009) stated that, in models with large numbers of parameters, the information in the data may 
be insufficient to identify all of the parameters, so informative prior distributions are necessary 
for some or all of the parameters in such cases. For these reasons, informative prior distributions 
will be necessary in order to extend Bayesian analyses to a wider range of compositional 
analytes that are not bounded between 0% and 100% and to studies with large numbers of 
genotypes, replicates, or locations. 
 
An informative prior distribution can be assigned in several ways. For example, if a Bayesian 
analysis from a previous, similar study is available, then the posterior distribution of a parameter 
may serve as the prior distribution of the parameter in the next study, if the exchangeability of 
data between the studies can be justified (U. S. FDA, 2010). Harrison, et al. (2010) started with 
low-information prior distributions for a study conducted in one year. Then, to model the 
nuisance effects in data that were collected in the following year, they used informative 
hierarchical prior distributions that were derived from the corresponding posterior distributions 
from the first year. 
 
If Bayesian analyses from a prior study are not available, but other statistical summaries from 
one or more previous studies can be located, then an informative prior distribution can be formed 
using that information with a meta-analytic approach. Another way of constructing an 
informative prior distribution is with elicitation, or interviewing an expert on the subject matter 
about the anticipated value of the parameter and then writing equations to express those beliefs 
numerically. According to the U. S. FDA (2010), Bayesian methods are usually less 
controversial when the prior distribution is based on empirical evidence and not elicited from 
experts. 
 
The statistician may also incorporate desirable mathematical features into the construction of an 
informative prior distribution. Physical constraints involving the parameter may be included. For 
example, if a parameter represents the mean concentration of a substance, then a distribution that 
assigns positive density only to nonnegative values should be chosen for an informative prior 
distribution. For many situations, unimodality is another desired characteristic of a prior 
distribution, since it allows a certain value to have the highest prior density. Gelman, et al. 
(2004) wrote that the prior distribution should include all plausible values of the parameter, but 
the prior distribution does not necessarily need to be concentrated around the true value of the 
parameter. In some situations, the statistician may choose to use a conjugate prior distribution so 
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that the posterior distribution will have the same parametric form as the prior distribution 
(Gelman, et al., 2004).  
 
For computational simplicity, the statistician may also choose to use a prior distribution that is 
included in a software package for performing Bayesian analyses, although different 
distributions may be programmed. For example, the “zeroes trick” with a Poisson distribution 
and the “ones trick” with a Bernoulli distribution can be used to introduce an arbitrary prior 
distribution in WinBUGS software (Ntzoufras, 2009; Lunn, et al., 2000). Spiegelhalter, et al. 
(2007) noted problems with high autocorrelation, high Monte Carlo error, and poor convergence 
with these methods, so long runs are necessary to achieve suitable results with these methods in 
WinBUGS. With SAS PROC MCMC, the GENERAL and DGENERAL options can be used to 
specify a new probability distribution (SAS Institute Inc., 2009). 
 
The impact of an informative prior distribution on the inferences from the subsequent prior 
distribution can be quite dramatic. A prior distribution can be too informative, in the sense that 
the current data have little influence on the posterior distribution. Justifications for the selection 
of a particular prior distribution, evaluations of the goodness of fit of the prior distribution to 
their contributing assumptions or previous data, and evaluations of the impact of the prior 
distribution on the subsequent posterior distribution are essential. 
 

2. Informative prior distributions derived by elicitation 
 
Elicitation involves the formation of a prior distribution of a parameter by matching the 
probability distribution for the parameter to the descriptions provided by interviewing a client or 
an expert on the subject matter. Strategies for these interviews, and software packages for 
deriving prior distributions based on the responses, were provided by Berger (1985), Carlin and 
Louis (2009), and Christensen, et al. (2011). For one example, O’Hagan, et al. (2006) 
recommended the elicitation of estimates of the quantiles near the center of the distribution, such 
as the 25th, 50th, and 75th percentiles, in order to form a prior distribution. Carlin and Louis 
(2009) warn that the prior distributions obtained in this manner are not necessarily unique. For 
example, a standard Cauchy distribution and a normal distribution with mean 0 and variance 2.19 
have the same values for these three percentiles, and the distributions seem similar, but the 
resulting posterior distributions can be quite different (Berger, 1985). For another example, 
Christensen, et al. (2011) cited an example in which two distinct beta distributions were found to 
share the same mode and 66th percentile. 
 
Christensen, et al. (2011) provided the following example of elicitation. Suppose that a 
parameter θ represents the probability of success in a binomial distribution. Suppose that an 
expert believes that the most likely value of θ is 0.2, and the largest reasonable value that θ could 
assume, with 95% probability, is 0.45. The functional form of the chosen prior distribution is a 
beta distribution with parameters α and β. The beta distribution assigns positive probability to all 
values between 0 and 1, so the constraints involving the probability of success are included. The 
beta distribution also offers computational convenience, since it is implemented in popular 
Bayesian software packages.  
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Next, values of α and β must be chosen to reflect the opinions of the expert. These can be 
expressed mathematically as follows: 
 
1. (α-1)/(α+β-2) = 0.2 
2. P(0 < θ < 0.45 | θ ~ Beta (α,β)) = 0.95 
3. α>1 
4. β>1  
 
Equation 1 is the mode of the beta distribution, and Equation 2 represents the 95th percentile. 
Inequalities 3 and 4 reflect the constraints that are required for the resulting distribution to be 
unimodal. If Inequalities 3 and 4 are both satisfied, the mode and a percentile uniquely determine 
a beta distribution (Christensen, et al., 2011). 
 
PROC MODEL, which is available in the SAS/ETS package, can be used to estimate solutions 
of unknowns in a system of one or more nonlinear equations (SAS Institute Inc., 2009). The SAS 
code for the examples, including computations with PROC MODEL and graphs of results, are 
available by request from the third author (george.g.harrigan “at” monsanto “dot” com). All SAS 
procedures were performed using SAS Version 9.2 (SAS Institute Inc., 2008). 
 
In this example, the equations that represent the mode and 95th percentile were phrased in terms 
of residuals with expectations of zero in PROC MODEL. For example, the equation for the mode 
was expressed as (α-1)/(α+β-2) – 0.2. Either of the functions QUANTILE or CDF in SAS could 
be used to specify Equation 2 in a similar way. The RESTRICT statement incorporated 
Inequalities 3 and 4 into the estimation routine. Starting values of α=2 and β=8 were entered in 
FIT statements because the default starting values of 0.0001 do not meet the parameter 
restrictions, and such small values caused estimation errors in the routine. The starting values 
were assigned by assuming that the mode should be close to the mean of the beta distribution, 
which is α/(α+β). PROC MODEL provided parameter estimates of  α=3.3 and β=10.2, which 
agreed with those derived by Christensen, et al. (2011). 
 
Informative prior distributions should be plotted and checked for suitability. The solutions 
produced by PROC MODEL may not necessarily be unique, but any solution that adequately 
represents the prior beliefs about the parameter may be used. Figure 1 demonstrates that the Beta 
(3.3, 10.2) prior distribution exhibits the two properties from the elicited description. Such plots 
should be presented to the expert for confirmation. 
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Figure 1. Beta prior distribution from elicitation 

 
3. Informative prior distributions derived from a single study 

 
An example from a soybean study can be used to illustrate the derivation of an informative prior 
distribution based on a description of compositional data that was provided in a single previous 
study. Hou, et al. (2009) studied the levels of various sugars in different varieties of soybeans. 
For sucrose, they described the distribution as normal and provided seven sets of summary 
statistics to describe the distribution. This information may be used to construct an informative 
prior distribution for a parameter representing the mean level of sucrose in a particular soybean 
variety. One tractable distribution will not correspond exactly to all of these details, but a 
reasonable solution for the overdetermined system of equations may be drawn by minimizing the 
errors between the properties of one distribution and the specific details in the text. PROC 
MODEL in SAS provides a convenient routine for this task. 
 
Two sets of statistical properties are incorporated into the solution. To use the information about 
the two smallest and two largest observations, properties of order statistics can be employed. Let 
{X1, …, Xn} represent a random sample of size n from a population with a continuous 
cumulative distribution function F(x), and let {U1, …, Un} represent a random sample of size n 
from the standard uniform distribution. Then, F(Xi:n) is equal in distribution to  Ui:n, where i:n 
represents the ith-smallest order statistic. Since equality in distribution implies equality of 
moment-generating functions, the expected value of F(Xi:n) is equal to the expected value of Ui:n, 
which follows a beta distribution with parameters α=i and β=n-i+1. Thus, the expected value of 
F(Xi:n) is i/(n+1) (Arnold, et al., 1992). For example, the minimum observed value for sucrose 
out of 241 soybean varieties was 1.6 mg g−1, so one  contribution to the derivation of the 
informative prior distribution F can be obtained by approximating a solution for F(1.6) = 
1/(241+1). 
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Another statistical property to be incorporated involves the prior distribution. Hou, et al. (2009) 
claimed that the sucrose levels followed a normal distribution. This would assign slight 
probability to values below zero, but, physically, the level of a component must be at least zero. 
In this situation, a truncated normal distribution that assigns zero probability to negative values 
would maintain the general appearance of normality while preventing parameter values below 
zero. To facilitate the use of this distribution with PROC MODEL, PROC FCMP in SAS can be 
used to write a new function that provides the cumulative density function of a truncated normal 
distribution (SAS Institute Inc., 2009). For values of X truncated to be above zero, the 
cumulative distribution function for the truncated normal distribution can be expressed as F(x) = 
{Φ[(x-µ)/s] – Φ(-µ/s)} / [1 – Φ(-µ/s)], where Φ represents the cumulative distribution function 
for the standard normal distribution (Johnson, et al., 1994). In order to use this new function with 
PROC MODEL, the FUNCDIFFERENCING option must be used to allow numerical 
differentiation with multiple applications of the new function.  
 
The resulting parameter estimates were μ=43.7 and σ=16.2. The ESTIMATE statement was used 
to provide an estimate of the mean (43.9 mg g−1) and standard deviation (16.0 mg g−1) of the 
truncated normal distribution as functions of the parameters μ and σ (Johnson, et al., 1994). 
PROC MODEL also produced residuals with respect to each equation. These residuals showed 
that the fitted model agreed fairly closely with the cited summary statistics. The plot of the 
derived truncated normal distribution in Figure 2 includes illustrations of the summary statistics 
from the article. The plot shows general agreement between the statistics from the previous study 
and the prior distribution that was derived. PROC MODEL provides options to accommodate 
other model features, such as correlation among the residuals. 
 

 
Figure 2. Truncated normal prior distribution from summary statistics 
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4. Informative prior distributions from a mixture of distributions over multiple studies 
 
Often, the parameters for an informative prior distribution will not be as thoroughly described as 
in the sucrose example, and the prior distribution must be derived with minimal information 
from multiple studies. The following method estimates a prior distribution as an approximation 
of the distribution of the mixture of results from previous studies. 
 
A search was conducted for literature that reported isoflavone levels in soybean seed.  The search 
was conducted objectively using the following terms: soybean, isoflavones, composition, and 
nutrients.  As isoflavone levels in soybeans have been the subject of many published papers in 
the last 40 years, the literature obtained was reviewed to ensure that consistent methodology was 
used to determine total isoflavone levels (aglycones).  Briefly, citations that utilized acid 
hydrolysis procedures to reduce all isoflavones down to their aglycone structures (daidzein, 
glycitein, and genistein) conducted during the last ten years were selected for inclusion 
(Hutabarat, et al., 2001; Seguin, et al., 2004; Primomo, et al., 2005; Lundry, et al., 2008; 
Morrison, et al., 2008; Berman, et al., 2009; Devi, et al., 2009; Zhou, et al., 2011). This is the 
most routinely used methodology in regulatory studies. In this example, the ranges and sample 
sizes of values that were reported within each of the cited studies were used to form an 
informative prior distribution for the parameters representing genotype means of daidzein in an 
upcoming study. The units of measurement were μg g-1 of dry weight.  
 
By applying the fact that the expected value of F(Xi:n) is i/(n+1) for a given cumulative 
distribution function F (Arnold, et al., 1992), a set of estimates for the n individual values within 
each study can be generated. For this example, a lognormal distribution was assumed for each 
study. The lognormal distribution assigns a positive prior density to the set of nonnegative 
numbers and is skewed to the right. In SAS, the lognormal distribution has two parameters, μ 
and σ, that are the mean and standard deviation, respectively, of the natural logarithms of the 
values. SAS was used to estimate the values of μ and σ separately for each study from the 
minimum and maximum values with quantiles 1/(n+1) and n/(n+1), respectively. Next, the 
values of a new variable were generated to represent the quantiles 2/(n+1), …, (n-1)/(n+1) from 
the corresponding lognormal distribution. Finally, all of the original extremes and the new 
observations were pooled, and summary statistics and graphics were used to determine a suitable 
functional form for a prior distribution from this mixture of imputed observations from previous 
studies. PROC UNIVARIATE was used to provide these summaries and to evaluate the 
goodness of fit of an assumed lognormal distribution. PROC UNIVARIATE returned parameter 
estimates of μ=6.37 and σ=0.53, corresponding to a mean of 669 μg g-1 and a standard deviation 
of 378 μg g-1.  Figure 3 shows the ranges from previous studies, the imputed values based on 
percentiles, and the derived prior distribution. 
 
The mixture of distributions method can be extended in several ways. For example, if a uniform 
distribution is assumed for each previous study, the imputed values may be produced with simple 
linear interpolation between the extremes. Instead of using the expected values of the order 
statistics, a set of n imputed observations may be randomly generated from the assumed 
distribution for each study. The previous studies do not necessarily need to share the same 
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distributional form. Finally, other distributions, such as a gamma distribution, may be fitted to 
the imputed data and compared to each other for goodness of fit. 
 

 
Figure 3. Lognormal prior distribution from mixture of distributions 

 
5. Informative prior distributions from a common distribution over multiple studies 

 
PROC MODEL in SAS can also be used to perform another type of meta-analysis to generate an 
informative prior distribution. Under the assumption that the same prior distribution applies to 
these previous studies and the next study, and that all of these studies are exchangeable, then the 
following approach may be suitable. Unlike the mixture approach that was described previously, 
this approach assigns equal weight to each study, regardless of the number of genotypes that 
were observed in each study. This technique is more computationally intensive than the mixture 
approach; however,  it also provides some useful diagnostic analyses and extensions. 
 
This technique was applied with PROC MODEL using the same data that were used in the 
previous example. A lognormal distribution was chosen for the informative prior distribution. 
Two equations were defined to represent the minimum and maximum from each study, 
expressed as functions of the parameters μ and σ with the CDF function. PROC MODEL 
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provided best-fit estimates of μ=6.4 and σ=0.6, corresponding to a mean of 738 μg g-1 and a 
standard deviation of 493 μg g-1. For comparison, the mixture of distributions method in the 
previous example returned a mean of 669 μg g-1  and a standard deviation of 378 μg g-1 for a 
lognormal prior distribution, illustrating the difference between weighting previous observations 
equally and weighting previous studies equally. 
 

 
Figure 4. Lognormal prior distribution from assumed common distribution 

Along with the parameter estimates of μ and σ, PROC MODEL provided their associated 
standard errors. If desired, these standard errors may be used in a Bayesian analysis to indicate 
the uncertainty of the parameters of the prior distribution. For example, instead of assuming 
μ=6.4 for the prior distribution, the parameter μ could be assigned a normal hyperprior 
distribution with mean 6.4 and standard deviation 0.1. Likewise, an informative prior distribution 
that allows correlations among the parameters in the model may be used. The COVB option in 
PROC MODEL provides a listing of the covariance matrix for the estimates, which could be 
used to specify a bivariate prior distribution for μ and σ.  
 
Various diagnostic results involving the residuals were provided by PROC MODEL, such as the 
mean square error of the residuals for the equations for the minima and maxima. The 
PLOTS(UNPACKPANEL) option produced a series of plots for assessing the goodness of fit of 

82

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2012/proceedings/7



the estimates, including plots of the studentized residuals for both equations.  Such diagnostics 
could be used to identify unusual studies from the list of previous studies that were used to form 
the prior distribution. 
 

6. Facilitation of Bayesian sensitivity analyses 
 
The derivation of an informative prior distribution in an objective, analytical manner, as shown 
in the previous examples, should help to alleviate any concerns that an informative prior 
distribution was chosen specifically to support a certain predetermined conclusion with a 
Bayesian analysis. The sensitivity of the analyses to the choice of the prior distribution may be 
assessed by using two or more prior distributions and comparing the results from the resulting 
analyses (Gelman, et al., 2004). Using the residual analyses that are provided by PROC 
MODEL, alternative prior distributions may also be compared before fitting a Bayesian model to 
new data.  
 
To illustrate the approach with two prior distributions, a truncated normal distribution that is 
common to all studies may be used instead of a lognormal distribution. The new function for a 
truncated normal cumulative density function was defined using PROC FCMP and applied to the 
daidzein data, and the results were compared to the results from the previous example. The 
results are illustrated in Figure 5. 
 

 
Figure 5. Comparison of lognormal and truncated normal distributions 
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The mean square errors of the residuals were compared, with lower values indicating a closer fit. 
The derived truncated normal distribution matched the minima from previous studies more 
closely than the lognormal distribution, but it did not match the previous maxima as closely. The 
same observations having standardized residuals of large magnitude with the lognormal 
distribution were also identified as unusual observations for the truncated normal distribution. In 
this example, the truncated normal prior distribution did not offer a clear advantage over the 
lognormal prior distribution. 
 
Comparisons of the posterior distributions resulting from multiple models could be conducted to 
examine the sensitivity of the analyses to the choice of the prior distribution. Such comparisons 
could include: (1) overlaid density plots of the competing prior distributions for evaluation of 
features such as skewness and kurtosis, (2) density plots of the prior distributions overlaid with 
the corresponding sample statistics from the new study for evaluation of features such as outliers, 
(3) density plots of the prior distributions overlaying a histogram of the samples from the 
corresponding posterior distributions after fitting the Bayesian model, (4) plots of the posterior 
means and credible intervals of the same parameter from the competing distributions,  and (5) 
plots of the posterior predictive distributions of sample statistics, such as the sample mean and 
variance (Gelman, et al., 2004). Chen (2010) provided SAS code for plotting posterior predictive 
distributions and Bayesian posterior p-values from PROC MCMC in SAS. 
 

7. Summary 
 
Bayesian methods provide the advantages of expanded and simplified interpretation in the 
analyses of crop composition data for regulatory reviews. In order to extend Bayesian analyses to 
a wide variety of compositional analytes, informative prior distributions will be necessary. 
Analytical methods are available for deriving informative prior distributions for subsequent 
Bayesian analysis from information that is elicited from an expert or by using previous results of 
one or more studies. These analyses allow evaluations of goodness of fit, as well as construction 
of sophisticated models with hyperparameters, nonstandard prior distributions, and multivariate 
prior distributions. Sensitivity analyses may be conducted by using the same routines to generate 
different prior distributions, then comparing the results from the corresponding Bayesian models. 
Graphical analyses are encouraged to assess the appropriateness of the chosen prior distribution. 
By following objective, transparent construction of prior distributions and providing thorough 
evaluations of goodness of fit, Bayesian approaches have the potential to be incorporated into 
regulatory reviews of crop composition data. 
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