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VARIANCE INFLATION FACTORS IN REGRESSION MODELS  
WITH DUMMY VARIABLES 

 
 
Leigh Murray1, Hien Nguyen2, Yu-Feng Lee2, Marta D. Remmenga3, and David W. Smith1 

  
1Department of Statistics, Kansas State University, Manhattan, KS 66505; 2Department of 
Economics and International Business, Las Cruces, NM 88003; 3Centers for Epidemiology and 
Animal Health, USDA-APHIS-Veterinary Services, Fort Collins, CO 80526 
 

Abstract  
 

Variance Inflation Factors (VIFs) are used to detect collinearity among predictors in regression 
models.  Textbook explanation of collinearity and diagnostics such as VIFs have focused on 
numeric predictors as being "co-linear" or "co-planar", with little attention paid to VIFs when a 
dummy variable is included in the model.    This work was motivated by two regression models 
with high VIFs, where "standard' interpretations of causes of collinearity made no sense.  The 
first was an alfalfa-breeding model with two numeric predictors and two dummy variables.  The 
second was an economic model with one numeric predictor, one dummy and the numeric x 
dummy cross-product.  This paper gives formulas for VIFs for several regression models with a 
dummy variable which indicate that these VIFs are functions of the numeric predictors' means, 
sums of squares and sample sizes within the two dummy groups.  The economic regression 
model is also presented to illustrate how high VIFs occurred in this data.  Researchers should be 
cautious in using high VIFs as a reason for deleting predictors in general but especially if dummy 
variables are involved.  It is recommended that collinearity diagnostics be applied to the numeric 
predictors first to check for collinearity without the influence of any dummies, then add dummy 
variables in one at a time to see their effect on VIFs. 
 
Keywords:  collinearity, multicollinearity, indicator variable 
 

 

1.  Introduction 

Variance Inflation Factors (VIFs) are used to detect collinearity (also called  
multicollinearity) among predictors in a multiple linear regression model (Belsley, et al. 1980).  
High VIFs reflect an increase in the variances of estimated regression coefficients due to 
collinearity among predictor variables, over variances obtained when predictors are orthogonal.  
[Note that in the context of this paper, by "collinearity" we specifically mean that the columns of 
the regression X-matrix have approximate or near linear dependencies; we are not considering 
other potential definitions of collinearity that may be defined with respect to unbalanced analysis 
of variance models.]  Models with collinearity thus have estimators with lower precision, with 
consequent problems in testing hypotheses and forecasting (Marquardt 1970; Belsley et al. 1980; 
Fox and Monette 1992; Kutner, et al. 2004). 
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Many familiar regression textbooks (e.g., Mendenhall and Sincich 2004, Kutner et al. 
2004, Kleinbaum et al., 1998, Graybill and Iyer 1994) illustrate collinearity and discuss 
diagnostics only in the context of numeric predictors, with an implicit assumption that results for 
dummy variables (or indicator variables) are equivalent.  Indeed, in many regression examples 
where there are both numeric and dummy variables, little distinction is made between the two 
with respect to variable selection, collinearity diagnostics, and residual diagnostics like DFFITS 
and DFBETAS.  This is in contrast to related Analysis of Covariance models where there is a 
clear hierarchy of importance or focus between the treatment factor (typically of most interest) 
and the covariate(s) (often of interest only as they make inferences on treatments more precise 
and powerful). 

This work described in this paper was motivated by two statistical consulting projects 
where relatively simple regression models containing both numeric and dummy predictors were 
found to display high VIFs that didn't make obvious sense in the context of the two situations. 

The first example involves data from an alfalfa breeding program at New Mexico State 
University (personal communication, Hem Bhandari and Ian Ray, Dept of Plant and 
Environmental Sciences).  The overall experiment was a ½ diallel with nine parents and 36 
crosses.  The regression model of interest was developed to predict yield of the crosses based on 
two numeric predictors and two dummy variables.  The two numerics were mid-parent heterosis 
(MPH, based on the parental yield data) and genetic distance (GD, measured by AFLP).  The 
two dummies variables were based on whether parents agreed (1) or differed (0) with respect to 
respect to the categorical characteristics of winter hardiness and fall regrowth.  Collinearity 
diagnostics, performed by a very conscientious Hem Bhandari, showed high VIFs for all 
predictors in the full model, but a plot of MPH versus GD did not reveal much "co-linear" 
behavior.  Bivariate plots of other pairs of predictors were likewise unhelpful. 
 The second example (even simpler than the alfalfa data) is from the research of the third 
author of this paper.  The initial regression model contained one numeric predictor, one dummy 
variable and their cross-product.  The response was annual per capita consumption in Taiwan 
(R.O.C.) from 1976 to 2004.  The numeric predictor was annual per capita income, and the 
dummy variable was defined as 1 for the "pre-reform" stage (1996-1999) and 0 for the "post-
reform" stage (2000-2004).  Initial model fitting showed a highly significant model and very 
high R-square but with all three regression coefficients being nonsignificant.  Doing the obvious 
thing—to check for collinearity—revealed that the three VIFs for this model were all larger than 
5800!  To understand what was causing the high VIFs in this data+model, the second author 
obtained formulas for the VIFs for two models as her Experimental Statistics masters project 
(Nguyen 2008; models 1 and 2 below).  Her work was then extended to try to illuminate what 
might cause high VIFs in more complicated models with dummy variables, like the alfalfa yield 
model.   
 This paper presents VIF formulas for four simple regression models with both numeric 
and dummy variables:  1) one numeric and one dummy; 2) one numeric, one dummy, and their 
cross-product; 3) Two numerics (the standard simple collinearity example) and 4) two numerics 
and one dummy.  The outline is as follows.  Section 2 provides a brief review of Variance 
Inflation Factors.  Section 3 provides formulas for the X -matrix, the correlation matrix R , and 
the VIFs for the four models given above.  In addition, Section 3 gives conditions for VIFs being 
"large" or equal to 1 and for I=R .  Section 4 examines the economic example in more detail, to 
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illustrate the VIF formulas for Models 1 and 2.  Finally, Section 5 provides some general 
conclusions about using VIFs in regression models with dummy variables. 
 

2. A Brief Review of Variance Inflation Factors 
 

As mentioned previously, many regression textbooks illustrate collinearity using only 
numeric predictors, showing the observed values of two predictors being literally "co-linear" or 
three predictors being "co-planar".  Diagnostics include pairwise correlation coefficients (for a 
collinearity involving only two predictors) and condition indices and VIFs (Marquardt 1970) for 
multi-variable relationships.  In this paper, we focus on VIFs, because VIF formulas are given 
for each predictor, which is supposed to identify that predictor's contribution to a collinearity 
problem.  It is, however, likely that condition indices suffer from similar issues as VIFs.  

For the multiple regression model with p predictors, Xi, i=1,…,p, VIFs are the diagonal 
elements (rii) of the inverse of the correlation matrix pxpR of the p predictors (Chatterjee and 
Price 1977; Belsley et al. 1980).  The VIF for the ith predictor variable can be expressed by 

  ,,...,1,
1

1
2 pi

R
rVIF

i

ii
i =

−
==  

where Ri
2 is the multiple correlation coefficient of the regression between Xi and the remaining  

p-1 predictors.  
Belsley et al. (1980) pointed out that there is not a clear cutoff point to distinguish 

between "high" and "low" VIFs.  Several researchers (e.g., Hocking and Pendelton 1983; Craney 
and Surles 2002) have suggested that the "typical" cutoff values (or rules of thumb) for "large" 
VIFs of 5 or 10 are based on the associated Ri

2 of 0.80 or 0.90, respectively.  O’Brien (2007) 
recommended that well-known VIF rules of thumb (e.g., VIFs greater than 5 or 10 or 30) should 
be treated with caution when making decisions to reduce collinearity (like eliminating one or 
more predictors) and indicated that researchers should also consider other factors (e.g., sample 
size) which  influence the variability of regression coefficients.  

 
3.  Four Regression Models and Their VIFs 

 
3.1  General Notation Used for All Four Models 
 

In this section, we define general notation and statistics that will be used with each 
model.  First, the scalars jy0 , jx0 , and jw0 , 0,...,1 nj = , denote observations for the response and 
first (x) and second (w) numeric predictors, respectively, for  observation j in the set of the 

0n observations for which the dummy variable is zero.  Similarly, jy1 , jx1 , and jw1 , 1,...,1 nj = , 
denote the analogous values of the 1n observations  for which the dummy variable is one.  The 
total number of observations is denoted by 10 nnn += .  Necessary scalar quantities, for the 
predictor x, are sample means and sums of squares, for each group and overall, denoted as:  
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with analogous quantities being defined for the second predictor, w.  In addition, the sum of 
cross-products between x and w is denoted as  

 ))((      ))(( 0101
10

1

1

0
1100

wwxx
n
nnSSSSwwxxSS wxwx

n

j
ijij

i
xw

i

−−++=−−= ∑∑
==

, 

where 
00wxSS  and 

11wxSS  are defined analogously to 
0xSS  and 

1xSS . 
The 1×n  response vector y (to establish the order of the data) is given by 

 [ ]   
10 1121100201 ′= nn yyyyyyy     .  

The 1×in  vector of predictor values for x when the dummy is either zero or one is therefore 

 [ ] 1,0, 21 =′= ixxxX
iiniii   , 

with analogous vectors defined for w.  The symbols J  and 0  denote a column vector of ones or 
zeroes, respectively, of appropriate dimension. 
 For all models, we give the model matrix, denoted as )1( +× pnX  (which includes the 
intercept column of ones), the pp×  R matrix of correlations among the predictors, and the p 
VIF formulas, obtained as the diagonal elements of 1−R . 

 

3.2  Regression Model 1: One Numeric Predictor and a Dummy Variable 

With Model 1, we are modeling two simple linear regressions with a common slope and 
different intercepts.  The 3×n  model matrix is 

 







=×

11

0

1

0
3

0

nn

n
n JXJ

XJ
X ,  

with columns corresponding to intercept, x, and dummy variable, in order.  The  
22×  correlation matrix is  
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Taking the inverse of R, we obtain the following VIF, which is, of course, the same for x 
and the dummy variable: 

 
10 xx
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dummyx SSSS

SS
VIFVIF
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== ,      
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xx SSSS
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−

+=   

         21
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        )2/(      1 10
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where pbr  is the point-biserial correlation coefficient (Kendall and Stuart 1961) 
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SS
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and xt  is the formula for the ordinary two independent-sample t with 210 −+= nndf  for testing 
the equality of the two dummy group x-means when the group variances are equal: 
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− nn
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r
r x

pb

pb  

 This VIF makes sense because 22
pbxd rR = .  It is also invariant with respect to the dummy 

coding (i.e., which group is assigned the dummy value of zero).  This VIF is clearly "large" if the 
two-sample t is large and the two sample sizes are small, that is, if the dummy group means are 
quite different from each other relative to the within-sample variability and sample size.  Given 
this situation, a "large" VIF should not be naively taken to imply collinearity nor used as the 
basis for deleting either variable from the model. 

Note also that if 01 xx = , 1== dummyx VIFVIF  and 2I=R .  Does this condition really 
imply "no collinearity" in the sense of an approximate linear dependency between columns of the 
X matrix? 
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3.3  Regression Model 2: One Numeric Predictor, a Dummy Variable and the Numeric ×  
Dummy Cross-product  
 

With the second model, we are modeling two simple linear regressions with different 
intercepts and different slopes.  The 4×n  model matrix is 









=

11

0
4

11

0
00

XJXJ
XJ

X
nn

n
nx ,  

with columns corresponding to intercept, x, dummy variable, and x ×  dummy cross-product, in 
that order.  The 33×  correlation matrix is 
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




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The VIF for x is: 

 
0x

x
x SS

SS
VIF =   

         
00

1

2
0110 ))(/(

1
xx

x

SS
xxnnn

SS
SS −

++=     

         
1

)(
1

0

2*

0

1

−
++=

n
t

SS
SS

x

x

x ,        (3.2) 

where *
xt  is the formula of an alternative two independent-sample t statistic with equal variances, 

which uses only the sample variance for group 0 to construct the t  statistic and hence has 
10 −= ndf : 
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xVIF  is "large" if *
xt  is large and 0n  is small, similar to the VIF for Model 1, but is also 

large if the sum of squares for the group dummy of 1 is large, relative to that in the group with 
dummy of 0.  This means that this VIF is not, in general, invariant with respect to the coding of 
the dummy variable.  However, if 01 xx =  and 

10 xx SSSS = , then xVIF  is invariant with respect to 
the dummy coding and is equal to 2.   

Now the interesting result:  xVIF =1 if and only if 01 xx =  and 0
1
=xSS !  The first 

condition obviously can be made to happen by separately centering 1X  and 0X , but the second 
requires that all the values of 1X  be a constant (!) which means that the 4×n  X matrix (above) 
has an exact singularity between column 3 and column 4 and is hence not full-rank.  This 
situation would never arise in "real life," which implies that xVIF  will always indicate some 
degree of "variance inflation".  

The VIF for the dummy variable is:  
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where 1,0  , =it
ix , is the one-sample t statistic for testing the true x-mean for group i is zero, 

which has 1−= indf : 
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dummyVIF  is invariant with respect to the dummy coding.  In addition, it is "large" if the 
one or both of the one-sample 

ixt 's are large (i.e., the group x-means are large, relative to their 
respective sums of squares), and is also large (all other things being equal) if 0n  and 1n  are close 
to 2/n .  

Note that dummyVIF  is equal to 1 when 010 == xx .   
 
The third VIF, for the x ×  dummy cross-product, is  
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where xdSS  is the sum of squares calculated from column four of the model matrix, that is, 
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with the mean of column four being 
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∑
=    . 

With similarities to both xVIF and dummyVIF , the dummyxVIF ×  is "large" if the square of the group 1 
x-mean is large relative to the two within-group sums of squares, but is also large if 0n  and 1n  
are close to 2/n ,as for dummyVIF  (3.3) and if the sum of squares for group 1, is large, relative to 
that in group 0, as for xVIF  (3.2).  Hence dummyxVIF × , like xVIF , is not invariant with respect to 
the coding of the dummy variable, but is equal to 2 if 01 =x  and 

10 xx SSSS = . 
 Similarly to xVIF , 1=×dummyxVIF  if  and only if 01 =x  and 0

1
=xSS , which again will not 

happen in "real life". 
 Finally, the closest that the correlation matrix can be to "no correlation" in "real life" is 
when 001 == xx : 

 
















=
1
01
/01

1

symmetric

SSSS
R

xx

. 

As with Model 1, should we take large VIFs in Model 2 to indicate a "collinearity problem"? 
 
3.4  Regression Model 3: Two Numeric Predictors  
 

The model with two numeric predictors x and w is included to provide a comparison for 
the model with two numeric predictors and a dummy variable which is discussed in the 
following section.   

The 3×n  model matrix is 
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and the 22×  correlation matrix is  
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Therefore the VIF for x and w is 
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This VIF has the classic interpretation, based on the R2 of the regression between the two 
numeric predictors x and w.  Clearly, if 1== wx VIFVIF , then 2I=R .  Of interest is how this VIF 
changes when a dummy variable is included. 
 
3.5  Regression Model 4: Two Numeric Predictors and a Dummy Variable  
 

The model with two numeric predictors x and w and a dummy variable has 4×n  model 
matrix:  
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with columns corresponding to intercept, x, dummy variable, and w, in that order.  The 33×  
correlation matrix is 
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The VIFs for x and w are symmetric versions of each other:  
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where 
iiwxr  is the correlation coefficient between x and w taking group into account (that is, 

pooling the within-group sums of cross-products and sums of squares) 
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and xt and wt  are the usual two independent-sample t statistics with equal variances, as in (3.1).  
Both xVIF and wVIF  are invariant with respect to the dummy coding. 

These two VIFs show two modifications over the VIF for the model with just two 
numeric predictors (3.5).  First, they contain the correlation coefficient between x and w 
accounting for dummy groups (3.8), as opposed to the correlation ignoring groups as in Model 3 
(3.5).  Second, these VIFs also include a factor containing the two-sample t (for either x or w), 
which reflects how far apart the group means are, relative to the within-group variability, as in 
the Model 1 VIF (3.1).  If there is no within-group correlation between x and w (i.e., 

0
1100
== wxwx SSSS ), then either or both of xVIF and wVIF  could be large solely because of the 

magnitudes of the respective 2t 's, relative to the sample sizes.  
 The VIF for the dummy variable is 
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It can be shown that dummyVIF will be equal to one (indicating no collinearity) if  
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that is, if 01 xx =  and/or 01 ww =  and/or if 
1100

  wxwx SSSS −=  ( which can occur if 
)0  

1100
== wxwx SSSS .  Therefore, the dummyVIF  again can be large if the group means are far apart 

for one or both of the numeric predictors, even if the pooled within-group correlation is small.  
Again, dummyVIF  is increased if 0n  and 1n  are close to 2/n . 
 Note that the pooled within-group sum of cross-products (

1100 wxwx SSSS + ) appears in all 
three VIFs for Model 4.  If the within-group sum of cross-products correlation between x and w 
is equally high in absolute value for each group (indicating within-group collinearity) but 
opposite in sign, both xVIF (3.6) and wVIF  (3.7) could be close to zero and would not signal a 
potential collinearity problem. 
 Finally, 3I=R  if and only if 01 xx =  and 01 ww =  and 0=xwSS .  The last condition is 
equivalent to the "traditional" condition of Model 3 with two numeric predictors but the other 
two are the same as in Model 1. 
 
3.6  General Conclusions about the VIF Formulas   
 

In general, the VIFs in the three models with dummy variables can be "large" for three 
basic reasons that are not related to classical concepts of collinearity:  

1) if dummy group means are far apart from each other or a group mean is far from zero, 
relative to measures of variability (Model 1, xVIF  = dummyVIF ; Model 2, xVIF , dummyVIF  and 

dummyxVIF × ; and Model 4, xVIF , wVIF  and dummyVIF );  
2) if there are very unequal within-group sums of squares (Model 2, xVIF  and 

dummyxVIF × ); 
and 

3) if sample sizes are small in each dummy group (Model 1, xVIF  = dummyVIF ; Model 2, 

xVIF  and dummyVIF ; and Model 4, xVIF and wVIF ); and, to a lesser extent, if sample sizes are 
approximately equal (making nnn /10  large) (Model 1, xVIF  = dummyVIF ; Model 2, dummyxVIF × ; 
Model 4, dummyVIF ). 

 
4.  A Small Numeric Example: the Economic Example 

 
As indicated previously, the economic data consisted of the response annual per capita 

consumption and the numeric predictor annual per capita income, both in hundred thousand U.S. 
Dollars, from 1976 to 2004, as well as a dummy variable.  The dummy variable was due to a 
policy reform in Taiwan in 2000 that disaggregated the income-consumption relationship over 
1976 - 2004 into two different stages, the first "pre-reform" stage from 1976 to 1999 with the 
"stage dummy" designated as 1 and the second "post-reform" stage from 2000 to 2004 with the 
"stage dummy" designated as 0.  The data were retrieved from the website of Statistical 
Yearbook of the Republic of China (Taiwan R.O.C.) at http://www.stat.gov.tw.   
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Figures 1 and 2 show the trends of income and consumption over time and the 
relationship between consumption and income, respectively.  Pertinent summary statistics for 
this dataset are (data divided by $100,000): 50 =n , 241 =n .  82.80 =x , 74.41 =x , 45.5=x , 

04.
0
=xSS , 87.159

1
=xSS , and 55.228=xSS .  All regression models were fitted using the SAS® 

REG procedure with VIF option (SAS® Institute 2007).   
In the initial analysis, Model 2 was fitted to this data, with all three VIFs being greater 

than 5800.  Model 1 was also fitted, with VIFs showing no sign of collinearity according to the 
"5" rule of thumb (Hocking and Pendleton 1983, Craney and Surles 2002).  Nguyen (2008) 
subsequently obtained VIF formulas for Models 1 (equation 3.1) and 2 (equations 3.2, 3.3, and 
3.4), verifying the formulas numerically.  For this paper, two other models were fitted for 
comparison purposes (Table 1): Model 0 (the simple linear regression model with no dummy 
variable); and Model 5 (model with the numeric predictor and the numeric*dummy cross-
product.  In addition, Models 1, 2, and 5 were fitted with reverse dummy coding (i.e., 1976-1999 
was coded as 0 and 2000-2004 was coded as 1) to see the effect of coding on VIFs (Table 1).  
Note, however, that when there are only two predictors (other than the intercept) in the model, 
that dummy coding will have no effect as the two predictors will always have the same numeric 
VIF.  Thus, only Model 2 will show the effect of recoding on values of VIFs.   

Table 1 summarizes the adjusted R-square, VIFs and regression coefficient p-values for 
all four models.  Note that Models 0, 1, and 5 do not have "large" VIFs, according to the "5" rule 
of thumb.   

Model 2, the original motivator of this work, is more interesting and we discuss it in 
some detail.  First, the VIF (3.2) for income is high ( 5863≈xVIF ) because 55.228=xSS  is very 
much larger than 04.

0
=xSS .  This VIF value can be broken down into the contribution due to 

the ratio of 
1xSS to 

0xSS  ( 410104./87.159 ≈ ) and the contribution due to the difference in group 

means (i.e., 1761/))(/(
0

2
0110 ≈− xSSxxnnn ).  Note that if the dummy coding is reversed, the 

VIF for income becomes 228.55/159.88 =1.43 (definitely not a red flag).  
The high VIF for the stage dummy variable (3.3) ( 8255≈dummyVIF ) is due almost entirely 

to the high ratio between the square of the mean and the sum of squares for dummy group 0 (i.e., 
8254/))(/(

0

2
010 ≈xSSxnnn ).  Note that this VIF is invariant with respect to the dummy coding.  

Also note that if the sample sizes were close to evenly split between the two dummy groups (i.e., 
14 and 15) that the multiplier )/( 10 nnn  would increase from about 4.14 to about 7.24.   

The VIF for the cross-product between income and the stage dummy variable (3.4) is 
high ( 6493≈×dummyxVIF ) because of reasons similar to those of the VIF for income.  Again, the 
ratio of 

1xSS to 
0xSS  contributes about 4101 to this VIF, while the contribution of the part due the 

term ]/1/1/[))(/(
10

2
110 xx SSSSxnnn +  is about 2391.  Note that if the dummy coding is reversed, 

this VIF is about 8257 and the contribution of the term ]/1/1/[))(/(
10

2
110 xx SSSSxnnn +  

is about 8050.  
With respect to the practicalities of model selection in this specific case, predicted values 

and their standard errors are virtually identical to 4 decimal places.  Adjusted R-squares (Table 

172

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2012/proceedings/12



1) are all above 0.99.  Mean square error is likewise very similar (about 0.012), except that 
Model 0 (the simple linear regression model has MSe that is almost double that of the other three 
models (about 0.023). Therefore, any choice among the four models makes little difference, if 
one's aim is estimation and/or prediction.   

 
5. Summary 

 
None of the conditions for "large" VIFs for Models 1, 2, and 4 (summarized in section 

3.6) would seem to measure linear dependencies among columns of the X -matrix, the classic 
definition of collinearity", and although some might interpret the VIFs as a form of variance 
inflation, it doesn't seem that such (potentially large) VIFs should be reasons for deleting 
predictors from models. 

Fortunately, in the example presented in Section 4, one can look at all possible reasonable 
models, and plotting the data (Figures 1 and 2) gives a very clear idea of what is occurring.  In 
many other situations (say 8 numeric predictors and 5 dummy variables), there are too many 
possible models and examining bivariate plots can never be truly informative.   

So consider the situation of 8 numeric predictors and 5 dummy variables with large VIFs 
for the entire set of predictors.  How can one use the results of this paper for decision making in 
more complex models, given that obtaining explicit VIFs formulas is not an appealing option and 
bivariate plots are of limited help? First, as indicated in many regression textbooks (e.g., 
Mendenhall and Sincich 2012) one needs to decide if one is interested in interpreting individual 
regression coefficients or "only" in estimating and predicting.  If the latter, then one is interested 
in the goodness of the model as a whole, and collinearity may not be of concern.  If the former, 
then collinearity (as measured by VIFs or condition indices) must be addressed, which typically 
means deleting a predictor that participates in each collinearity.  A possible strategy to 
investigate what predictors might be deleted is to check VIFs in several steps.  First, check VIFs 
in a model with only the numeric predictors, as it would be helpful to know if numerics are "co-
linear" or "co-planar" without the influence of the dummies.  If there is "enough" data, one might 
also check VIFs for numerics for separate categories of a dummy, to see if collinearity exists 
within each dummy category for numerics.  Third, if the numerics by themselves don't appear to 
be causing a problem, check VIFs adding in one dummy at a time. 

One final comment:  Issues with VIFs in the presence of dummy variables 
identified in this paper as contributing to high VIFs may be thought to produce "variance 
inflation", but unless the researcher can exercise more control over data than typically happens in 
regression situations, the "variance inflation" would appear to just be a characteristic of the 
dummy categories under consideration.  In this case, then, if even one is interested in interpreting 
regression coefficients, perhaps dummy variables should be treated differently from numerics 
and not deleted just to reduce "collinearity". 
 
Acknowledgements:  The authors thank a reviewer for questioning the result that two of the 
VIFs reduce to 2 under certain conditions, which led to the more interesting result of when they 
reduce to 1.  
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Figure 1: Plot of annual per capita income and consumption versus time.  Data retrieved from 
Statistical Yearbook of the Republic of China (Taiwan R.O.C.) at http://www.stat.gov.tw. 
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Figure 2.  Plot of Annual per capita consumption versus annual per capita income.  Data 
retrieved from Statistical Yearbook of the Republic of China (Taiwan R.O.C.) at 
http://www.stat.gov.tw. 
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Table 1.  Adjusted R-squares, variance inflation factors (VIF) and regression coefficient p-
values for four regression models for the Taiwan economic data.  Overall model p-value is 
p<0.0001 for all models.  Original dummy coding is 1 for 1976-1999, 0 for 2000-2004. 
 

p-value VIF p-value VIF
Model 0
Intercept 0.4818 n/a n/a n/a
X <0.0001 1.0000 n/a n/a
Adjusted Rsquare=0.9948

Model 1
Intercept <0.0001 n/a <0.0001 n/a
X <0.0001 1.4290 <0.0001 1.4290
Dummy <0.0001 1.4290 <0.0001 1.4290
Adjusted Rsquare=0.9973

Model 2
Intercept 0.9711 n/a 0.0187 n/a
X 0.1979 5862 <0.0001 1.4296
Dummy 0.9901 8255 0.9901 8255
X*Dummy 0.9575 6493 0.9575 8257
Adjusted Rsquare=0.9972

Model 5
Intercept 0.0157 n/a 0.0157 n/a
X <0.0001 1.1240 <0.0001 1.1240
X*Dummy <0.0001 1.1240 <0.0001 1.1240
Adjusted Rsquare=0.9973

         Original  coding                     Reverse coding                 
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