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Abstract: High-throughput metabolite analysis is very important for biologists to identify the 
functions of genes. A mutation in a gene encoding an enzyme is expected to alter the level of the 
metabolites which serve as the enzyme’s reactant(s) (also known as substrate) and product(s). To 
find the function of a mutated gene, metabolite data from a wild-type organism and a mutant are 
compared and candidate reactants and products are identified. The screening principle is that the 
concentration of reactants will be higher and the concentration of products will be lower in the 
mutant than in wild type. This is because the mutation reduces the reaction between the reactant 
and the product in the mutant organism. Based upon this principle, we suggest a method to 
screen metabolite pairs for candidate reactant-product pairs. Metrics are defined that quantify the 
effect of a mutation on each potential reaction, represented by a metabolite pair. For reactions 
catalyzed by well-characterized enzymes, one or more biologically functioning reactant-product 
pairs are known. Knowledge of the functional reactant-product pairs informs the development of 
the metrics.  The goal is for ranking of the metrics for all possible pairs to reflect the likelihood 
that a particular metabolite pair is a functional reactant-product pair.   
 
Key words: Lipid experiment; Pathway analysis; Reactant-product lipid pairs; Metabolome; 
Statistic distribution; 
 
1. Introduction 
 

The metabolome is the total collection of the set of small molecule metabolites (Oliver et 
al. 1998; Oliver 2002; Griffin and Vidal-Puig 2008; Dunn et al. 2005). The metabolome includes 
metabolic intermediates, hormones, and other products and intermediates of metabolism. Unlike 
the genome and the proteome whose elements are composed of similar building blocks, the 
metabolome is a group of dynamic molecules with varied structures. Biologists use metabolic 
profiling to get a “snapshot” of the composition of metabolites to understand biomolecular 
functions within organisms. Since metabolites are products of gene and protein function, it can 
be argued that they provide the most complete description of cellular function (Wu et al. 2005; 
Raamsdonk et al. 2001). Metabolic studies can be used to address the question of how a gene’s 
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mutation affects phenotypes of the organism. Many biologists advocate metabolic profiling in a 
functional genomics study (Dixon et al. 2006).  

One subset of the metabolome, the lipidome, plays an important role in the biochemical 
processes in the cell. Lipids are compounds of biological origin that are poorly soluble in water 
but are soluble in nonpolar solvents (Blei and Odian 2006). They include well-known 
compounds, such as triglycerides, phospholipids, sterols, fat-soluble vitamins, fatty acids, and 
many others. Many lipids are structural components of cell membranes. The concentration of 
lipid metabolites in the cell may change due to both internal and external factors (Welti and 
Wang 2004). Concentrations of lipids reflect enzymatic activities which make and degrade them. 
The action of enzymes involved in lipid formation and break-down is dependent on the presence 
of genes encoding the enzymes. If a lipid-metabolizing gene is mutated and its enzyme is no 
longer made, the levels of the gene product’s reactant(s) and product(s) will be altered.  
Biological reactions may be part of a long chain of reaction paths or reaction networks.  

In this paper, we conduct an exploratory analysis of mutation effects on reactant-product 
pathways in the plant Arabidopsis thaliana, a model plant with many available mutants. Using 
knowledge of certain known pairs whose reaction is modified by the mutation, we define metrics 
that quantify the effect of the mutation on the reaction. An optimal metric will allow one to rank 
all possible metabolite pairs in order of the likelihood that the mutation modified the pathway 
between them. We use experimental data derived from analysis of wild-type plants and those 
defective in an enzyme involved in the addition of double bonds to fatty acid groups in 
membrane lipids. The defective enzymes are known as a “desaturases.” Table 1 lists 
abbreviations that are used. For example, DGDG34:6 represents a lipid that has 34 acyl carbons 
and 6 carbon-carbon double bonds, with a head group DGDG (digalactosyldiacylglycerol). To 
develop the scheme used to identify a reactant-product pair whose reaction is reduced by a 
mutation, among all lipid pairs, the notation in table 2 is used, where WT = wild type and MT = 
mutant. Figure 1 illustrates the scheme used to find a reactant and product lipid pair in a 
metabolic pathway.  

In Figure 1, (a) A → B is a general notation for an arbitrary reactant and product pair if A 
is a reactant and B is its product in the pathway. (b) Aw → Bw is a notation to show that Aw can 
generate Bw. In the wild type condition, this reaction leads to decreased concentration in Aw and 
increased concentration in Bw. In step (b), Am  Bm is the notation that indicates that the 
generation of Bm from Am is reduced if there is a mutation that affects the pathway between 
reactant and product in the mutant. A decrease in the reaction occurs because the mutation 
lowers the level of the enzyme that is used to catalyze the reaction. As a result, the concentration 
of the reactant Am increases, and the level of Bm decreases. In general, if Aw→ Bw and Am 

 Bm in Figure 1 (b), the reactant A should have higher concentration in the MT group than 
in the WT group, and the product B should have lower concentration in the MT group than in the 
WT group. This leads to the two relations shown in (c), i.e., Aw < Am and Bw > Bm. A reactant 
product pair adhering to the scheme in Figure 1 will be denoted an A-B pair in text that follows. 
The scheme illustrated in Figure 1 may seem overly simplistic. However, the usefulness of the 
scheme is enhanced by employing mutant and wildtype samples in the experiment. In a chemical 
reaction, no matter what the network, reactants (substrates) of a blocked reaction will be 
increased and products decreased. Other compounds may be affected also, but the substrate and 
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products should be among the affected compound group, provided they are measured.  Here we 
are only interested in those points in the network that are altered by the mutation.   
 
Table 1: Abbreviations used in this paper 

DGDG digalactosyldiacylglycerol 
fad fatty acid desaturase (deficiency)
LysoPC lysophosphatidylcholine 
LysoPG lysophosphatidylglycerol 
MGDG monogalactosyldiacylglycerol 
PA phosphatidic acid 
PC  phosphatidylcholine 
PE phosphatidylethanolamine 
PG phosphatidylglycerol 
PI phosphatidylinositol 
PS phosphatidylglycerol 

 
Table 2: The reactant-product notation in the wild type and mutant groups 

A Reactant in the pathway 
B Product in the pathway 

Aw  Reactant concentration in WT  
Am  Reactant concentration in MT  
Bw  Product concentration in WT  
Bm  Product concentration in MT  

 

 
 

 
Figure 1: The principle used to find reactant and product A-B lipid pairs 
If A is the reactant and B is the product in the pathway in (a), then reactant A can generate B in 
the WT, i.e., Aw→ Bw, but A cannot generate B in the MT group, i.e., Am  Bm in (b). As a 
result, Aw < Am and Bw > Bm as shown in (c) (Fan 2010). 

 
Data from six lipidomic experiments (see the detailed experimental information in Fan 

2010) were collected on mutant plants with mutations in genes with known functions. These 
mutations were fad2 (Okuley et al. 1994), fad3 (Arondel et al. 1992), fad4 (Gao et al. 2009), fad5 
(Mekhedov et al. 2000), fad6 (Falcone et al. 1994), and fad7 (Iba et al. 1993 and Gibson et al. 

1994). A total of 19740
2

141
2 







  lipid pairs from the 141 lipids were considered in each of the six 
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different lipidomic experiments. There were 5 samples in the WT group and 5 samples in the MT 
group. To discriminate the possible reactant-product pairs in the 19740 arbitrary lipid pairs, a list 
of known reactant-product pairs were used as a criterion for developing a method to identify A-B 
pairs whose reaction is blocked by the mutation. These biologically functional lipid pairs have 
attributes that were explained in Fan (2010). These criteria, combined with knowledge of the 
particular mutation, assist the biologist in providing candidate biologically functional pairs that 
can be used to establish statistical metrics that quantify characteristics of these pairs. The goal 
herein is to use patterns that are apparent in the data for known biologically functional pairs to 
propose an exploratory method and metrics to identify candidate pairs in future experiments 
where the function of the mutation in the lipid pathway is unknown.   

Other approaches have been proposed for exploring and identifying metabolite networks. 
The main principle in many methods seeking to detect one metabolite in the pathway of another 
metabolite is to measure and analyze the change of concentration of the metabolites. Raamsdonk 
et al. (2001) introduced a technique to find the function of "silent" genes using metabolite level 
changes in a single-celled organism, Saccharomyces cerevisiae, a species of yeast. The 
researchers expected to reveal the role of unknown genes by comparing the metabolite profile of 
yeast with mutations in those genes to those of mutants in genes of known function using a co-
response coefficient in an approach they called FANCY (Functional Analysis by Co-responses in 
Yeast). The method in Raamsdonk et al. (2001) is closest to the approach proposed herein; 
however, their method considered concentration changes in six metabolites with respect to a 
single reference metabolite and used a subset of the information that is used here when defining 
metrics. 

Another method that has been used in metabolic pathway analysis is correlation analysis 
(Weckwerth et al. 2004; Fukushima et. al. 2011; Steuer 2006). Correlation analysis emphasizes 
that the metabolic fluctuation might have a linear association between the metabolite 
concentrations of a metabolite pair in the WT and in the MT groups. Fukushima et al. (2011) 
used Spearman's correlation to find correlations between pairs of metabolites that were 
significantly different from zero in two parts of a plant, the aerial and roots. They also tested for 
correlations between the pairs that were significantly different between aerial and root parts of 
the plant. Local False Discovery Rate (lfdr) was used for multiple testing control. 

We used Spearman's correlation analysis as reported in Fukushima et al. (2011) to 
determine if the technique was effective in identifying the biologically functional pairs in our 
lipid data sets. The tests of correlations did not detect any biologically functional pairs that were 
statistically different between the WT and the MT groups, so the use of correlation analysis does 
not appear useful for the problem considered here. New metrics are needed for quantifying A-B 
pairs whose reaction is blocked by the mutation. 
 
2. Data Exploration and Definition of Metrics 

 
Here, we refine the supporting evidence for a mutation effect (as shown in Figure 1) into 

a statistic(s). The method is exploratory and does not rely on distributional assumptions and 
accommodates potential nonlinear relations and zero values that are present in the data sets. 
Another limitation for developing statistical methods with these data is small sample sizes. Small 
sample sizes are not uncommon in metabolomics, and they present difficulties for using 
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assumptions of normality or application to central limit theorem and for use of correlation for 
quantifying relationships. Raamsdonk et al. (2001) analyzed their metabolomic data with 3 
samples in each treatment. In this experiment, 5 samples are taken for each treatment. Another 
challenge with metabolite data is a likely high-dimensional dependence structure among lipids 
and their concentrations. If there is a long chain of reactant and product pathways, one lipid's 
concentration change may be associated with all other lipids on the pathway. Therefore, one 
change in concentration of a lipid in the network might cause a sequence of changes in the 
pathway or the pathway networks (Steuer et al. 2003). However, as noted earlier substrates of a 
blocked enzyme will be increased and products decreased and this principle is used here in 
defining metrics to rank candidate lipid pairs whose reaction is blocked by the mutation. We do 
assume that the samples themselves are independent of each other.  

In the following part of this analysis, data from the fad2 experiment are used as an 
illustration. The other five data sets have similar properties. The unit of the data is nmol per mg 
dry weight. The first 5 samples are from the WT group and the last 5 samples are from the MT 
group. Table 3 lists all the notations for the samples before scaling. 
 
Table 3:  Notations used for one reactant A and product B in a lipid pair 

n: The sample size in each group.  
i :  Subscript i = 1, 2 to denote the “treatment,” 1 = WT and 2 = MT. 
 j :  Subscript j = 1, 2, …, n denotes sample within treatment. 

Before scaling: 

ijx : The concentration for the jth sample in the ith treatment for one lipid.  

ix : The group mean in the ith treatment for one lipid. 

x : The overall mean across two treatment groups for one lipid, 
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Aijx : The concentration of jth sample for lipid A in the ith treatment. 

Bijx : The concentration of jth sample for B in the ith treatment. 

Ax : The mean concentration of A across two treatments. 

Bx : The mean concentration of B across two treatments. 

Aix : The mean concentration of A in the ith treatment. 

Bix  : The mean concentration of B in the ith treatment. 
 
Different lipids are found at varying concentrations in biological samples, with some 

having substantially greater abundance than others. This presents challenges to evaluate reactant-
product pairs in a pathway. Thus a first step is to scale lipid concentrations so that different pairs 
are comparable using a single metric. This scaling should not alter the relative positioning of 
lipids with respect to one another and, thus, alter the nature of the mutation’s effect on the 
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reaction. Lipid cconcentrations are centered and scaled by using the standardization formula, 
ijz , 

given below. 
 
After scaling: 

Let 
s

xx
z ij

ij


 . Then all quantities above that are defined before scaling have 

corresponding quantities after scaling, and are denoted by the variable z instead of x. 
 

 Proposition 1: Consider a single lipid and denote the concentration by ijx  for the jth sample 

in the ith treatment, where i = 1, 2, and j = 1, 2, …, n. Then, 
n

zi 2

1
1

 for i = 1, 2 and 

n
zz

2

1
1221  

. 

Proof: It is clear that 0
2

1 2

1 1

 
 


i

n

j
ijz

n
z  and equal samples in each group implies   21 zz . So 

if we focus on 1z , we have  

 
s

xx

ns

xx

n
z

n
z

n

j
jn

j

j
n

j
j


 














 1

1

1

1

1
11

)(
111 .    (1)

The numerator of (1) can be calculated as 

)(
2

)(
2

1
)( 2121

1
1 


  xx

n
xnxnxx

n

j
j . 

Then, 

                            

2

21
2

2

1

21
1

2
22

1

2
11

1

2
2

2
22

1

2
1

2
11

1
222

1

2
2

2
22

1
111

1

2
1

2
11

1

2
222

1

2
111

2

1 1 1
2

1

2
1

22

22
)()(                 

)()()()(                 

)()(2)()(                   

)()(2)()(                 

)()(                

)()()()12(








 








 














































  















 











xx
xn

xx
xnxxxx

xxnxxxxnxx

xxxxxxnxx

xxxxxxnxx

xxxxxxxx

xxxxxxsn

n

j
j

n

j
j

n

j
j

n

j
j

n

j
j

n

j
j

n

j
j

n

j
j

n

j
j

n

j
j

i

n

j

n

j
j

n

j
jij

 

                             2
21

1

2
22

1

2
11 )(

2
)()( 




  xx

n
xxxx

n

j
j

n

j
j                                    (2) 

 

183

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2012/proceedings/13



 
Using (2) and (1) results in,       
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 holds. When n becomes large, this upper 

bound is close to 2. ■ 
 

After data are centered and scaled, Proposition 1 gives the following results. 

1. For the data described here with n = 5, 949.0
10

1
1 iz . As n gets large, 

izmax  goes to 1. 

2. For a lipid pair, A and B, with two dimensional means given by ( 1Az , 1Bz ) and 

( 2Az , 2Bz ) for the wild type and mutant groups, respectively, the maximum 

Euclidian distance between them is 2.684 for n = 5 and approaches  828.28   
as sample size increases. 
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3. Defining                          
            BbetweenAbetweenBBAAbetween SSSSzzzzSSDSS ,,

2
12

2
21 )()(    and    

              BwithinAwithin
i j

BiBijAiAijwithin SSSSzzzzSS ,,

2

1

5

1

22 )()( 
 

 , 

a. 0betweenSS  implies that  the lipid means 01 z  for each lipid. 

b. If betweenwithin SSSS  , both group centers are close to the origin (0, 0). 

 
Figure 2 shows the relative position in the WT and MT groups for the same lipid pair 

before and after scaling. The relative positions of the WT and MT groups remain the same in the 
two plots. Another result worth noting is that Pearson’s sample correlation coefficient between a 
pair of lipids is unchanged after scaling the data as described above. 
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Figure 2: Example scatter plots of one lipid pair before and after scaling 
Lipid PC34_1 (A, PC34:1, putative reactant) and lipid PC34_2 (B, PC34:2, putative product), 
which form a lipid pair, are plotted before (left panel) and after scaling (right panel).  

 
After centering and scaling, a total 19740 lipids are paired to determine whether or not 

the concentration change in the pair follows the scheme shown in Figure 1 and given here by 

1Az  < 2Az  and 1Bz  > 2Bz . Note that each lipid is allowed to be a candidate product or reactant 
prior to the below screening procedure. For convenience and to quantify the scheme in Figure 1, 
define a variable y, where 

                                              }{}    { 2121   
BBAA zzzz IIy .                                        (4) 

When both 1Az  < 2Az  and   21 BB zz  hold, A and B are a lipid pair that satisfy the screening 
procedure for a reactant-product pair, and y = 2. The arbitrary lipid pairs that satisfy the 
conditions y = 2 will be used to prescreen the sample of all lipid pairs when defining metrics in 
the section that follows. Note that y = 0 reflects the same pair but with product and reactant roles 
reversed, and that y = 1 implies that both lipids are either reactants or products but the two 
together are not a reactant-product pair. 
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3. Example 
 

The biologically functional reactant-product pairs are used as a standard to compare with 
all other arbitrary lipid pairs. Figure 3 shows the scatter plot characteristics of nine biologically 
functional reactant-product pairs in the data set fad2. There are in total 18 biologically functional 
pairs in the fad2 data set. The remaining scatter plots from the biologically functional pairs are 
all similar to those in Figure 3. All have similar patterns: WT is in the upper left corner, MT is in 
the lower right corner. Their concentration relationships satisfy the screening scheme in Figure 1 
which is  1Az  < 2Az  and 1Bz  > 2Bz  with mean differences between WT and MT near the 
maximum derived in the Proposition. In fact, in all other mutant data sets that we have evaluated, 
the same patterns as shown in Figure 3 are apparent for any known biologically functional 
substrate-product pairs.  
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Figure 3: Scatter plots of nine biologically functional pairs in Fad2 
In each panel, the 5 blue circles represent the WT group with coordinates ( jAz 1 ,

jBz 1
) and the 5 

red triangles stand for the MT group with coordinates ( jAz 2 , jBz 2 ). The x-axis is the 

concentration of the reactant A and the y-axis is the concentration of the product B.  

186

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2012/proceedings/13



Three Summary Statistics: Three summary test statistics are developed according to patterns 
seen in exploratory data analysis. These three are denoted tg, SSD, and –log(R) statistics. The 
distributions of these statistics from the fad2 data are shown in Figure 4. The statistics are 
computed from each candidate lipid reactant-product pair in the scaled data (i.e., those pairs 
satisfying the y = 2 screening criteria). 
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Figure 4: The distributions of the three test statistics. 
The red dashed vertical lines show the statistics for the biologically functional lipid pairs in data 
set fad2.  
 

 Statistic 1: tg  
This tg is the ratio of a lipid product B group mean difference to a reactant A group mean 

difference, and is defined as 

 








12

21 tg
AA

BB

zz

zz
, (5) 

where the means Aiz  and Biz  were defined earlier . According to exploratory data analyses, the 

positions for the two dimensional groups WT and MT most representative of biologically 
functional pairs is a 135 degree angle with the x-axis, which leads to tg = 1. The red lines in the 
tg distribution in Figure 4(a) show the biologically functional pairs with tg values that are all 
close to 1. Raamsdonk et al. (2001) used a measurement based on tg (actually an arctangent 
transformation of it) in defining the co-response coefficient Ω which was a ratio of the log 
concentration change in their FANCY approach. 
 

 Statistic 2: SSD  
        SSD is a squared distance between the two group centers and given by  

             2 2
1 2 1 2SSD ( ) ( )between A A B BSS z z z z        .  (6) 

Large SSD, or inter-group distance, corresponds to biologically functional pairs. These 
results are shown in Figure 4(b). 
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 Statistic 3: R    
When used alone, the tg statistic does not capture all characteristics of potential reactant-

product pairs. Similarly, the SSD statistic also has a disadvantage. If the inter-group distance is 
very large, but the angle between the groups is very different from 135º, then the result using just 
SSD may not select the true candidate reactant-product pairs. That is, using SSD alone may lead 
to false discoveries.  

In Figure 5, the data points (bio.tg, bio.SSD) from the 18 different biologically functional 
pairs show them to be close to the top peak with coordinates (1, 2.684). Therefore, a statistic 
combining both tg and SSD at the same time is proposed. This combined statistic, called R, can 
eliminate the respective limitations of tg and SSD while keeping their advantages. The statistic R 
is defined as     
             22 ))SSDmax(SSD()1tg(R  .    (7) 
The value )SSDmax(  is set to 2.684 from the theoretical maximum SSD from the proposition for 
our samples of size 5 in each group. The value of R should not ever be exactly zero. The lipid 
pairs that are of interest will have values of R near zero. 

For improved interpretability and separation of small values of R, the R statistics are 
transformed by –log(R) so that large values of –log(R) are those of interest. Figure 4(c) shows 
the distribution of the transformed R statistic, –log(R). The biologically functional pair's –log(R) 
statistics (red lines) show that the larger values of –log(R) reflect results that are of interest. 
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Figure 5: Illustration of the information for the R statistic, using the scatter plot of tg 
versus SSD in the data set involving the WT and the fad2 mutant 
The vertical red line shows tg = 1. The horizontal red line shows an arbitrary cutoff point at SSD 
= 2.3. The black points are the (tg, SSD) coordinates for each lipid pair. The red points at the 
peak are the biologically functional pairs. The peak area contains the most interesting lipid pairs 
with large SSD values and tg close to 1. 
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Note that in Figure 5, the scatter plot of tg and SSD shows curved patterns because tg and SSD 
are both functions of the means, Aiz  and Biz  as shown previously. 

 
4. Discussion and Future Work  
 

In conclusion, the three statistics derived in section 3 were based on the exploration of 
data according to the screening principle illustrated in Figure 1. From the above analysis, we can 
see that the three statistics reflect the data characteristics for lipid pairs that are biologically 
functional reactant-product pairs whose reaction is modified by the mutation in the organism. 
They can be employed separately or combined as a whole. So as metrics themselves, they are 
useful quantities for ranking reactant-product pairs as potentially affected by a mutation in cases 
where the role of the mutation is unknown. Analysis of other mutant data sets in which 
biologically functional pairs were known revealed the same pattern for the defined metrics as 
seen above in Figures 4 and 5. As such, we propose these metrics for identifying reactions that 
are modified by mutations of unknown function. Work is in currently in progress and planned to 
do this with new data sets.  

There are still improvements that can be made to a statistical method for detecting such 
pairs. After the three statistics are found from the above example, the empirical distributions of 
the three statistics can be presented as shown in Figure 4. To assess statistical significance, this 
empirical distribution could be compared with a distribution of the statistics under some null 
hypothesis. Null distributions of statistics can often be generated by bootstrap resampling 
methods, under a condition for which the null hypothesis is true. A challenge that arises is how 
to specify an appropriate null hypothesis. One null hypothesis is :0H  F = G, where F is a 

multivariate distribution of lipid concentrations for the WT group and G is the distribution for 
the MT group. This null hypothesis is easy to accommodate in a bootstrap procedure and some 
initial work has been done. However, this null hypothesis may be too restrictive in situations 
where a mutation substantially modifies concentrations in the entire lipidome. We have seen that 
in some data sets, the bootstrap null distributions of the test statistics, SSD and –log(R), deviate 
quite far from the empirical distributions. The results suggest strong mutation effects in the data 
sets. A less restrictive null hypothesis would be the following intersection-union hypotheses, 

 
AmAwH  :0  or BmBw    

AmAwAH  :  and BmBw   . 
 

Bootstrap sampling under these hypotheses may be more reasonable for the application 
considered here.  
 When conducting the exploratory analysis, the prescreening of candidate pairs was done 
with the y statistic as defined in equation (4). If attempting to derive a probabilistic certainty to a 
list of findings, the sampling variability of this prescreening step may also need to be 
incorporated. Also, the metrics that were defined were largely based on differences in means. 
One might also wonder if differences in sample variances might also be used to evaluate 
candidate pairs. It is unclear at this point to what extent or how the sample standard deviations 
may be altered by the mutation. One exception would be if the mutation completely blocked the 
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reaction and the formation of the lipid product. In such a case, one might expect the candidate 
product would be positive in the wildtype organism and exactly zero in all samples in the mutant. 
This has been rarely seen and it is not always clear whether zero concentrations are real zeros or 
simply below the limit of detection for the instrument.   

As development of methods for the analysis of gene expression data progressed over the 
past years, attention turned to methods for simulating realistic high-dimensional data. Previously, 
data were often simulated (and still are) from multivariate normal distributions with restrictive 
dependence structures. Simulating more realistic gene expression data was considered in 
Gadbury et al. (2008). Simulating realistic lipidomic data is likely to be challenging. Still it will 
be necessary in order to evaluate the performance of new statistical methods for analyzing 
lipidomic data. This is another area of research to be explored.   
 
Acknowledgements 
The authors acknowledge Lixia Fan, George Milliken, Haiyang Wang, Lili Cheng, Richard 
Jeannotte, and Ashis Nandi for earlier work leading to that reported herein. 
 
References 
 
Arondel, V., Lemieux, B., Hwang, I., Gibson, S., Goodman, H.M. and Somerville, C.R. (1992). 

Map-based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopsis. 
Science, 258, 1353-1355. 

Blei, I., Odian G. (2006). General, organic, and biochemistry. Second edition, New York: W.H. 
Freeman and Company. 

Dixon, R. A., Gang, D. R., Charlton, A. J., Fiehn, O., Kuiper, H. A.,  Reynolds, T. L., 
Tjeerdema, R. S., Jeffery, E. H., German, J. B., Ridley, W. P. and Seiber, J. N. (2006). 
Applications of Metabolomics in Agriculture. Journal of Agricultural and Food 
Chemistry, 54, 8984-8994.  

Dunn, W. B., Ellis, D. I. (2005). Metabolomics: Current analytical platforms and methodologies. 
Trends in analytical chemistry, 24, 285-294. 

Falcone, D.L., Gibson, S., Lemieux, B. and Somerville, C. (1994). Identification of a gene that 
complements an Arabidopsis mutant deficient in chloroplast omega 6 desaturase activity. 
Plant Physiology, 106, 1453-1459. 

Fan, L. (2010). An exploratory method for identifying reactant-product lipid pairs from 
lipidomic profiles of wild-type and mutant leaves of Arabidopsis thaliana. Master report. 
Kansas State University. 

Fukushima, A., Kusano, M., Redestig H., Arita, M., Saito, K. (2011). Metabolomic correlation-
network modules in Arabidopsis based on a graph-clustering approach. BMC Systems 
Biology, 5, 1-12. 

Gadbury, G. L., Xiang, Q., Yang, L., Barnes, S., Page, G. P., Allison, D. B. (2008). Evaluating 
statistical methods using plasmode data sets in the age of massive public databases: An 
illustration using False Discovery Rates. PLos Genetics, 4(6). 

Gao, J., Ajjawi, I., Manoli, A., Sawin, A., Xu, C., Froehlich, J. E., Last, R. L. Benning, C. 
(2009). FATTY ACID DESATURASE4 of Arabidopsis encodes a protein distinct from 
characterized fatty acid desaturases. The Plant Journal, 60, 832–839. 

190

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2012/proceedings/13



Gibson, S., Arondel, V., Iba, K. and Somerville, C. (1994). Cloning of a temperature-regulated 
gene encoding a chloroplast omega-3 desaturase from Arabidopsis thaliana. Plant 
Physiol, 106, 1615-1621. 

Griffin, J. L., Vidal-Puig, A. (2008). Current challenges in metabolomics for diabetes research: a 
vital functional genomic tool or just a ploy for gaining funding? Physiological Genomics, 
34, 1–5. 

Iba, K., Gibson, S., Nishiuchi, T., Fuse, T., Nishimura, M., Arondel, V., Hugly, S. and 
Somerville, C. (1993). A gene encoding a chloroplast omega-3 fatty acid desaturase 
complements alterations in fatty acid desaturation and chloroplast copy number of the 
fad7 mutant of Arabidopsis thaliana. The Journal of Biological Chemistry, 268, 24099-
24105. 

Mekhedov, S., de Ilarduya, O.M. and Ohlrogge, J. (2000). Toward a functional catalog of the 
plant genome. A survey of genes for lipid biosynthesis. Plant Physiology, 122, 389-401. 

Okuley, J., Lightner, J., Feldmann, K., Yadav, N., Lark, E. and Browsea, J. (1994). Arabidopsis 
fad2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. The 
Plant Cell, 6, 147-158. 

Oliver, S. G. (2002). Functional genomics: lessons from yeast. Philosophical Transactions of the 
royal society B, 357, 17-23. 

Oliver, S.G., Winson, M.K., Kell, D.B. and Baganz, F. (1998). Systematic functional analysis of 
the yeast genome. Trends in Biotechnology, 16, 373-378. 

Raamsdonk, L.M., Teusink, B., Broadhurst, D., Zhang, N., Hayes, A., Walsh, M. C., Berden, J. 
A., Brindle, K. M., Kell, D. B., Rowland, J. J., Westerhoff, H. V., Dam, K. V. and Oliver, 
S. G. (2001). A functional genomics strategy that uses metabolome data to reveal the 
phenotype of silent mutations. Nature Biotechnology, 19, 45 – 50. 

Steuer, R. (2006). On the analysis and interpretation of correlations in metabolomic data. 
Briefings in Bioinformatics, 7, 151-158. 

Steuer, R., Kurths, J., Fiehn, O., Weckwerth, W. (2003). Observing and interpreting database for 
Medicago truncatula. Bioinformatics, 23, 1418–1423. 

Weckwerth, W., Loureiro, M-E, Wenzel, K., and Fiehn, O. (2004). Differential metabolic 
networks unravel the effects of silent plant phenotypes. Proceedings of the National 
Academy of Sciences of the United States of America, 101, 7809-7814. 

Welti, R. and Wang, X. (2004). Lipid species profiling: a high-throughput approach to identify 
lipid compositional changes and determine the function of genes involved in lipid 
metabolism and signaling. Current Opinion in Plant Biology, 7, 337–344. 

Wu, L., Winden, W. A. V., Gulik, W. M. V. and Heijnen, J. J. (2005). Application of 
metabolome data in functional genomics: A conceptual strategy. Metabolic Engineering, 
7, 302–310. 

 

191

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2012/proceedings/13


	EXPLORATION OF REACTANT-PRODUCT LIPID PAIRS IN MUTANT-WILD TYPE LIPIDOMICS EXPERIMENTS
	Recommended Citation
	Author Information

	tmp.1442335325.pdf.6ivHa

