
Kansas State University Libraries Kansas State University Libraries 

New Prairie Press New Prairie Press 

Conference on Applied Statistics in Agriculture 2012 - 24th Annual Conference Proceedings 

IDENTIFYING SPECTRA IMPORTANT FOR PREDICTION OF IDENTIFYING SPECTRA IMPORTANT FOR PREDICTION OF 

SENESCENT GRASSLAND CANOPY STRUCTURE SENESCENT GRASSLAND CANOPY STRUCTURE 

Rebecca Phillips 

Nicanor Saliendra 

Mark West 

Follow this and additional works at: https://newprairiepress.org/agstatconference 

 Part of the Agriculture Commons, and the Applied Statistics Commons 

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. 

Recommended Citation Recommended Citation 
Phillips, Rebecca; Saliendra, Nicanor; and West, Mark (2012). "IDENTIFYING SPECTRA IMPORTANT FOR 
PREDICTION OF SENESCENT GRASSLAND CANOPY STRUCTURE," Conference on Applied Statistics in 
Agriculture. https://doi.org/10.4148/2475-7772.1036 

This is brought to you for free and open access by the Conferences at New Prairie Press. It has been accepted for 
inclusion in Conference on Applied Statistics in Agriculture by an authorized administrator of New Prairie Press. For 
more information, please contact cads@k-state.edu. 

https://newprairiepress.org/
https://newprairiepress.org/agstatconference
https://newprairiepress.org/agstatconference/2012
https://newprairiepress.org/agstatconference?utm_source=newprairiepress.org%2Fagstatconference%2F2012%2Fproceedings%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/1076?utm_source=newprairiepress.org%2Fagstatconference%2F2012%2Fproceedings%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=newprairiepress.org%2Fagstatconference%2F2012%2Fproceedings%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.4148/2475-7772.1036
mailto:cads@k-state.edu


IDENTIFYING SPECTRA IMPORTANT FOR PREDICTION OF SENESCENT GRASSLAND CANOPY 

STRUCTURE 

 

Rebecca Phillips1 

Nicanor Saliendra1 

USDA-ARS 

Northern Great Plains Research Laboratory 

PO Box 459 

1701-10th AvenueSW Mandan, ND58554 

Mark West2 

USDA-ARS 

2150 Centre Avenue 

Fort Collins, CO, 80526-8119 

 

 

 

 

 

 

 

 

 

192

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2012/proceedings/14



 

Abstract 

Managers of the nearly 0.5 million ha of public lands in North and South Dakota, USA rely 

heavily on manual measurements of vegetation properties to ensure conservation of grassland 

structure for wildlife and forage for livestock.  Spectral imaging data may be useful in 

assessment of large (>100,000 ha) landscapes, as in the Grand River National Grassland (GRNG), 

South Dakota.   Here, we examined the predictive potential for the Advanced High Resolution 

Spectrometer (AVIRIS) to estimate mixed-grass prairie canopy structural attributes 

(photosynthetically active vegetation (kg PV ha-1), non-photosynthetically active vegetation (kg 

NPV ha-1), total standing crop (kg PV+NPV ha-1), nitrogen content (kg N ha-1), and visual 

estimates of  bare ground (%) in October 2010. We conducted the study on a 36,000-ha 

herbaceous area using 24 randomly selected plots divided into summit, midslope and toeslope 

positions.  Field data were collected during the AVIRIS flyover, and three approaches for 

building a prediction model of canopy attributes based on spectra were evaluated based on R2 

values.  These approaches included Partial Least Squares Regression (PLS), a variable selection 

method with predictor variables based on functions of the AVIRIS spectra, and a variable 

selection method using individual bands or combinations of individual bands of spectra as 

predictors. All variable selection methods involved randomly partitioning the data into training 

and validations sets and choosing a final prediction model based on model selection frequency. 

PLS regression out-performed regression models (based on the variable selection methods) 

with R2 values of 0.73, 0.56, 0.62, 0.67, and 0.58, for PV, NPV, total standing crop, nitrogen 

content, and bare ground, respectively. 
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Introduction 

The US Forest Service (USFS) grassland management plan includes assessment of 

vegetative properties associated with structure, such as canopy height and biomass, to ensure 

public lands provide adequate forage and nesting cover for domestic livestock and wildlife 

habitat (Larivière 2003).  Grassland assessments have historically used field-based metrics that 

measure vegetation structure with a Robel pole (Robel et al. 1970) after livestock removal in 

October, but these point measurements may not adequately represent the heterogeneous 

native grassland landscape.  Passive, remote-sensing based data provide synoptic views of plant 

reflectance that are suitable for assessment purposes (Hunt et al. 2003).  These satellite or 

aerial-borne image data have been used in models to assist with assessing grassland structural 

properties in the southwestern and western U.S during the peak season (June-July), when 

plants are photosynthetically active (Jacquemoud et al. 1995; Kokaly et al. 1999; Beeri et al. 

2007).  At the end of the growing season, most of the vegetative canopy is no longer 

photosynthetically active, and relationships between properties such as grassland biomass and 

reflectance spectra are not clear for native, heterogeneous grassland canopies (Aase et al. 

1987) .  Remote sensing-based assessment of grasslands in the northern Great Plains requires 

investigation of plant canopy properties and image data at scales relevant to land managers.   

 Vegetation Indices (VIs) are commonly used to assess grassland canopy properties such 

as greenness, where the Normalized Difference Vegetation Index (NDVI) or other VIs are 

employed (Todd et al 1998, Marsett et al 2006, Beeri et al 2007, Guerschman et al 2009, Knox 

et al 2011, Psomas et al 2011, Wang et al 2011).  Each VI relies on application of specific regions 

of the spectra, but the spectral resolution (band width) varies with sensor data source.  Wide-
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band, multi-spectral data, such as those collected by the Landsat TM or the Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) sensors are often 

manipulated to report particular VI values, such as NDVI.  The numbers of bands, however, are 

typically limited to < 8.  For assessment of grassland at the end of the growing season, when 

most of the canopy is senescent and no longer photosynthetically active, additional bands of 

information are needed, according to post-harvest studies in corn, soybean, and wheat crop 

fields (Daughtry et al. 2004).  Hyperspectral sensors, such as the Advanced High Resolution 

Spectrometer (AVIRIS), provide a greater breadth of information, including narrow bands of the 

spectra potentially sensitive to changes in senescent material.    

Narrow band reflectance data applied to grassland canopies have successfully estimated 

canopy properties, such as carbon/nitrogen (C/N) ratio and total standing crop biomass 

(PV+NPV), during the growing season (Beeri et al. 2007).  However remote estimation of these 

properties post-growing season is problematic because canopies at this time are mixtures of 

species at various stages of senescence.  Mixtures of PV, NPV, and rocks or bare soil within a 

single pixel of information dramatically increase the error when correlating field plot and 

spectral reflectance data (He et al. 2010).  The need to assess grassland canopy structural 

properties after livestock removal for the purpose of managing cover for wildlife habitat is 

clear, but it is not clear how relationships between reflectance data and grassland properties 

covary for large landscapes when most of the canopy is senescent. 

 

Methods 

Field Site Description 
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The Grand River National Grassland (GRNG) is located in northwestern South Dakota, 

USA (45.7° N, 102.5° W; Figure 1) within the Northern Great Plains ecoregion(Omernik 1987).  

About 75% of the annual precipitation (350 mm) occurs during the growing season (April-

September).  Average monthly temperature is highest in July (21 °C) and lowest in January (-9 

°C).  Topography ranges from open plains to rolling grassland prairie, with elevations from 670-

880 m.  Soils are predominantly well-drained, moderately deep, moderately permeable, fine-

loamy, mixed, superactive, frigid TypicArgiustolls(NRCS).  The GRNG is a mixed-grass prairie 

ecosystem characterized by blue grama [Boutelouagracilis (H.B.K.) Lag. Ex Griffiths] and 

western wheatgrass [Pascopyronsmithii(Rybd) Lőve].   Many of the GRNG lowlands were 

farmed in the early 20th century and are now stands of crested wheatgrass [Agropyroncristatum 

(L) Gaertn.].  The GRNG is seasonally grazed by cattle (May-October), and stocking rates are 

approximately one animal unit per hectare.    

A 100,000 ha area of interest (AOI) in the center of the GRNG was selected for this 

study, and the targeted area of herbaceous material (36,000 ha) was identified using object-

based classification in Ecognition.  We evaluated historical (10 y) reflectance data collected by 

the Moderate Resolution Imaging Spectrometer (MODIS) sensor to ensure our field sampling 

points represented the full range of reflectance values found within our AOI over time.  The 

unsupervised classification on the MODIS Enhanced Vegetation Index (EVI) data collected in 

June and July from 2000 to 2009 indicated there were four Historical Vegetation Index (HVI) 

classes.  These four classes comprised over 98% of the herbaceous vegetation AOI and were 

used to stratify the landscape prior to field plot random selection.  The four HVI classes 

represented areas historically high or low in EVI reflectance values.  Within each HVI class, we 
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randomly selected six plots, and these were separated into three topographic position groups.  

Digital Elevation Model (DEM) data, 10-m pixel resolution, were accessed from the U.S.G.S. 

National Elevation Dataset [http://ned.usgs.gov/(Gesch et al. 2002)]. We modeled the DEM to 

stratify the landscape into three topographic positions:  summits, midslopes or toeslopes(Qin et 

al. 2009).  A total of 24 plots, or 72 points, were sampled during the field campaign in late 

October, 2010 (Phillips et al. 2012).  

Field Data Collection 

At each of the 72 points, vegetation was sampled in four cardinal directions, 3 m from 

the center of each plot.  We measured standing crop biomass (both PV and NPV), leaf area, 

canopy height, and canopy nitrogen.  Canopy height was recorded using the Robel pole method 

(Robel et al. 1970; Uresk et al. 2007).  We also recorded visual estimates for the percentages of 

bare soil, senescent vegetation, green vegetation, and litter in the four subplots (Phillips et al. 

2012).  Total standing crop biomass (TSC, kg ha-1) was calculated as the sum of green PV and 

senescent NPV and averaged for the four subplots.  PV and NPV vegetation was ground 

separately through a 1-mm mesh screen, and analyzed for total N using dry combustion on a 

Carlo Erba Model NA 1500 Series 2 N/C/S analyzer (CE Elantech, Lakewood, NJ).  Canopy N 

content (kg N ha-1) was calculated using N content and mass for both PV and NPV vegetation.   

AVIRIS Data Collection and Correction 

The Airborne Visible and InfraRed Imaging Spectrometer (AVIRIS, Jet Propulsion 

Laboratory, Pasadena, CA, USA) provides calibrated images of spectral radiance in 224 

contiguous spectral channels from 400 to 2500 nm (Green 2001).  During a clear, sunny day on 

October 21, 2010, an aircraft (Twin Otter N331AR) carrying the AVIRIS sensor was flown at an 
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altitude of 16 km over the 72 sites where field plot observations were recorded and vegetation 

clippings were collected as described above.  Radiance data were atmospherically corrected 

using the Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) module in 

the ENVI/IDL software 

(http://www.ittvis.com/portals/0/tutorials/envi/FLAASH_Hyperspectral.pdf).  Data were 

converted to units of reflectance (scaled between 0 and 10,000).  Wavelengths are each end of 

the spectra were excluded, 366-502 nm and 2457 to 2500 nm, as well as known regions of high 

water absorption, 1353 to 1423 nm and 1812 to 1937 nm (Beeri et al. 2007).   

We used a portable Global Positioning System (GPS, Trimble Geo XT) to collect precise 

location data for the 72 points (3 topographic positions x 24 plots).  Pixel size in the AVIRIS 

image was 3.5 m, and we extracted raster data (ASCII format) from 2 x 2 pixels surrounding 

each GPS waypoint.  Vegetation indices as listed in Table 1 were calculated for each pixel, and 

mean values for each group of 4 pixels were calculated for each point to compare with field 

data.   

Statistical Analyses 

We investigated the potential of AVIRIS reflectance values for prediction of PV, NPV, 

TSC, N content, and percent bare ground in three separate ways.  For one, we fit Partial Least 

Squares (PLS) (Garthwaite 1994) models using the reflectance collected for all spectral bands.  

Secondly, we applied a model selection procedure using a suite of VIs as candidate predictors 

(Table 1) together with topographic position and HVI class for the purpose of building a linear 

prediction model.  Lastly, we applied a model selection procedure to build a linear prediction 

model based on a subset of spectral bands.  The model selected for each prediction method 
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was tested by iteratively partitioning the available data at random 1000 times into training and 

test sets. For each partition, models were fitted to each training set and these were used to 

predict observations in each test set. The ratio of training samples to test samples in each of the 

1000 partitions was chosen as 2:1. Goodness of fit for each model was reported in terms of 

average R2 across the random partitions, which was calculated by the square of the Pearson 

correlation between observed and predicted response. Both SAS (SAS System for Windows, 

copyright © 2002-2008, SAS Institute Inc., Cary, NC, USA) and R software were heavily relied on 

to carry out computations in this study. 

We developed PLS prediction models (one for each dependent variable) in the form 

Y� = R𝑥𝑥 ∙ �̂�𝛽 using the method of de Jong (de Jong 1993) where Y� is an 𝑛𝑛 × 1 vector of predictions 

of vegetative growth and R𝑥𝑥  is an 𝑛𝑛 × 𝑝𝑝 matrix of reflectance values. Each row vector of R 

consists of 𝑝𝑝 discrete entries of reflectance values R𝑥𝑥  representing the amount of reflectance at 

band 𝑥𝑥. Reflectance was measured for 𝑝𝑝 = 184 distinct bands ranging from 500 nm to 2450 nm 

(i.e. 500 ≤ 𝑥𝑥 ≤ 2450 ). Leave-one-out cross validation was used on the entire data set to 

determine the number of PLS factors to be used for PLS regression. We chose the number of 

PLS factors that minimized the PRESS statistic for each response. This number of factors 

corresponds to the number of factors that maximizes the R2 based on PRESS statistic. The latter 

is computed as R2 = 1 − SSE SST⁄  where SSE is the residual sum of squares for the cross-

validated predictions and SST is the (corrected) total sums of squares for the response.  

Both the R package ‘pls’ and the SAS procedure PROC PLS were used to fit the PLS 

regressions. Both software packages provided the same regression model fits but the R package 

‘pls’ was used to facilitate simulation for evaluating goodness of fit. Coefficients from the fitted 
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PLS equations were plotted against corresponding bands with the intention of identifying bands 

most important for prediction. Standard errors for the PLS coefficients were bootstrapped using 

‘random X sampling’ and were used to standardize the coefficients that were plotted.  

We evaluated 23 narrow-band VIs (Table 1) computed using the AVIRIS spectra.  These 

were included in a model selection approach to determine which VIs was most predictive for 

each dependent variable. We included the historical reflectance class (HVI) and topographic 

position group of each sampled site along with VIs as candidate predictors. In addition, we 

allowed for the squared term for each VI to be included as a predictor as well as any two-way 

interaction among the VIs, historical reflectance class and topographic position group. Thus 349 

regression effectswere entertained as predictors for modeling each canopy property. Our 

approach for model selection was based on resampling and model selection frequency and 

incorporated both Akaike and cross-validation criteria. To carry out model selection the 

following algorithm was used. 

Model Selection Algorithm 

Do the following steps 1000 times. 

1. Randomly partition the data to form two sets.  

a. From each historical reflectance class select 4 plots at random. This will partition 

the data set into a training set and a validation set.  The remaining 2 plots not 

selected in each historical reflectance class are used to create a validation set.  

Partitioning in this manner ensures equal representation of both historical 

reflectance class and topographic position group. 

2. Use stepwise regression on the partitioned data to choose a prediction model 
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a. Order in which effects enter model based on the Akaike Information Criterion 

b. Significance level for effects to enter set at 0.05 

c. Significance level for effects to stay set at 0.10 

d. Choose the model among the steps of model selection the one with smallest 

average mean squared prediction error (AMSE) from the validation sample 

e. Require model hierarchy so that when interactions between two variables are 

entered each of these variables is also included in the model. 

3. Record the chosen model for each partition (ie. Each Monte Carlo sample)  

• Report selected models and model selection frequencies. 

The model selection described above was carried out in SAS using the SURVEYSELECT procedure 

to randomly partition the data and the GLMSELECT procedure with options choose=validate, 

select=aicc,  sle=0.05, sls=0.10, stop=sl and hier=single to carry out model selection for each 

partition. 

 Lastly, we investigated application of a selection procedure called the Lasso (Tibshirani 

1996)with individual bands, denoted as Rx , as predictors. For example, bands at 1200, 1400 and 

2200 nm would be denoted as R1200, R1400  and R2200 respectively. The Lasso is a shrinkage and 

selection method for linear regression. We are using it here to identify spectral bands 

important for prediction of canopy response. We incorporated the same random partitioning of 

data strategy with the SAS procedure SURVEYSELECT as used for the VIs and also used the SAS 

procedure GLMSELECT  with options select=lasso and choose=validate for model selection. We 

reported models with the highest model selection frequencies.  
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Results 

PLS regression 

The R2 value (based on the PRESS statistic for PLS regression using leave-one-out cross-

validation) is plotted against number of factors used in Figure 1. The number of factors that 

minimized this statistic was 5 for all canopy responses except for nitrogen, which was 3. We 

evaluated the ability of PLS regression to predict canopy responses using Monte Carlo sampling. 

Sixteen plots (4 plots of 6 possible from each of 4 historical reflectance classes) were randomly 

sampled for the training set for each of 1000 Monte Carlo trials. Data from the remaining eight 

plots not used in the training dataset comprised the test dataset in each Monte Carlo trail. The 

fitted PLS regression for each Monte Carlo trial was used to predict observations of canopy 

response in both the trial and test datasets and the squared correlation coefficient between 

fitted and observed was computed for all Monte Carlo trails. These were used to test the fitted 

how well specific regressions could predict observations not used in fitting the models. We 

report the average R2 and associated standard error across all Monte Carlo samples for both 

training and test samples in Table 2. The overall fit statistics based on fitting a PLS regression to 

the entire dataset is reported in Table 3. Standardized regression coefficients of the PLS 

regressions using the entire dataset for prediction are plotted in Figure 2. Table 4 summarizes 

regions of the spectra where coefficients differ by 2 standard errors in absolute value from 

zero.  
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Figure 1: R2 based on PRESS statistic when fitted by PLS regression for each measured canopy 

characteristic. 
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Measured Vegetation PLS 
Number Factors R2

train R2
test 

PV (green) 5 0.73(0.095) 0.72(0.117) 
NPV (brown) 5 0.55(0.078) 0.56(0.099) 
Biomass 5 0.62(0.075) 0.63(0.094) 
N 3 0.67(0.056) 0.67(0.070) 
Bare Ground 5 0.70(0.098) 0.58(0.200) 
 

Table 2: Average R2 with standard error based on PLS fit for both training and test sets for all 

1000 Monte Carlo trials. 

 

 

 Cumulative Percent Variation Explained 
Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 

PV (green) 58.8 60.1 69.6 71.0 73.7 
NPV (brown) 33.0 35.6 45.3 49.8 54.0 
Biomass 46.8 48.2 54.2 57.3 60.8 
N 63.2 64.8 66.0   
Bare ground 30.3 49.1 55.2 62.3 66.5 
Reflectance* 51.9 96.0 98.5 98.9 99.2 
 

Table 3: R2 by Factor based on PLS fit for each variable using all data. R2 for reflectance based 

on jointly fitted model. 

 

204

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2012/proceedings/14



 
Figure 2: Standardized coefficients for PLS regression based on fitting entire dataset. 

 

Measured Vegetation B<-2 B>2 
PV (green) 600-650 nm, 1500-1750 nm 900-1150 nm, 1950-2050 

nm 
NPV (brown) 550 nm, 2200-2300 nm 650-690 nm, 1150nm 
Biomass 560 nm, 2150-2300 nm 1150 nm, 1980-2000 nm 
N 500-640 nm, 1450-1500 nm, >2000 nm 850-1350 nm 
Bare 1600-2000 nm 2000-2400 nm 
 

Table 4: Regions of extreme spectral absorption or reflectance. Regions with B < -2 suggest 

bands of absorption whereas regions with B > 2 suggest reflectance. 

Model Selection using VIs 

205

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2012/proceedings/14



 We report models selected with the highest model selection frequencies in Table 5 

using the model selection algorithm described for VIs.  The model for each of the canopy 

response is listed under the column with the header ‘indices’. For example, the model most 

frequently selected for predicting N was NDVI which was selected 370 of 1000 times among the 

Monte Carlo trials. For the case of PV, MTVI2 was selected 379 times and MTVI2+MTVI22 was 

selected 277 times but we reported the model selected as the quadratic model with selection 

frequency 651=379+271 as the quadratic regression could do no worse than the linear model 

for prediction of PV. 

 

Measured 
Vegetation 

Model Selection 

Indices Frequency R2
train R2

test 

PV (green) MTVI2+ MTVI22 651 0.70(0.112) 0.68(0.141) 

NPV (brown) SWIR32 445 0.43(0.059) 0.45(0.125) 

Biomass SWIR32 764 0.53(0.055) 0.55(0.114) 

N NDVI 370 0.62(0.051) 0.63(0.108) 

Bare ground REI+ SWIR32 325 0.61(0.092) 0.58(0.175) 

 

Table 5: Selection frequencies and average R2 and its standard error for both training and 

validation sets for all 1000 Monte Carlo trials. 

Model selection using Individual Bands 

Models selected with the model building algorithm of the Lasso previously mentioned 

using individual bands as candidate predictors are reported in Table 6 for each of the canopy 

responses.   All models selected from the Lasso algorithm included band R2447 in the model 
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except for PV. We note that results for nitrogen reported below the most frequently selected 

model was the intercept with a model selection frequency of 167. However band R1073 was 

selected along with R2447 in 61 occurrences only with the addition of one or two other bands in 

the 1950-1990nm range. Therefore we reported it as a frequently occurring model. 

 

Measured 
Vegetation 

LASSO 

Bands Selected Frequency R2
train R2

test 

PV (green) R773 R1987
 210 0.61(0.085) 0.61(0.105) 

NPV (brown) R1283 R2447 442 0.42(0.057) 0.43(0.117) 

Biomass R1073 R2447 301 0.51(0.080) 0.52(0.098) 

N R1073 R2447 157 0.66(0.060) 0.67(0.074) 

Bare ground R1283 R1333 R2447 228 0.58(0.098) 0.62(0.175) 

 

Table 6: Average R2 with standard error based on the model  determined from the LASSO  

selection method for both training and validation sets for all 1000 Monte Carlo trials. 

Summary  

We report how narrow band imagery collected at the AVIRIS sensor could be modeled 

to assess grassland canopy structural properties post-growing season using three modeling 

approaches in terms of model R2 only.  These approaches differed with regard to how spectral 

reflectance was used for prediction. The first approach, PLS, used all bands of the spectra in a 

linear regression model of the form Y� = R𝑥𝑥 ∙ �̂�𝛽 where Rx represents the spectral reflectance 

measured at each spectral band x and with �̂�𝛽 determined using an algorithm that uses a factor 

decomposition of the covariance between the response Y and Rx. The number of factors chosen 
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for decomposition and the computation of  �̂�𝛽 was the number that minimized the PRESS 

statistic.  The second was a model building approach, based on known VIs (Table 1), each of 

which represented a functional form of reflectance at select bands, Rx, for prediction of a 

specific canopy property.  The crux of this approach was based on Monte Carlo sampling where 

the data was randomly partitioned into training and validation sets 1000 times. For each 

partition the model with the smallest average mean squared prediction error of the validation 

set was selected from those identified in a stepwise regression and stored in a list of candidate 

models. The model with the highest model selection frequency was reported (Table 5) for each 

canopy trait. The last approach also used a model selection procedure with the same Monte 

Carlo scheme but each spectral band was considered as a candidate predictor rather than a 

vegetation index.  Model selection for each partition was based on the Lasso (Tibshirani 1996) 

because we felt it would avoid excessive variety of models in a final list of candidate models. 

The model with the highest model selection frequency based on the Lasso for each canopy trait 

is shown in Table 6. For each type of model, a final round of evaluation was performed with 

Monte Carlo sampling by randomly splitting the data into training and test sets 1000 times, 

fitting the model on the training set and using the fitted model for prediction on each test set. 

The coefficient of determination and its standard error was reported across the 1000 Monte 

Carlo partitions. 

Application of AVIRIS spectral reflectance data during time periods when plants are 

senescent shows promise despite the challenges of identifying the spectral regions most 

important for prediction of canopy properties.  The model selected by Lasso for prediction of  

PV, for example, identified R793 and R1987, although band 793 had only a moderately sized 
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coefficient for PLS regression.  These results indicated 1) that green vegetation (PV) and N 

content can be predicted reasonably well (R2>0.60), and 2) contrasting bands of spectra are 

most useful for estimating grassland canopy structure.  
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Table 1.  Vegetation Indices (VIs) calculated from Airborne Visible-InfraRed Imaging 
Spectrometer (AVIRIS) reflectance data derived following atmospheric correction with Fast 
Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH). 

Vegetation Index Equation Reference  
ARI1, Anthocyanin Reflectance 
Index 1  (1/R550) - (1/R705) Gitelson et al 2001 

ARI2, Anthocyanin Reflectance 
Index 2 R802 * (1/R550 - 1/R705) Gitelson et al 2001 

CAI, Cellulose Absorption 
Index 0.5*(R1997+ R2198) - R2098 Daughtry 2001 

MSI, Moisture Stress Index R1602 / R822 Hunt and Rock 1989 

MTVI1, Modified Transformed 
Vegetation Index 1 1.2*(1.2*(R802-R550) -2.5*(R638-R550)) Haboudane et al 2004 

MTVI2, Modified Transformed 
Vegetation Index 2 

1.5*(1.2*(R802-R550) -2.5*(R638-R550)) / 
SQRT(2*(R802+1)2- (6*R802 -5*SQRT(R638) -0.5) Haboudane et al 2004 

NDII, Normalized Difference 
Infrared Index (R822 - R1652) / (R822 + R1652) Jackson et al 2004 

NDLI, Normalized Difference 
Lignin Index 

(LOG(1/R1752) - LOG(1/R1682)) / (LOG(1/R1712) + 
LOG(1/R1682)) 

Serrano et al 2002 

NDNI, Normalized Difference 
Nitrogen Index 

(LOG(1/R1512) - LOG(1/R1682)) / (LOG(1/R1512) + 
LOG(1/R1682)) 

Serrano et al 2002 

Normalized Difference 
Senescent Vegetation Index, 
NDSVI 

(R2028 - R638) / (R2028 + R638) Marsett et al 2006 

NDVI, Normalized Difference 
Vegetation Index  (R802 - ρ638) / (R802 + R638) Tucker 1979 

NDVI705, Red Edge 
Normalized Difference 
V t ti  I d  

(R754 - R705) / (R754 + R705) Sims and Gamon 2002 

NDWI, Normalized Difference 
Water Index (R1652- R832) / (R1652+ R832) 

modified from Gao 
1995 

OSAVI , Optimized Soil 
Adjusted Vegetation Index 1.16*(R802 - R675)/(R802 + R675 + 0.16) Haboudane et al 2002 

PRI, Photochemical Reflectance 
Index (R570 - R531) / (R570 + R531) Gamon et al 1997 

PSRI, Plant Senescence 
Reflectance Index (R685 - R502) / R754 Merzlyak et al 1999 

REI, Red Edge Index  R705 / R754 Zhang et al 2011 

SATVI , Soil Adjusted Total 
Vegetation Index ((R2028 -R638) / (R2028+R638+0.5)*1.5) -R2218/2 Marsett et al 2006 

SR71, Simple Ratio as in 
Landsat Band7/Band1 R2218 / R521 Phillips et al 2012 
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SWIRDVI, SWIR Difference 
Vegetation Index (R2128- R1642) / (R2128 + R1642) this study 

TCARI , Transformed 
Chlorophyll Absorption 
R fl t  I d  

3*((R705 - R675) -0.2*(R705 - R550)*(R705 / R675)) Haboudane et al 2002 

TCARI/OSAVI TCARI / OSAVI Zhang et al 2011 

WBI, Water Band Index R899 / R967 Penuelas et al 1995 
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