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Enhancements to the Discrete Generalized Multigroup Method
R.L. Reed, J.A. Roberts

Department of Mechanical and Nuclear Engineering, Kansas State University, Manhattan, KS 66506, USA

The Discrete Generalized Multigroup (DGM) Method

• The DGM method is a way to treat the energy variable in a numerical
simulation [1].

• The method can work in conjunction with other schemes designed to
treat the spatial and angular dependence.

• DGM uses an orthogonal basis to collapse the group structure while
preserving much of the accuracy [2].

• The original method suffers from high memory costs since the angular
flux must be stored [3].

• Present work explores several incremental improvements, which may
provide a way to use DGM for systematic generation of broad-group
cross sections with implicit, fine-group features

Basis Sets

The first three vectors within each coarse group for the 238-group
structure for the POD basis using snapshots of UO2 pin combined with
MOX pin snapshots. Note that DGM requires that the zeroth order
basis be the flat vector to decouple the higher order moments. The
vectors are orthonormalized over each coarse group region. The 238
fine-groups have been collapsed to 23 coarse-groups.

The Discrete Generalized Multigroup (DGM) Equations

The DGM equations look similar to the multigroup form of the transport
equations. In fact, the zeroth order equation is equivalent to the
standard multigroup approximation. Note the presence of the δ term,
which contains the angular dependence of the total cross section.
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Improvement 1 - Remove dependence on fine-group information

• We want an algorithm that only uses the fine-group data once
• To do so, redefine the cross sections in terms of flux moments to yield
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• These new definitions must still be recomputed every iteration
• The moment computations no longer use fine-group data

Old Algorithm

Input: cell and material properties, basis vectors
Compute χ and Q moments
Guess the initial, fine-group flux
while not converged do

Compute flux moments
Compute cross-section moments
Solve zeroth-order equations (i = 0)
Update the eigenvalue
for all moments i > 0 do

Solve i th-order equation
end
Reconstruct fine-group flux

end

The Test Problem

Depiction of the 10-pin problem. Each fuel section (UO2/MOX) used 22
mesh cells, and each moderator section (blue) used 3 mesh cells.
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The DGM method was implemented into a 1-D discrete ordinates code,
which used the diamond difference approximation and 8 angles per
half space.

Eigenvalue error for DGM method with truncation

Comparison of various basis sets used for the DGM method. Using
DGM, a 1% error in the eigenvalue may be reached using
approximately 58 degrees of freedom for a 238-group problem.

Note that at 238 degrees of freedom, all basis sets converge to within
tolerance to the reference discrete ordinates solution (computed
without DGM).

Improvement 2 - Approximate the angular flux

• The definition for δG,i(~r , Ω̂) depends on the angular flux
• This leads to a large memory footprint
• We can approximate the angular flux using a Legendre expansion
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• In this work, we consider both a zeroth and a first order expansion
• The definition for δG,i(~r , Ω̂) now becomes
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Improvement 3 - Spatially homogenize the cross sections

• The definitions for the cross section moments are functions of the flux
• Since the flux is spatially dependent, the moments are as well
• Thus, cross section data must be stored for each cell even if the cross

sections are not normally spatially dependent
• We spatially homogenize the moments using flux weighted averaging
• The process is similar for all cross section moments
• Take for example the total cross section moments
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New Algorithm

Input: cell and material properties, basis vectors
Compute χ and Q moments and expand fine-group cross-sections
Guess the initial, fine-group flux
Compute flux moments
while not converged do

Compute coarse-group cross-section moments
Solve zeroth-order equation (i = 0)
Update the eigenvalue
for all moments i > 0 do

Solve i th-order equation
end

end
Reconstruct fine-group flux

Improvement Cases

To evaluate the performance of the method, we define several cases
• Case 1: Assume flat angular flux (Improvement 2)
• Case 2: Assume linear angular flux (Improvement 2)
• Case 3: Spatial homogenization (Improvement 3)
• Case 4: Both linear angular flux and spatial homogenization
We also explored how these cases behave in both the full order
problem and the truncated case.

Scalar flux for full problem for group 0

Fine-group scalar flux for the fastest energy group reconstructed using
the DGM method. Improvement 3 causes slight deviation from the
reference solution, whereas improvement 2 leads to a larger effect.

Case results for full problem compared to reference

The following table compares the DGM improvements to a discrete
ordinates solution with no DGM. Note all data are relative percent error

except for the first column, which are the reference values.

Full-Ref Full-(1) Full-(2) Full-(3) Full-(4)
keff 1.122 -0.038% -0.036% 0.040% -0.021%

Cell 1 0.939 -0.471% -0.288% -0.096% -0.310%
Cell 2 0.917 -0.456% -0.279% -0.099% -0.303%
Cell 3 0.866 -0.425% -0.261% -0.104% -0.286%
Cell 4 0.770 -0.380% -0.237% -0.107% -0.256%
Cell 5 0.598 -0.335% -0.218% -0.088% -0.204%
Cell 6 1.736 0.084% -0.014% 0.280% 0.112%
Cell 7 1.151 0.447% 0.301% -0.133% 0.193%
Cell 8 1.031 0.400% 0.277% 0.027% 0.268%
Cell 9 1.000 0.344% 0.241% 0.024% 0.235%

Cell 10 0.992 0.308% 0.218% 0.020% 0.210%

Case results for truncated problem compared to reference

The following table compares the DGM improvements to a discrete
ordinates solution with no DGM. Note all data are relative percent error

except for the first column, which are the reference values.

Full-Ref Trun.-Ref Trun.-(1) Trun.-(2) Trun.-(3) Trun.-(4)
keff 1.122 0.007% -0.028% -0.019% 0.014% -0.011%

Cell 1 0.939 -0.078% -0.612% -0.418% -0.125% -0.435%
Cell 2 0.917 -0.091% -0.601% -0.416% -0.143% -0.436%
Cell 3 0.866 -0.126% -0.586% -0.419% -0.183% -0.442%
Cell 4 0.770 -0.203% -0.586% -0.450% -0.266% -0.473%
Cell 5 0.598 -0.405% -0.678% -0.586% -0.456% -0.590%
Cell 6 1.736 0.392% 0.459% 0.405% 0.526% 0.474%
Cell 7 1.151 0.004% 0.423% 0.280% -0.033% 0.245%
Cell 8 1.031 -0.048% 0.382% 0.241% -0.036% 0.241%
Cell 9 1.000 0.005% 0.407% 0.277% 0.015% 0.276%

Cell 10 0.992 0.025% 0.407% 0.285% 0.032% 0.280%
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