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 Ordered categorical responses (OCRs) are frequently encountered in many disciplines. 

Examples of interest in agriculture include quality assessments, such as for soil or food products, 

and evaluation of lesion severity, such as teat ends status in dairy cattle.  OCRs are characterized 

by multiple categories recorded on a ranked scale that, while apprising relative order, is not 

informative of absolute magnitude of or proportionality between the categories. A number of 

statistically sound models for OCRs are available in the statistical literature, such as logistic 

regression and probit models, but these are commonly underutilized in practice. Instead, the 

ordinary least squares linear regression (OLSLR) model is often employed despite violation of 

basic model assumptions. In this study, the inferential implications of OLSLR-based inference 

on OCRs were investigated using a simulation study that evaluated realized Type I error rate and 

empirical statistical power.  The design of the simulation study was motivated by applications 

reported in the subject-matter literature. A variety of plausible scenarios were considered for 

simulation, including various shapes of the frequency distribution and number of categories of 

the OCR.  Using survey data on frequency of antimicrobial use in cattle feedlots, we illustrated 

the inferential performance of OLSLR on OCRs relative to a probit model.  

 

Key words:  ordinary least squares linear regression; ordered categorical responses; violation of 

assumptions; inference. 

 

1.   Introduction 

Researchers in many applied disciplines are frequently faced with the challenge of 

analyzing ordered categorical responses (OCRs).  Examples of interest in agriculture include 

quality assessments, such as for soil (De Groote et al., 2010) or food products (Hernandez et al., 

2005), evaluation of lesion severity, such as teat ends status in dairy cows (Radostits, 2001) and 

semi-quantification of frequency of management practices, like antimicrobial administration in 

feedlot cattle (McIntosh et al., 2009; Dean et al., 2011).  For instance, McIntosh (2009) worked 

with OCRs to describe the frequency of antimicrobial use in feedlot cattle as "never", "rarely", 

"sometimes", "often" and "always".  In that study, categories were enumerated from 1 to 5, 

respectively, to reflect their natural ordering based on frequency of use.  Enumeration of ranked 

categories is commonly observed for OCRs.  However, such enumeration is only indicative of 

order and does not convey any information about the magnitude of the distance between 

consecutive categories of the response (Liu and Agresti, 2005).  

The probit regression model and the proportional odds logistic regression model are 

examples of models developed specifically to capitalize on the information about relative order 

while acknowledging the categorical nature of the responses (Long, 1997).  However, fitting of 

these models can be technically challenging in some applications due to, for instance, empty 

cells and data sparseness (Liu & Agresti, 2005).  Additionally, interpretation of parameter 
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estimates from probit or logit models can be perceived as more mathematically involved and less 

intuitive than that of the more traditional ordinary least squares linear regression (OLSLR), 

which is taught widely in applied statistics courses.   

 The main concern of using OLSLR to fit OCRs is violation of model assumptions, which 

may call into question the validity of any subsequent inference. Ordinary least squares linear 

regression assumes that errors be mutually independent and normally distributed with mean zero 

and constant variance (Kutner, Nachtsheim, Neter & Li, 2005).  This implies that the response 

variable is continuous and symmetrically distributed around a mean with the same variance 

parameter as the distribution of the error.  In modeling OCRs with OLSLR, the underlying 

assumption is that the ranking of the categories nominally identified as 1,2,3... bears additional 

information about the relative distances between categories (Long, 1997).  For instance, in the 

example discussed in the first paragraph, category 4 ("often") would indicate twice as frequent 

antimicrobial use as category 2 ("rarely").  While "often" clearly indicates more frequent use 

than "rarely", the postulate of doubled frequency is not tenable.  Despite frequent application, the 

inferential implications of assuming proportionality between ranked ordered categories when 

fitting OLSLR to OCR are unclear. Additional features that are particular to OCRs may also 

impact the quality of OLSLR-based inference, such as asymmetry of frequency distributions 

(Abreu et al., 2008; Javaras & Ripley, 2007) and the number of categories of the OCR (Newsom, 

n.d.).  

The objective of this study was to investigate the implications of fitting OLSLR to OCRs 

for statistical inference. Using a simulation study, we evaluated empirical Type I error (α) and 

statistical power for inference on OCRs under a variety of scenarios.  These simulation scenarios 

are motivated by subject-matter applications encountered in the scientific literature (Abreu et al., 

2008; De Groote et al., 2010; Hernandez et al., 2005; Javaras & Ripley, 2007; McIntosh et al., 

2009; Dean et al., 2011; Raubertas & Shook, 1982; Russell & Bobko, 1992; Xu et al., 2007; Yi 

et al., 2007). We then used survey data to illustrate and compare inference on an OCR based on 

OLSLR and on a probit model. 

 2.  Data Simulation  

 Using simulation, we investigated the inferential properties of OLSLR as applied to 

OCRs.  We evaluated OCRs with frequency distributions of uniform, belled, triangular, or 

exponential shape.  We also considered multiple numbers of categories of the OCR, specifically, 

2, 3, 4, 5, 7, and 10 categories.  For each of the 24 scenarios (4 frequency distribution shapes x 6 

number of categories of the OCR), 4,000 Monte Carlo replicates were produced.  For each 

replicate, we generated 300 realizations of a normally distributed latent random variable 

according to the following equation: ��� � ω
� � ���� � 	� 

where ��� is the i
th

 observation (i = 1, …, 300) on a normal latent scale that is considered to 

underlie the OCR (see later); ω* and β* are the intercept and slope parameters in the latent scale; �� is the known covariate value corresponding to the i
th

 observation and εi is the error associated 

with the i
th

 observation (εi ~ i.i.d N(0, σ
2
)).  Realizations of the OCR yi were generated by 

discretizing the latent variable yi* using J+1 thresholds τ0, τ1, … τJ between J ranked categories, 

such that: 
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�� �� � �∞ �  ��� � ���� ��  �  ��� � ��
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 These thresholds were specified by quantiles of a standard normal distribution evaluated at the 

cumulative probabilities listed in Tables 1 through 4.  These cumulative probabilities were 

specified to define frequency distributions of uniform, belled, triangular or exponential shapes in 

the resulting OCR.   For illustrative purposes, Figure 1 depicts histograms of the frequency 

distribution of one replicate of a simulated OCR with a total of 7 categories and a uniformly-

shaped (A) or exponentially-shaped (B) frequency distribution.  

 We simulated each scenario using β* = 0 and β* = 1 in order to assess empirical Type I 

and Type II errors in statistical inference, respectively. For simulation purposes, the explanatory 

covariate xi was allowed to assume 2 settings in each scenario.  In one setting, namely x
(51)

, xi 

was allowed to take 1 of 51 possible integer values ranging from -50 to 50 in intervals of 2.  In 

the second setting, namely x
(5)

, xi was allowed to take one of 5 possible integer values ranging 

from -50 to 50 in intervals of 25.  The variance of the error (���) was set such that the statistical 

power for testing H0) β* = 0 using OLSLR on the latent scale was approximately 0.80.  

3.  Analysis 

 The following linear model was fit to each Monte Carlo replication: 

                                             �� � ω�  ��� � 	�             	� ~ �. �.  . !"0, ��%                         (1) 

 

whereby yi is the observed category of the OCR on the i
th

 subject (i = 1, . . ., 300) such that 

categories were enumerated from 1 to J; ω and β were the OLSLR intercept and slope 

parameters, respectively, �� was the i
th

 fixed value of the predictor variable and εi was the error 

associated with the i
th

 observation, whereby εi ~ �. �.  . !"0, ��%.  We emphasize that the OLSLR 

model in Equation 1 assumed that the enumeration of the realized ordered response categories 

was indicative not only of relative ranking (as was supported by the definition of an OCR), but 

also of proportional magnitude between consecutive categories of the OCR.  The later 

assumption is, by definition, incorrect (Liu and Agresti, 2005).  Our interest is on the inferential 

robustness for such an incorrectly defined model.  

 In each Monte Carlo replication, we used OLSLR and probit regression to estimate β and 

then test the null hypothesis Ho) β = 0 based on a t test statistic with (n – 2) degrees of freedom 

where n is the sample size (n = 300).  The test statistic was then compared with a critical value 

given by the (1-α) percentile of a t-distribution with (n – 2) degrees of freedom.  

 For each of the 24 simulated scenarios at each x setting, empirical Type I error was 

computed as the frequency of incorrect rejections of Ho) β = 0 at a 5% level of significance, 

divided by the total number of Monte Carlo replicates.  Lower and upper bounds for empirical 

Type I errors were determined using the 2.5
th

 and 97.5
th

 percentiles of a binomial distribution 

with number of trials N = 4000, given by the number of Monte Carlo replicates, and probability 

of event π = 0.05, given by the desired level of significance.  Similarly, empirical power was 

computed for each scenario and x setting as the proportion of Monte Carlo replicates for which 
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Ho) β = 0 had been correctly rejected at a 5% level of significance.   A normal approximation to 

the binomial distribution was used to construct Bonferroni-adjusted confidence intervals on the 

differences in empirical power between probit models and their corresponding OLSLR fits, as 

well as between distribution shape scenarios fitted with OLSLR.  All computations for data 

simulation and analyses were conducted using the statistical software R Version 2.9.2 (R 

Development Core Team, 2009). 

 

 4.  Results 

 Empirical Type I Error.  Figure 2A and 2B illustrates the results for empirical Type I error 

rates for all scenarios under the x
(51)

 and x
(5)

 settings, respectively. Across the frequency 

distribution shapes considered in this study, the empirical Type I error remained close to the 

nominal value of 0.05, regardless of the number of ranked categories of the OCR.  For all 

scenarios, empirical Type I errors were within probabilistic expectation based on a binomial 

distribution with probability of 5% and size given by the number of Monte Carlo replicates for 

each scenario. The maximum and minimum empirical Type I error rates were 0.043 and 0.057, 

corresponding to scenarios with 4-category exponentially-shaped OCR generated under x
(5)

 and 

7-category uniformly-shaped OCR generated under x
(51)

, respectively.   
 

Empirical Statistical Power.  Figures 3A, 3B, 3C and 3D illustrate empirical power for OLSLR 

and probit models as a function of the number of categories for OCRs with frequency 

distributions of uniform, bell, triangular or exponential shape, respectively. Statistical power of 

OLSLR fitted on the latent-scaled variable is provided as a reference line at 0.80. Overall, across 

scenarios of distributional shapes and x settings, statistical power for OLSLR-based inference on 

β was weakest when OCRs consisted of 2 categories.  As the number of categories of the OCR 

increased, so did empirical power. However, the rate of increase in power with more OCR 

categories was increasingly abated as the OCRs reached 5 or more categories.  For the uniform, 

bell, and triangularly shaped scenarios (Figures 3A, 3B and 3C), but not for the exponentially-

shaped scenario (Figure 3D), empirical power for both OLSLR and probit-link models analysis 

approached the 0.80 reference line as the number of categories of the response increased.  

 Of particular interest was the comparison of statistical power between OLSLR and probit 

models across simulated scenarios (Figure 3).  Overall, there was no evidence for differences in 

empirical power between OLSLR and the probit models for any combination of frequency 

distributions of bell, uniform or triangular shape, x setting and number of categories of the OCR 

considered in this study.  No evidence for differences between OLSLR and probit model 

inference was apparent for scenarios with exponentially shaped frequency distributions where 

the OCR was characterized by 7 or fewer categories. However, OLSLR-based empirical 

statistical power for 10-category OCRs with an exponentially shaped frequency distribution was 

significantly decreased compared to that of a probit model analysis. 

 Figure 4 illustrates OLSLR-based empirical statistical power for OCRs with uniform, 

belled, triangular and exponentially-shaped frequency distributions.  In most cases, comprising 

any given number of OCR categories and x settings, we found no evidence for differences in 

OLSLR-based empirical power between uniform, triangular and belled-shaped frequency 
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distributions of the OCR.  As an exception we note the scenario with an OCR with 4 categories, 

whereby OLSLR-based empirical power was greater with a bell-shaped frequency distribution in 

comparison to a triangular-shaped frequency distribution.  When the OCR had an exponentially-

shaped frequency distribution and more than 4 categories, OLSLR-based empirical power was 

significantly decreased relative to any other frequency distribution shapes.  For both OLSLR and 

probit models, empirical power for the exponentially-shaped scenario increased until the OCRs 

had 5 categories, then peaked, and finally decreased beyond this point.   

 

Interpretation of the Slope Parameter Estimate.  Following from OLSLR-based inference on 

the association between an OCR and an explanatory variable, one may inquire about the 

interpretation of the estimated slope parameter (�&) in the context of the research problem.  To 

address this question, we collected the OLSLR point estimates �&  for all 4000 Monte Carlo 

replications in a given scenario and used them to describe the empirical sampling distributions of �& .  Figure 5 illustrates the empirical sampling distribution of �&  for 2 representative scenarios, as 

described next. When the OCRs were generated based on β* = 0, the empirical sampling 

distributions of �&  were observed to be bell-shaped and centered about zero for all simulated 

scenarios (Figure 5A).  In fact, in all simulated scenarios, the 25
th

 and 75
th

 percentiles of the 

sampling distributions of �& had negative and positive signs, respectively, indicating a consistent 

coverage of the null value 0.  In contrast, when the OCR was generated based on β* = 1 in the 

latent scale, the sampling distributions of �&  never overlapped with the true parameter value of β* 

= 1 (Figure 5B), regardless of frequency distribution shapes and number of categories of the 

OCRs.  In fact, the sampling distributions of �&  under β* = 1 had minimum values that frequently 

fell below 0 and maximum values that failed to exceed 0.04 in all simulated scenarios.  This 

indicates that the magnitude of the OLSLR estimate �&  is not directly comparable to the slope 

parameter in the latent scale β*, which was used to generate the data. This may be partially 

explained by the different scales, namely the latent continuous scale of the data generation 

process versus the ordered categorical scale used for inference.  In addition, we further 

emphasize that the assumption of proportionality across categories of the OCR that is inherent to 

OLSLR is not necessarily supported by the data generation process.  Such incorrect model 

specification further impairs meaningful interpretation of the OLSLR estimate of the slope 

parameter �&  as a rate of change on the OCR per unit increase in an explanatory variable X.  

 

5.  Case Study Based on Real Survey Data 

 To illustrate OLSLR-based inference on an OCR in a real data problem, we adapt a data 

set obtained from a survey study conducted by McIntosh et al. (2009).  The dataset used for our 

case study included all 269 feedlot operators and veterinarians that returned the survey, instead 

of just the 103 veterinarians originally reported by McIntosh et al. The original research question 

of interest was the frequency of use of antimicrobials in feedlot cattle as it relates to Icek Ajzen’s 

theory of planned behavior (Ajzen, 2011).  This theory states that behavioral beliefs, normative 

beliefs, and belief about perceived behavioral control jointly define an intention that may then 

result in an action (Ajzen, 2011).  In other words, the researchers were interested in investigating 

the association between frequency of antimicrobial use in feedlot cattle and behavioral, 

normative and control beliefs.  The researchers used these beliefs to motivate questions for a 20 
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page survey that was distributed to veterinarians and feedlot operators in the Midwestern US.  

The individuals surveyed were asked to answer questions about their motivating beliefs and to 

rate their frequency of antimicrobial use as denoted by the categories “always”, “often”, 

“sometimes”, “rarely”, “often” and “never.”  Reported frequencies of antimicrobial use were 

labeled 1 to 5, respectively, to indicate relative ranking and used as the OCR for data analysis.   

First, the research question was addressed by fitting a probit regression model to the 

OCR.  A selected aspect of behavioral belief from the theory of planned behavior, in particular a 

belief in regard to the efficacy and profitability of antimicrobial use in feedlot cattle, was used as 

an explanatory covariate in the model.  The regression coefficient under the probit model was 

found to be significantly greater than zero (P<0.001), with a point estimate of 0.6076 and a 

standard error of 0.0739. This result supports a significant association between frequency of 

antimicrobial use and the combined effect of one’s beliefs that antimicrobial use is effective, that 

its use will bring profit and that efficacy and profitability are important to the respondent.  The 

estimate of the regression coefficient in the probit link scale may be interpreted as the average 

change in z-score per unit increase of the explanatory covariate.  Alternatively, in the data scale, 

a function of this estimate may be interpreted as the estimated change in the probability of a 

given category of frequency of antimicrobial use relative to the baseline category of “never” and 

to a mean value of the explanatory variable X, for each unit increase of the explanatory variable 

of behavioral belief.    

We also fitted an OLSLR model to the OCR. The response was the 1-to-5 rank associated 

with the category of frequency of antimicrobial use and the explanatory covariate was the same 

behavioral belief predictor fitted with the probit model.  The OLSLR coefficient was estimated 

to be -0.4474 with a standard error of 0.0487 and found to be significantly different from zero (P 

< 0.001).  Some practitioners may support a pragmatic interpretation of this estimate as a 

decrease of approximately half category per unit increase in the predictor, or alternatively, as a 

decrease of almost one category per 2-unit increase in the predictor. We emphasize the 

limitations of this interpretation based on the assumption of proportionality in the relative 

magnitude of the ranked categories of the OCR, as well as on unreasonable inference outside of 

the range of the categories defined for frequency of antimicrobial use in this application.  

In comparing inference between the probit model and OLSLR fitted on the OCR of 

frequency of antimicrobial use, we note the similarity of the overall conclusion, that is, that the 

null hypothesis was rejected. However, the point estimates for the corresponding regression 

coefficients are not comparable in magnitude nor in interpretation. This is consistent with the 

results of our simulation study.  

 

6.  Discussion 

  

 In this study, we evaluated the inferential implications of analyzing OCRs with OLSLR 

methodology. Based on a simulation study, we explored empirical Type I error and empirical 

statistical power for OLSLR-based inference on an OCR under a variety of scenarios, including 

various frequency distribution shapes and increasing number of categories of the OCR, as well as 

2 settings of the explanatory covariate, namely x
(51)

 and x
(5)

.  Overall, our results indicated that 

OLSLR-based inference on OCR was generally robust to violation of model assumptions in 

terms of Type I error.  These results should provide some level of reassurance to subject-matter 
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scientists in support of research conclusions on OCR that were obtained based on OLSLR 

methodology.  Furthermore, statistical power of OLSLR was comparable to that of probit 

models, except for rather extreme scenarios of exponential shape of the frequency distribution of 

an OCR with more than 7 categories. 

 Inferential robustness of analysis of variance (ANOVA), in terms of Type I error, has 

also been reported for inference on OCRs.   Hsu and Feldt (1969) showed that as the number of 

categories of OCR increased, so did the probability of correctly failing to reject the null 

hypothesis.  We also found OLSLR of OCR to be robust to violations of assumptions, although 

we did not find any evidence for an increasing robustness of OLSLR as a function of the number 

of categories of the OCR. The similarity of robustness results is not necessarily surprising given 

that both ANOVA and OLSLR are based on ordinary least squares estimation and can be shown 

to be equivalent models under simple circumstances.  For instance, a 1-way factorial ANOVA 

with 2 levels can be shown to be equivalent to OLSLR when the explanatory covariate takes only 

2 values (Kutner et al., 2005).  

 Our design of the simulation study included various frequency distribution shapes of the 

OCR, and thus, provides some opportunity to assess the impact of skewness and kurtosis on the 

quality of OLSLR based inference. For instance, as skewness and kurtosis increase jointly, we 

can expect a deleterious effect on the power of OLSLR.  It can be expected that as the number of 

categories of the OCR decreases, the impact of skewness and kurtosis on the shape of the 

frequency distribution would be attenuated. This is likely associated with a more rectangular 

shape of the frequency distribution when categories are few. In contrast, as the number of 

categories of the OCR increase, the frequency distribution shape can be expected to reflect skew 

and kurtosis in more pronounced, non-rectangular shapes.  It is noted that with OCRs that had an 

exponentially shaped frequency distribution (high skew and high kurtosis), we did not see 

departures of the empirical Type I error from its nominal value regardless of the numbers of 

categories of the response. This may be interpreted as considerable robustness of OLSLR-based 

inference on OCRs to skewness and kurtosis, at least in the context of the scenarios considered in 

this study. Glass, Peckham, and Sanders (1972) have claimed that leptokurtosis may enhance 

statistical power, but that platykurtosis may have an opposite, detrimental impact on it when 

considering ordinary least squares techniques as applied to continuous variables.  These findings 

did not appear to extend to our particular use of OLSLR-based analysis of OCR.  Instead, we 

found that the less skewed and less kurtotic the frequency distribution was, the greater the power.  

For instance, the bell-shaped distribution (no skew, no excess kurtosis) tended to perform the 

best and yielded the greatest power relative to the other scenarios considered when the 

Bonferroni adjustment used was relaxed to only account for the actual comparisons done rather 

than all possible comparisons that might have been of interest.  In turn, statistical power for 

scenarios with a triangular (moderate skew) or uniform (moderate platykurtosis) shapes were not 

significantly different from the bell scenario (no skew, no excess kurtosis) with the Bonferroni 

adjustment in use for most of this paper.  The exponential scenario (high skew and high kurtosis) 

tended to have the worst power and truly distinguished itself as the poorest after 5 categories on 

the OCR.  As was mentioned previously, the frequency distribution shapes were more similar 

when the responses had few categories.  Differences in shape only become apparent with 

increasing number of categories; this may provide a partial explanation for the increasingly poor 

performance of the exponential scenario as the number of categories of the response increased.   
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 In to modeling responses with various distribution shapes, it is also common to model a 

response as a function of more than one covariate at a time. For an OCR, it is not clear how 

OLSLR-based inference would perform under more than 1 explanatory variable, in particular 

under the combinations of quantitative and categorical predictors, as well as potential interaction 

terms.  Russell and Boboko (1992) have mentioned the need for investigating interaction models 

for OCRs analyzed with OLSLR because situations where an interaction effect would be 

expected to be present are frequently encountered in their discipline of psychology.  We 

conducted a data analysis with real data to demonstrate OLSLR in a practical application.  The 

OLSLR analysis of a 5-category OCR agreed with a theoretically sound probit model analysis in 

terms of the significance of the continuous covariate under inspection.  Solid investigation on 

quality of statistical inference on an OCR as a function of interactions between explanatory 

variables remains to be done.  Another consideration in relation to x is that our models only 

considered a first order (linear) explanatory term.  We did not investigate the inferential 

implications of fitting OLSLR for OCRs when the underlying latent variable was generated as 

polynomial function of the explanatory variable.  These realms of inquiry remain open to 

investigation. 

We have considered the case where we have a single outcome variable free from any 

complicated multivariate structure.  It would be useful for application to assess robustness of 

OLSLR fitted simultaneously to more than one response variable, as it may be desired to infer 

upon the joint behavior of multiple survey responses.  For example, in our case study, we 

focused on the frequency of antimicrobial use of feedlot operators and veterinarians as it pertains 

to en masse treatment (Dean et al., 2011).  These individuals were also questioned about their 

frequency of antimicrobial use for acutely ill cattle, for chronically ill cattle, and for 

subtherapeutic use in at-risk cattle. A joint analysis of these OCRs would permit a more 

comprehensive assessment of antimicrobial use, simultaneously accounting for potential 

compensatory or complementary behaviors across scenarios.  

Extension of OLSLR-based inference on OCRs in the presence of random and fixed 

effects can provide additional insight regarding performance of the inference with a hierarchical 

data structure.  For example, we may wish to see what the inferential implications are for fitting 

linear mixed models when our dependent variable is an OCR measured over time instead of a 

continuous variable (Liu and Agresti, 2005).  This situation may occur in agriculture when 

measuring score-type responses on a given animal at multiple times throughout the course of a 

study. 

 Finally, while OLSLR appears robust to violations of model assumptions, it is advised 

that methods with sound statistical foundations be employed for analyzing OCRs, as there are 

additional advantages for using theoretically appropriate techniques, such as relevant 

interpretation of parameter estimates in the data scale.  For instance, the disciplinary scientist 

may implement probit regression or logistic regression to infer upon and estimate the relative 

probability of being in a certain response category for a given level of the explanatory covariate.  

Furthermore, it is worth noticing that the robustness of OLSLR outside of the scenarios 

considered in the simulation study presented herein is not known.  Given the broad availability of 

theoretically sound techniques combined with the uncertainty that remains in regard to OLSLR 
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of OCRs, it is advised that OLSLR only be considered an alternative for inference on OCRs in 

problematic situations.  Specifically, OLSLR-based analysis of OCR may be considered as 

screening tools in cases where statistically sound techniques become impossible to implement 

due to technical complications such as empty cells or data sparseness.   

 7. Summary 

This research investigated the inferential implications of fitting OLSLR to OCRs.  It 

appears that OLSLR may be a reasonable choice for investigating the hypothesis of β = 0, even 

when the response variables are of ordered categorical nature and violate basic OLSLR 

assumptions.  Simulation studies did not suggest major problems with control of Type I error or 

empirical power for most scenarios considered. However, the estimate for the slope parameter 

itself should not be regarded as informative of magnitude of effect in the subject-matter context 

due to the fact that the rankings of the ordered categorical variables do not themselves grant any 

information about their relative distances. 
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Table 1.  Probability that an ordered categorical response (OCR) takes on a certain value, given 

the total number of categories of the response. These probabilities were used to define thresholds 

in the latent scale that separate sequentially-ranked categories of an OCR with a uniformly-

shaped frequency distribution. 

 

 Number of categories  

of the ordered categorical response. 

Realized value of 

an ordered 

categorical 

response.  

2 3 4 5 7 10 

1 1/2 1/3 1/4 1/5 1/7 1/10 
2 1/2 1/3 1/4 1/5 1/7 1/10 
3 . 1/3 1/4 1/5 1/7 1/10 
4 . . 1/4 1/5 1/7 1/10 
5 . . . 1/5 1/7 1/10 
6 . . . . 1/7 1/10 
7 . . . . 1/7 1/10 
8 . . . . . 1/10 
9 . . . . . 1/10 

10 . . . . . 1/10 
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Table 2.  Probability that an ordered categorical response (OCR) takes on a certain value, given 

the total number of categories of the response.  These probabilities were used to define 

thresholds in the latent scale that separate sequentially-ranked categories of an OCR with a bell-

shaped frequency distribution. 

 

 
Number of categories 

 of the ordered categorical response. 

Realized value of 

an ordered 

categorical 

response. 

2 3 4 5 7 10 

1 1/2 1/4 1/6 1/9 1/16 1/30 

2 1/2 2/4 2/6 2/9 2/16 2/30 

3 . 1/4 2/6 3/9 3/16 3/30 

4 . . 1/6 2/9 4/16 4/30 

5 . . . 1/9 3/16 5/30 

6 . . . . 2/16 5/30 

7 . . . . 1/16 4/30 

8 . . . . . 3/30 

9 . . . . . 2/30 

10 . . . . . 1/30 
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Table 3.  Probability that an ordered categorical response (OCR) takes on a certain value, given 

the total number of categories of the response.  These probabilities were used to define 

thresholds in the latent scale that separate sequentially-ranked categories of an OCR with a 

triangularly-shaped frequency distribution. 

 

 
Number of categories 

 of the ordered categorical response. 

Realized value of 

an ordered 

categorical 

response. 

2 3 4 5 7 10 

1 1/3 1/6 1/10 1/15 1/28 1/55 

2 2/3 2/6 2/10 2/15 2/28 2/55 

3 . 3/6 3/10 3/15 3/28 3/55 

4 . . 4/10 4/15 4/28 4/55 
5 . . . 5/15 5/28 5/55 
6 . . . . 6/28 6/55 
7 . . . . 7/28 7/55 
8 . . . . . 8/55 
9 . . . . . 9/55 

10 . . . . . 10/55 
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Table 4.  Probability that an ordered categorical response (OCR) takes on a certain value, given 

the total number of categories of the response.  These probabilities were used to define 

thresholds in the latent scale that separate sequentially-ranked categories of an OCR with an 

exponentially-shaped frequency distribution. 

 

 
Number of categories 

 of the ordered categorical response. 

Realized value of 

an ordered 

categorical 

response 

2 3 4 5 7 10 

1 1/3 1/7 1/15 1/31 1/127 1/1023 

2 2/3 2/7 2/15 2/31 2/127 2/1023 
3 . 4/7 4/15 4/31 4/127 4/1023 
4 . . 8/15 8/31 8/127 8/1023 
5 . . . 16/31 16/127 16/1023 
6 . . . . 32/127 32/1023 
7 . . . . 64/127 64/1023 
8 . . . . . 128/1023 
9 . . . . . 256/1023 

10 . . . . . 512/1023 
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Figure 1.  Frequency distributions of an ordered categorical response with 7 sequentially-ranked 

categories and A) a uniform shape or B) an exponential shape.  Histograms are based on a single 

simulated Monte Carlo replication with 300 observations.      
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Figure 2.  Empirical Type I error for inference on H0) β = 0 based on ordinary least squares 

regression fitted to an ordered categorical response with increasing number of categories and 

Uniform, Bell, Triangular, or Exponentially shaped frequency distributions.  Each scenario is 

represented by 4000 Monte Carlo replications. The figures represent settings where the 

explanatory covariate consisted of A) 51 or B) 5 levels ranging from -50 to50.  Bounds on the 

point estimate for empirical power correspond to 2.5th and 97.5th percentiles of a binomial 

distribution with probability of success π =0.05 and number of trials N= 4000.  
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Figure 3.  Empirical statistical power for correctly rejecting H0) β = 0 based on a probit or 

ordinary least squares linear regression fitted to an ordered categorical response characterized by 

increasing number of categories with an A) Uniformly- , B) Bell-, C) Triangular- or D) 

Exponentially-Shaped frequency distribution. The figure represents settings where the 

explanatory covariate consisted of  either 51 levels (i.e. x
(51) 

) ranging from -50 to 50 in intervals 

of 2 or 5 levels (i.e. x
(5)

) ranging from -50 to 50 in intervals of 25.   
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Figure 4. Empirical statistical power for inference on H0) β = 0 based on ordinary least squares 

linear regression fitted to an ordered categorical response characterized by increasing number of 

categories and Uniform, Bell, Triangle, or Exponentially shaped frequency distributions.  Each 

scenario is represented by 4000 Monte Carlo replications. The figure represents settings where 

the explanatory covariate consisted of A) 51 levels ( xi
(51)

 ) ranging from -50 to 50 in intervals of 

2 or B) 5 levels ( xi
(5)

 ) ranging from -50 to 50 in intervals of 25. 
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Figure 5.  Empirical sampling distribution for the estimated slope parameter '( obtained from 

fitting ordinary least squares linear regression to an ordered categorical response with 2 

categories and a Uniformly-Shaped frequency distribution. Figures are for illustrative purposes 

only. The histogram is based on 4000 Monte Carlo replications generated under the condition 

that A) β* = 0 or B) β* = 1. The figure represents the setting where the explanatory covariate 

consisted of 51 Levels (x
(51)

) ranging from -50 to 50 in increments of 2. 
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