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Estimating Area and Lag Associated with Thermal Hysteresis in 

Cattle 

 

F. Yang and A. M. Parkhurst 

 

University of Nebraska – Lincoln 

 

Abstract 

 

Thermal hysteresis in cattle becomes visible when the phase diagram of body 
temperature (Tb) vs ambient temperature (Ta) exhibits a loop. The hysteresis loop 
shows a rotated elliptical pattern which depends on the lag between Tb and Ta. The 
area of the loop can be used to quantify the amount of heat stress during thermal 
challenge. Three methods to estimate the area and lag of the elliptical hysteresis loop 
are: linear least squares method, ellipse-specific nonlinear least squares method, and 
Lapshin’s analytical method. Linear least squares method uses residual least squares 
to estimate the coefficients of the ellipse for which the sum of the squares of the 
distances to the observations is minimal. The estimated coefficients can be used to 
calculate both the rotated angle and area of the ellipse. The ellipse-specific method is 
based on quadratic constrained least mean squares fitting to simultaneously determine 
the best elliptical fit for a set of scattered data. It provides estimates of the rotated 
angle and semi-major and semi-minor axes to calculate the area of the ellipse. 
Lapshin’s analytical method is a two-stage procedure that fits a sinusoidal function to 
the input and then the output. It provides parameters in addition to lag and area which 
further characterize the hysteresis loop. The area and lag along with their standard 
errors are compared for the three methods using the delta method and bootstrapping. 
The delta method is used to calculate the standard errors of the derived parameter 
estimates and bootstrapping is used to assess the appropriateness of the delta method. 
 
Key words: Delay-Relay Model, Ta-Tb phase diagram, Thermo-regulatory response, 
Eigenvalue-eigenvector, Heat load, Tb-Ta correlation, Energy dissipation, Farm animals. 
 
1. Introduction 
The phenomenon of hysteresis can be defined in terms of the relationship between the 
output of a system and the inputs. The three fundamental properties of the output from 
a hysteretic process are: memory, rate independence, and initial state of the process. 
Memory is the most distinguishing feature of hysteresis. It is exemplified by the 
existence of a trajectory (or path profile) that displays the dependence of the current 
value on past history. The behavior of a hysteretic process is irreversible. Rate 
independence indicates the output value does not depend on the time scale used to 
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measure the input. In many situations, the initial state of the process is needed to 
describe the start of the hysteretic process. 
 
Thermal hysteresis is one of cyclic hysteresis. In animal science, when an animal is 
thermally challenged, physiological processes in the body become activated in order 
to dissipate the increasing heat load. Body temperature (Tb) is one process that shows 
a dramatic response to heat stress, (HS). Studies show Tb is essentially unresponsive 
to air temperature (Ta) until a threshold is reached and then there is a dramatic 
response to increasing air temperature (Hahn, Parkhurst, and Gaughan 1997; Mader et 
al. 2001; Parkhurst 2010).  
 
During heat stress, the dynamics can be characterized by thermal hysteresis which 
follows an elliptical loop. It measures and depicts the amount of heat stress an animal 
experiences in a hot environment. A phase diagram for Tb versus Ta indicates the 
time-dependence and memory associated with the hysteretic behavior; thus, plotting a 
phase diagram between Tb and Ta provides a way to show the existence of thermal 
hysteresis. Thermal hysteresis becomes prominent once a delay (or lag) between Tb 
and Ta is noticeable in the Tb-Ta diagram and the supposition that Ta is the driving 
force when an animal is thermally challenged appears plausible. (Fig 1) 
 
Fig 1. Left: A time series plot shows a 4 hour lag between Tb and Ta for an animal in 
the temperature controlled chamber. Right: The diagram of Tb ~ Ta for this animal 
shows a closed loop of the hysteresis. 

 
 
Two features of the hysteretic ellipse, angle of rotation and area, help characterize the 
dynamics of heat stress. In this study, the angle of rotation of an ellipse is the angle 
between ellipse’s major axis and the Ta (horizontal)-axis. It indicates the length of the 
time delay; i.e. how long Tb lags Ta. The lag can be estimated from the angle of 
rotation of an elliptical loop. In thermodynamics, the area inside the hysteresis loop 
equals the work done in one period or cycle (Brokate and Sprekels 1996). Thus, the 
area of the ellipse formed during thermal hysteresis is an indication of the animal’s 
heat load. In other words, heat load can be assessed by estimating the area within the 
hysteresis loop. As a result, it is possible to fit an ellipse for not only predicting Tb by 
identifying the lag of Tb on the current Ta, but also for estimating the amount of heat 
load.  
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The objectives of this project are 1) to identify three methods to characterize thermal 
hysteresis, 2) to fit parameters of thermal hysteresis ellipse and estimate lag and area, 3) to 
compare parameters from three methods in simulated data, and 4) to compare estimated 
area and lag along with their standard errors. 
 
2. Methods and Models 
An ellipse can be represented using a pair of first-order differential equations: 

1
      

dy dx
rx y

dt dt r
    

By solving the differential equations and reparameterizing the results, an ellipse 
centered at the origin can be obtained parametrically as  

 1 2( ) cos( ) sin( )t r t r t 
                   

 (2.1) 

where r1 is the length of axis along the x-coordinate (major axis), r2 is the length of 
axis along the y-coordinate (minor axis), t is the time. (Horn and Weldon 1986) 
After rotating the ellipse count-clockwise over an angle θ and translating to the 
centroid (cx, cy), the ellipse can be

 
written parametrically as  

1 2

1 2

cos( ) cos( ) sin( )sin( )( )

sin( ) cos( ) cos( )sin( )( )
x

y

r t r t cx t

r t r t cy t

 
 

   
        

            (2.2) 

 
2.1 Linear Least Squares Method 
Any simple closed curve (x, y) can be written algebraically as  

f(x, y)=0 
For a rotated ellipse,  

2 2
1 2 3 4 5 6( , ) 0f x y a x a xy a y a x a y a                 (2.3) 

where 1 30, 0a a  . 

Hence, a linear statistical model based on (2.3) can be constructed to achieve a 
coefficients. For i=1,…,n, 

2 2
1 2 3 4 5 6i i i i i i i ia x a x y a y a x a y a                    (2.4) 

The expected surface of the model is 2 2
1 2 3 4 5 6( ) 0E a x a xy a y a x a y a        .  

Then, the 5 parameters of a rotated ellipse can be obtained using the coefficients from 
(2.4) as  

2 2
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(2.5) 
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All the a’s coefficients in (2.5) can be found using least squares method. That is, 

0,   1,...,6
i

i
a


 


with constraints 1 30, 0a a  .  

After the 5 parameters were obtained from the linear least squares method, the other 4 
parameters: area, lag, retention, and coercion can be derived as 

2 2 2
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           (2.6) 

 
2.2 Ellipse-Specific Nonlinear Least Squares Method 
In (2.2), a rotated ellipse with rotation angle θ and centered at (cx, cy) was written 
parametrically by both input (x) and output (y) functions. Therefore, a nonlinear 
statistical model of 5 parameters can be used to describe the relationship between the 
input and output series.  

2 2

1 2

cos( )( ) sin( )( ) sin( )( ) cos( )( )
1x y x yx c y c x c y c

r r

   
 

         
      
     

 (2.7) 
 
Equation 2.7 is called the parameterized ellipse model. The expected surface of the 
model is  

2 2

1 2

cos( )( ) sin( )( ) sin( )( ) cos( )( )
( ) 1 0x y x yx c y c x c y c

E
r r

   


         
      
   

 

Therefore, the 5 parameters can be found directly from the nonlinear model. The other 
parameters we are interested in can be derived as in (2.6). 
 
2.2.1 Starting Values and Self-starter function 
When fitting a nonlinear regression model, one of the most important things is to find 
appropriate starting values for the model to converge. Finding starting values for the 
parameters by guessing requires some skill, or experience from previous analyses, to 
come up with a successful guess. A grid search provides a more systematic approach. 
However, both methods are time-consuming. The use of self-starter functions  
provide an automated way of obtaining starting values and is indispensable, for 
repeated use of the same nonlinear regression model. (Ritz and Streibig 2008) 
 
In this study, a self-starter function was built based for the ellipse-specific direct least 
squares method. The method was introduced by Pilu, Fitzgibbon and Fisher (1996); 
and it was developed by Fitzgibbon, Pilu and Fisher (1999), Halir and Flusser (1998) 
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and O’Leary and Zsombor-Murray (2004). In 2010, Yang and Parkhurst applied this 
method to describe the trajectories of an elliptical hysteresis loop of heat stressed 
animals.  
 
In the ellipse-specific method, the algebraic distance is minimized over the set of n 
points in the least squares sense, that is  
 

 
1 2 4

2
3 5

1

6

/ 2 / 2
ˆ min 1 / 2

1

iN

i i i
a

i

a a a x

d x y a a y

Symmetric a

    
         
        




         (2.8) 

With the constraint 2
2 1 34 0a a a  . 

Hence, it can be represented as a generalized eigen-system:  
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Then, â is the eigenvector corresponding to the negative eigenvalue in the 
eigen-system 'D Da Ca . That is,  

ˆ { 0 : det | ' |}a Kernel D D C               (2.10)  

Therefore, the starting values for 5 parameters can be obtained from â . 

2 2
1 2 3 63 4 2 5

1_ 2 2_ 2
1 2 32 1 3 2

2 2
1 5 2 4 1 3

1 2 3 6_ 2
2 _ 2 22 1 3

1 2 3

2
cos sin cos sin4 1

arctan
2 2

4 sin sin cos cos

x x y y
startx start

start

x x y yy start
start

a c a c c a c aa a a a
rc

a a aa a a a

a a a a a aa c a c c a c ac ra a a a a a

   


   

   
   

         

     (2.11) 
 
2.3 Lapshin Method 
The third method used to describe the elliptical hysteresis loops is due to Lapshin 
(1995). It is a two-stage procedure which describes input and output separately.  

cos(2 )( )

cos(2 ) sin(2 )( )
a a x a

b a a y b

b t cx t

b t a t cy t

  
    

    
           

       (2.12) 

where a is the phase angle of input (x); a is the split point coordinate; ba, bb are the 
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saturation point coordinates; cx and cy are center coordinates; εa and εb are errors. 
 
After sequentially fitting two linear regression models for both input (x) and output 
(y), Lapshin parameters can be used to describe elliptical parameters. Represented the 
intercepts of two linear regression models as cx and cy, the lengths of two axes and 
angle of rotation are 

   

   

2 2

1

2 2

2

cos( ) cos( ) sin( ) cos( ) sin( )
, arctan

cos( )sin( ) sin( ) cos( )

a a b a a b a a

a a
a a b a a

r b b a b a

br b b a

    
  

    
  

   
 

(2.13) 
 
Then, the lag which is the difference between the phase angles of Ta and Tb is: 

arctan( / )blag a b
                        

(2.14) 

The area of the hysteresis loop in Lapshin model can be derived using Green’s 

formula: 
0

1

2

period
dx dy

Area y x dt
dt dt

   
  . 

Hence,                   

2 2 sin( )y xarea b b a lag                     (2.15) 

Retention, R, and coercion, C, are          

R

C sin( )a

a

b lag




                         (2.16) 

 
2.4 Model Comparisons 
2.4.1. Simulations 
To find the best procedure estimates, a simulation study was constructed. Realistic 
numbers for the model parameters based on values reported in previous literature 
were used, Table 1. An input heat challenge of 32 ±7 oC is applied to an output signal 
of 39 ± 0.233 oC with a 2.9 hr lag. The phase diagram for these values is presented in 
Figure 2. The 1000 datasets were simulated by adding errors to both Ta (εa) and Tb (εb) 
such that εa ~N(0, 0.2) and εb ~N(0, 0.04). Several statistics derived from the 
simulated datasets, standard errors, MSE, percentage of bias, and 95% coverage levels 
were compared, and Shapiro-Wilk tests were applied to check the normality for all 
parameters in a simulation study. The method that produces the smallest standard 
errors, MSE, percentage bias, and close to 95% coverage, with normally distributed 
estimates is the preferred procedure. 
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Table 1. Parameter values for simulated 
dataset for a steer in a sinusoidal Ta 
environment (32 ±7 oC) with Tb ( 39 ± 
0.233 oC) lagging Ta by 2.9 h. 
 
Parameter Simulated 
r1 7 
r2 0.233 
cx 32 
cy 39 
θ 2 
Lag 2.904 
Area 5.124 
R 6.996 
C 0.337 

 

 

Fig 2.TaTb phase diagram for a steer in 
a sinusoidal Ta environment (32 ±7 oC) 
with Tb (39 ± 0.233 oC) lagging Ta by 
2.9 h. 
 

 
2.4.2. Bias 
To compare the difference between the expected value and the true value of each 
parameter, percentage of bias (%Bias) is calculated.  

 % ( ) / 100%Bias E p p p                   (2.17) 

where p stands for the true parameter value. The lower the %Bias, the closer the 
expected value is to the truth. A bias higher than 1% is considered to be significant. 
  
2.4.3. Standard Errors and Coverage 
When fitting the linear least square model, the standard errors (SEs) for parameters (r1, 
r2, cx, cy, θ) were obtained. For the derived parameters, lag, area, coercion, and 
retention, the delta method was used to calculate the SEs. Similarly when fitting the 
ellipse-specific nonlinear least square model, the SEs for the parameters (r1, r2, cx, cy, 
θ) were obtained directly from the nonlinear model, but the other standard errors (lag, 
area, coercion, and retention) were obtained by the delta method. In Lapshin model, 
SEs of centroids, retention and lag can be obtained from the model directly; SEs of 
lag can be obtained from delta method; but since two stages are used to fit the Lapshin 
model, SEs for other parameters cannot be obtained from the model or delta method.  
 
To compare standard errors of parameters with different units, the coefficient of 
variation (CV) was used as a measure of dispersion.  

CV= | Standard error / Estimate |                (2.18) 
 
The Wald confidence interval (CI) can be obtained using the expected value and the 
SE for each parameter. Then for each parameter, the Wald coverage indicates the 
proportion of simulations that the true value falls in the Wald CI, based on the 1000 
simulations. 
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For the ellipse-specific nonlinear model, two other algorithms: Sandwich method and 
T-profile method can be used to obtain SEs. The sandwich estimation procedure is a 
general method for estimating the covariance matrix of parameter estimates. The 
method asymptotically adjusts covariance matrix in order to obtain consistent 
estimates of the standard error even if some of the distributional assumptions are 
misspecified (Carroll and Ruppert 1988). Suitable implementations (R package: 
Sandwich) are available in the R system for statistical computing for Sandwich 
estimation (Zeileis 2006). T-profile is a method based on the idea of marginal 
likelihood intervals for nonlinear model parameters (Bates and Watts 1988). It begins 
by relating a linear model interval to the sum of squares functions and a profile t 
function is then developed. (R function: confint.default) With these algorithms, two 
new sets of SEs and the corresponding CIs and 95% coverages for parameters (r1, r2, 
cx, cy, θ) can be obtained. 
 
2.4.4. Bootstrapping 
Neither Wald nor Sandwich nor T-profile can give SEs for all parameters for all three 
models. Bootstrapping gives SEs for all parameters in all three models. Hence, to 
make comparisons the parameter estimates from each model, the bootstrapping 
method was applied. Bootstrapping developed by Efron (1979; 1993) provides an 
alternative way of calculating SEs. It helps to learn about the sample characteristics 
by resampling and using the information to infer the population distribution. (R 
package: Boot) By resampling, subset of each simulated realization was drawn 
randomly with replacement. For each of the 1000 simulated realizations, 1000 
bootstrapping iterations were performed on linear least squares method, 
ellipse-specific nonlinear least squares method, and Lapshin method. Bootstrapping 
estimates, SEs, and coverages, for each parameter were obtained by averaging over 
the total number of iterations. At the end of bootstrapping, models were compared 
using the bootstrapping estimates, bootstrapping SEs, and bootstrapping coverages. 
 
3. Results 
3.1 Linear least squares method 
All the estimated parameters have small percentages of bias(<.09%). The standard 
errors of the length of major axis (r1), centroid on the input axis (cx), area, and 
coercion (C) are larger compared with other estimates, but the SE’s of these 
parameters, with the exception of coercion are still comparable, because the 
coefficients of variation (CV’s) are  <7%. The standard error of coercion is serious 
because of the magnitude of the CV (75%). The Wald coverages for the estimates are 
close to 95% for only 3 of the 9 parameters. Coverage is worrisome for the length of 
minor axis (r2), angle of rotation (theta), area, lag and retention (R). The coverage for 
coercion is extremely high, which may be caused by the large standard error. (Table 2) 
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Table 2. Linear Least Squares Method: True Values, Estimates, %Bias, Standard 
Errors, and 95% Wald Coverages 

 Parameter TRUE Estimate %Bias SE Coverage 

r1 7 6.898 -1.45E-02 .270 .994 

r2 .233 .246 5.48E-02 .010 .738 

cx 32 32.019 5.96E-04 .225 .991 

cy 39 39.000 1.22E-05 .013 .948 

θ .035 .038 8.50E-02 .003 .829 

area 5.124 5.323 3.88E-02 .256 .891 

lag 2.904 2.880 -8.14E-03 .047 .426 

R 6.996 6.893 -1.47E-02 .016 .126 

C .337 .359 6.36E-02 .270 1 

 
The histograms are given in Fig 3. The expected values for centroids (cx, cy) and lag 
overlap their true values in the histograms. The expected values for other parameters 
are either lower or higher than their true values. Hence, in linear least square method, 
centroids and lag are symmetric about the true value; length of minor axis (r2), angle 
of rotation (theta), area, and coercion tend to under-estimate the parameter; length of 
major axis (r1), and retention tend to over-estimated the parameter.  
 
Fig 3. Linear least squares method: Distribution plots of estimates for all parameters 
based on 1000 simulations, solid line-true values; dashed line-expected values. 

 
3.2 Ellipse-specific nonlinear least squares method 
For the ellipse-specific nonlinear method, all the estimates appear unbiased. (<.09%) 
(Table 3) The standard errors of the length of major axis (r1), centroid on the input 
axis (cx), area, and retention (R) are large compared with other estimates, but the CV’s 
are <7%. The Wald coverages for all estimates are close to 95% for 6 of the 9 
parameters, but length of minor axis (r2), area, lag, and coercion (R) are worrisome. 
The coverage for the sandwich method for only 5 of the 9 parameters shows no 
improvement. The length of minor axis (r2) is very low compared with others. Nor 
does the T-profile method improve the results. The coverage of length of minor axis 
(r2) is still worrisome.  
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Table 3. Ellipse-specific nonlinear least squares method: true values, estimates, %bias, 
standard errors, 95% Wald coverages, 95% Sandwich coverages, and 95% T-profile 
coverages  

Parameter True Estimate %Bias SE Coverage 

Wald Sandwich T-profile 

r1 7 6.997 -4E-4 .263 .999 .952 .998 

r2 .233 .252 .081 .011 .587 .595 .549 

cx 32 32.004 1E-4 .218 .991 .941 .989 

cy 39 39.000 1 E-6 .011 .960 .916 .949 

θ .035 .035 -.007 .002 .946 .902 .934 

area 5.124 5.532 .080 .254 .692  

lag 2.904 3.067 .056 .047 .881 

R 6.996 6.993 -4E-4 .263 .999 

C .337 .350 .037 .014 .908 

 
The histograms for ellipse-specific nonlinear least squares method are given in Fig 4. 
The expected values for length of major axis (r1), centroids (cx, cy), angle of rotation 
(theta), and retention overlap their true values in the histograms. Other expected 
values are either lower or higher than their true values. Hence, in ellipse-specific 
nonlinear method, length of major axis, centroids, angle of rotation, and retention are 
symmetric about the true values; length of minor axis, area, and coercion greatly 
under-estimate the true value; the lag tends to be highly over-estimated. 
 
Fig 4. Ellipse-specific nonlinear least squares method: Distribution plots of estimates for all 
parameters based on 1000 simulations- solid line-true values; dashed line-expected values. 

 

 
3.3 Lapshin model: 
For the Lapshin method, all the estimated parameters have small percentages of 
bias(<.09%). (Table 4) Only standard errors of centroids (cx, cy) can be obtained 
directly from the two linear models, where SE(cx)=0.039 and SE(cy)=0.008. Since 
Lapshin method is a two-stage estimation procedure, delta method, sandwich and 
T-profile are not applicable for obtaining standard errors. 
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The histograms for Lapshin method are given in Fig 5. The expected values for length 
of major axis (r1), centroids (cx, cy), angle of rotation (theta), and retention overlap 
their true values in the histograms. Other expected values are either lower or higher 
than their true values. Hence, in Lapshin method, length of major axis, centroids, 
angle of rotation, and retention are symmetric about the true values; length of minor 
axis (r2), area, and coercion under-estimate the parameter; lag over-estimates the 
parameter.  
 
Table 4. Lapshin method: true values, estimates, and %bias  

Parameter TRUE Estimate %Bias

r1 7 6.999 -2E-04

r2 .233 .240 .029

cx 32 31.999 -2E-05

cy 39 39.000 -2E-06

θ .035 .035 -6E-04

area 5.124 5.271 .029

lag 2.904 2.959 .019

R 6.996 6.994 -2E-04

C .337 .342 .014

 
Fig 5. Lapshin method: Distribution plots of estimates for all parameters based on 
1000 simulated datasets . Solid-true values; dashed line-expected values. 

 

 
3.4 Normality 
Linear least squares method produced only three normally distributed parameters 
based on 1000 simulations: length of minor axis (r2), centroid (cy), and area. On the 
other hand, the ellipse-specific nonlinear method produced only two non-normal 
distributed parameters: length of major axis (r1) and retention (R). The Lapshin 
method produced three non-normal distributed parameters: length of minor axis (r2), 
area and coercion (C). (Table 5) 
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Table 5. Shapiro-Wilk test for normality of each parameter in three methods 

  Shapiro p-value 

  LS NLS Lap 

r1 < .0001 < .0001 .9017

r2 .6047 .4069 < .0001

cx .0500 .1510 .4169

cy .1448 .7414 .5425

θ .0367 .9524 .3130

area .3369 .6606 < .0001

lag .0313 .2022 .1574

R < .0001 < .0001 .8901

C < .0001 .3612 < .0001

 
3.5 Comparison of Bootstrapping Results 
Since the assumption of normality for the area and other estimates was questionable, 
bootstrapping was performed. All the estimated bootstrapping parameters have small 
percentages of bias(<.09%) in all three methods. Although standard errors of some 
parameters are large compared with others in three method, CV’s are all reasonable 
(<7%). Comparisons of the 95% bootstrapping coverages show that linear least 
squares method produces poor coverages for two parameters, coercion and angle of 
rotation; the ellipse-specific nonlinear least squares method produced poor coverages 
for length of minor axis and lag; coverages of all parameters by Lapshin method were 
acceptable, close to 95%. (Table 6) 
 
Table 6. Comparisons of Bootstrapping estimates, standard errors, coverages  

Param

eter TRUE 

Boot Estimate Boot %Bias Boot SE Boot 95% Coverage 

LS NLS Lap LS NLS Lap LS NLS Lap LS NLS Lap 

r1 7 6.898 6.872 6.999 -.015 -.018 -2E-4 .161 .147 .054 .928 .892 .961 

r2 .233 .246 .246 .240 .055 .055 .029 .013 .012 .014 .886 .851 .941 

cx 32 32.019 32.014 31.999 6E-4 4E-4 -2E-5 .155 .152 .039 .954 .956 .956 

cy 39 39.000 39.000 39.000 1E-5 8E-6 -2E-6 .012 .011 .008 .945 .960 .944 

θ .035 .038 .035 .035 .082 -.009 -.003 .002 .002 .002 .806 .956 .968 

area 5.124 5.323 5.303 5.271 .039 .035 .029 .252 .250 .317 .906 .909 .943 

lag 2.904 2.880 3.055 2.365 -.008 .052 -.186 .175 .170 .037 .948 .883 .935 

R 6.996 6.893 6.868 6.994 -.015 -.018 3E-4 .161 .147 .054 .929 .892 .961 

C .337 .359 .342 .342 .065 .016 .016 .015 .013 .013 .724 .955 .942 

 
3.6. Comparisons of MSEs 
The comparisons of the MSEs among three methods show that ellipse-specific 
nonlinear method has the smallest averaged MSE (0.0503), but Linear least squares 
method has the largest (28.1037); MSEs from 1000 simulations are normally 
distributed only in Lapshin method (p-value =0.1396). (Fig 6, Table 7) 
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Fig 6. Distribution plots of MSEs for three methods based on 1000 simulations 

 
 
Table 7. Comparisons of the averaged and the normality of MSEs based on 1000 
simulations among three methods 

 LS NLS Lapshin 

MSE 28.1037 0.0503 0.1423 

Shapiro P-value <.0001 <.0001 0.1396 

 
4. Conclusion 
Thermal hysteresis elliptical loops can be estimated using three methods, linear least 
squares, ellipse-specific nonlinear least squares, and the two-stage Lapshin  
regression. In the linear least squares method, a linear model with Ta and Tb is 
directly fitted. In the ellipse-specific nonlinear least squares method, the relationship 
between Ta and Tb can be described using a nonlinear model; a self-started function 
based on the ellipse-specific least squares method can be used to produce the starting 
values to facilitate model convergence. In Lapshin method, Ta and Tb can be analyzed 
using a two-stage procedure which models Ta and Tb sequentially.  
 
Five elliptical parameters, lengths of major and minor axes, centroids, and angle of 
rotation, and four derived parameters lag, area, retention, and coercion can be 
estimated by each method. Lag and area of an elliptical hysteresis loop are two 
features used to characterize the dynamics of heat stress. The longer the lag between 
Tb and Ta, the larger area of the elliptical hysteretic loop, which indicated more heat 
needs to be dissipated during one cycle.  
 
The simulation study showed there are differences among the methods in the quality 
of the parameter estimates. Linear least squares method generally produced low Wald 
coverages and non-normal estimates. The CV for coercion is a troubling 75%. The 
ellipse-specific nonlinear least squares method produced poor Wald coverages on 
three parameters: length of minor axis, area, lag, and coercion. Neither sandwich nor 
T-profile methods substantially improve coverages on the 5 elliptical parameters.  
Five estimates: length of major axis, centroids, angle of rotation, and retention, are 
symmetric about the true value. In the Lapshin method, all %bias are small but it is 
difficult to assess coverage. Once again five estimates: length of major axis, centroids, 
angle of rotation, and retention are symmetric about the true value.  
 
The estimation of the derived parameters, lag and area, in the linear least squares 
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method was poor. The ellipse-specific nonlinear least squares method improved the 
estimation of lag and area, but the Wald coverages for the two parameters did not 
improve. The Lapshin method produced the smallest of bias on lag and area compared 
to the other two methods. However, the area estimates by Lapshin method were not 
normally distributed. The lack of normality leads to a bootstrapping study. 
 
Comparisons of bootstrapping statistics for lag and area show that Lapshin method 
had the best coverage. In addition, the Lapshin bootstrapping estimate had the 
smallest bias for area and the smallest SE. 
 
Overall, the Lapshin method produced small bootstrapping bias, small bootstrapping 
standard errors, and good 95% bootstrapping coverage for all parameters. Also, the 
Lapshin method produced the smallest averaged MSE and it was normally distributed.  
In conclusion, the Lapshin method is the preferred method for fitting the elliptical 
hysteresis loop and estimating the hysteretic parameters. 
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