Sex Differences in Exercise Recovery

Cristian Erives

Follow this and additional works at: https://newprairiepress.org/ksuugradresearch

Part of the Kinesiology Commons

Recommended Citation


This work is licensed under a Creative Commons Attribution-Noncommercial 4.0 License

This Event is brought to you for free and open access by the Conferences at New Prairie Press. It has been accepted for inclusion in Kansas State University Undergraduate Research Conference by an authorized administrator of New Prairie Press. For more information, please contact cads@k-state.edu.
Sex Differences in Exercise Recovery

Cristian Erives, Andrew M. Alexander, and Thomas J. Barstow, FACSM
Department of Kinesiology, Kansas State University, Manhattan, KS USA

Abstract

Recent findings from our laboratory suggest that recovery from peripheral fatigue measured by pre- and post-potentiated twitch forces following extreme intensity (80%) exercise is faster than following severe intensity exercise (40% MVC). Women have been shown to have predominantly higher percentages of slow twitch muscle fibers compared to men. 

Purpose: To test the hypothesis that Qp(twitch) following exercise is recovered faster in women than in men in both exercise intensities.

Methods: Six subjects (3 men, 3 women, age 24 ± 4 yrs, 74.5 ± 17 kg, 173 ± 3 cm) performed 2 intermittent isometric knee extension tests to exhaustion at 40% and 80% MVC. Repetitions were performed at a 60% duty cycle (30 s on, 30 s off). Exercise intensities were chosen to elicit time to task failure (Tlim) in < 2min (extreme intensity) and 2-15 min (severe intensity). Task failure was defined as the inability to maintain target force of MVC (40%, 80%). Qp(twitch) measurements were made every 30 s prior to and immediately following exercise. Qp(twitch) was compared pre- and post-exercise between intensities. Furthermore, individual Qp(twitch) were compared over time during recovery following extreme and severe exercise in men and women.

Results: Recovery from fatigue following severe intensity exercise shows significant decreases in force production in men and women compared to baseline values: * significantly different from baseline value. Significant decreases in all six force production values following extreme intensity exercise were found in men, while women showed only initial value to be significantly different. Recovery from fatigue in women after the first 30 second measurement increased to near baseline value where the difference in force production was no longer significant.

Conclusion: No significant difference in recovery in men and women following severe intensity exercise was found. There were significant differences from recovery in men compared to women following severe intensity exercise. Force production in women 30 seconds into recovery indicated recovery was significant compared to men.

Introduction

• Recent findings from our laboratory suggest that recovery of peripheral fatigue measured by pre- and post-potentiated twitch forces following extreme intensity (80%) exercise is faster than following severe intensity exercise (40% MVC).

• Individuals with predominately slow twitch muscle fibers recover faster than those with predominately fast twitch muscle fibers (Haizlip, 2015).

• Women have been shown to have typically higher percentages of slow twitch muscle fibers compared to men (Haizlip, 2015; Wust, 2008).

• Therefore, the current study investigates potential differences in recovery from extreme and severe intensity exercise between sexes.

• Hypothesis: Recovery of fatigue will be more rapid in women than in men.

Methods

6 subjects (3men, 3women, age 24 ± 4 yrs, 73 ± 15 kg, 175 ± 10 cm) performed two isometric knee extension tests to task failure at 40% and 80% MVC.

Exercise intensities were chosen to elicit time to task failure in < 2min (extreme intensity) and 2-15 min (severe intensity).

Task failure was defined as the inability to maintain target force.

Neuromuscular measurements were made every 30 s prior to exercise and immediately following task failure to calculate muscular fatigue.

Twitch force (peripheral fatigue) were compared pre- and post-exercise and between intensities (severe and extreme) in men and women.

Individual potentiated twitches were compared over time during recovery following extreme and severe exercise.

Comparison of recovery in men and women were made from both severe and extreme domains.

Results

Figure 1: Recovery from fatigue following severe intensity exercise shows significant decreases in force production in men and women compared to baseline values. * significantly different from baseline value

Figure 2: Significant decreases in all six force production values following extreme intensity exercise were found in men, while women showed only initial value to be significantly different. Potentiated twitch force in women was only different during the first measurement, suggesting that peripheral fatigue was no longer present after one minute post-exercise. * significantly different from baseline value.

Conclusion

Peripheral fatigue had not recovered to pre-exercise values in men or women through 3 minutes following severe exercise. Men also showed less twitch force 3 minutes after extreme exercise while women had recovered to near pre-exercise values within 30 s following extreme exercise. This suggests that there are mechanisms in women that are able to recover faster than men after extreme exercise. One potential mechanism is greater slow-twitch fiber type distribution.

References

