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Abstract 
Studies have shown that exposure of animals to a high ambient temperature 
environment poses serious threats to their health, performance and productivity. 
Above a certain threshold an animal's body temperature (Tb) appears to be driven by 
the hot ambient temperature (Ta). For steers challenged by heat stress, the Tb-Ta 
relationship shows a dramatic increase in Tb per unit change of Ta and the dynamics 
of the Tb-Ta relationship follow a pattern which depends on whether Ta is increasing 
or decreasing. A delay becomes noticeable in a steer’s thermo-regulatory response to 
Ta when Ta is controlled to be sinusoidal in the steer’s heat stress chamber. In other 
words, Tb lags behind Ta. Consequently when plotted in a Tb-Ta phase diagram, a 
hysteresis effect appears in the form of a hysteresis loop, indicating the steer is 
thermally challenged. The hysteresis loop shows a rotated elliptical pattern which 
depends on the delay (or lag) between Tb and Ta. The angle of rotation of the 
hysteresis loop indicates the correlation (and lag) between Tb and Ta. The area of the 
elliptical hysteresis loop can be used to quantify the amount of heat stress during the 
period of thermal challenge. For example, results of a thermal challenge of 32±7oC 
applied to a Hereford steer showed, the delay is longer (4 hr lag) and ellipse is larger 
in an acute stage than in a chronic stage (3 hr lag). A greater delay (or lag) suggests 
more time is needed to dissipate the heat stress. This result suggests, steers in an acute 
stage require more energy to dissipate heat than steers in a chronic stage. 
 
Key words: Delay-relay model, Ta-Tb phase diagrams, Thermo-regulatory response, 
Threshold, Sinusoidal input, Limit cyclic, Thermal ellipse, Hysteresis loop, Tb-Ta 
lags, Acute stage, Chronic stage, Energy dissipation,  Ambient-body temperature 
correlation, Hereford steers.  
 
1. Introduction 
The phenomenon of hysteresis can be defined in terms of the relationship between the 
output of a system and the inputs. The three fundamental properties of the output from 
a hysteretic process are: memory, rate independence, and initial state of the process.  
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Cyclic hysteresis describes the behavior of a hysteretic process in response to periodic 
variations of external variables. Thermal hysteresis is one of cyclic hysteresis. In 
animal science, when an animal is thermally challenged, physiological processes in 
the body become activated in order to dissipate the increasing heat load. Body 
temperature (Tb) is one process that shows a dramatic response to heat stress (HS). 
Studies show Tb is essentially unresponsive to air temperature (Ta) until a threshold is 
reached and then there is a dramatic response to increasing air temperature (Hahn 
1999; Mader et al. 2001). Parkhurst et al. (1999) present a model (called PET) and 
showed that cattle are thermally challenged by exposure to hot cyclic Ta in controlled 
HS studies. The PET model has been successfully used to fit Tb of beef cattle in 
thermally challenging environments (Parkhurst et al. 1999, 2002a, 2002b; Sheng et al. 
2001). 
 
In 2010, Parkhurst presented a simplified version of the PET model illustrating the 
dynamics when the delay is known for animals thermally challenged in an 
environmental chamber. Thus, Tb can be predicted by assuming a specific delay or lag. 
In the transitional stage (dashed line Fig 1), the animal’s Tb increases at an 
exponential rate as Ta increases. After the transitional stage, the animal’s Tb becomes 
entrained in a stable periodic limit cycle (solid line, Fig 1). It indicates that once an 
animal becomes entrained in a state of thermal equilibrium and a jolt occurs in the 
trajectory, Tb will return to the periodic hysteresis as time progresses, although 
possibly with a shift in delay as a result of acclimatization by the animal.  
 
Fig 1. Tb-Ta phase diagram shows trajectory from transitional to thermal hysteresis 

   
The elliptical loop formed during heat stress provides a way to quantify the amount of 
heat stress an animal experiences in a hot environment. Two features of the hysteretic 
ellipse, angle of rotation and area, help characterize the dynamics of heat stress. In 
this study, the angle of rotation of an ellipse is the angle between ellipse’s major axis 
and the Ta (horizontal)-axis. It indicates the length of the time delay; i.e. how long Tb 
lags Ta. The lag can be estimated from the angle of rotation of an elliptical loop. In 
irreversible thermodynamics, the area inside the hysteresis loop equals the work done 
in one period or cycle (Brokate and Sprekels 1996). Thus, the area of the ellipse 
formed during thermal hysteresis is an indication of the animal’s heat load. In other 
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words, heat load can be assessed by estimating the area within the hysteresis loop.  

AHL = Area of ellipse = 1 1*(  )*(  )
2 2

Major axis Minor axisπ       (3) 

A cross-correlation is a popular way to estimate lags and a linear regression can be 
used to predict Tb. However, a simple linear model ignores the possibility of a 
trajectory. But more importantly, the ability to estimate the amount of heat load during 
thermal hysteresis is lost. Therefore, an appropriate model needs to provide estimates 
of both lag and heat load. One alternative is to model an ellipse. An elliptical model 
would provide a way to describe the lag and heat load characteristics of thermal 
hysteresis and make practical applications more germane. 
 
The elliptical model can be used to examine differences in acute and chronic stages of HS. 
The premise is acute HS corresponds to a delay of 4 h, while chronic HS corresponds to a 
delay of 3 h (Hahn et al. 1997). Results from Hahn also suggest that during the acute stage 
of HS, the animal dissipates more heat than in the chronic stage. Comparison of parameters 
estimated by the elliptical hysteresis model can be used to examine that premise.  
 
The objectives of this study are to: 1) develop a procedure to fit a hysteretic ellipse; 2) 
illustrate the information lost by ignoring thermal hysteresis; and 3) present a practical 
application where parameter estimates from acute and chronic heat stress data are depicted. 
 
2. Materials and Methods  
2.1. Statistical Methods 
When the Tb-Ta relationship is modeled as a simple linear regression, information 
about the delay and heat load is lost. To illustrate the loss of information, eigenvalues 
from the Tb-Ta correlation matrix are used to fit a unit ellipse to a system with 
homogeneous input and output variances. To exemplify fitting real data with 
heterogeneous input and output variances, a constrained least squares is performed. 
 
2.1.a. Correlation-Eigenvalue Method 
The formula for a unit ellipse is:  

22

2 2

( )( ) 1yx

x y

y cx c
l l

−−
+ = ,                   (4) 

where (cx, cy) is the center of the ellipse, lx is the semi-length along the x-axis (Ta) and 
ly is the semi-length along the y-axis (Tb). 
 
In the case of homogeneous variances, no information is lost when the covariance is 
standardized to form a correlation matrix and the angle of rotation is the correlation 
between Tb and Ta. If there is no delay, the angle is zero, and the correlation is 
cos(0)=1. When there is no correlation, the angle is 90°, since cos(90)=0. Eigenvalues 
from the correlation matrix give information about length and width of the ellipse.  
These are the ideas used in principle component analysis (Johnson and Wichern 2007). 
In this paper, the eigen-system from the correlation matrix between input and output 
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variables is analyzed. Hence, the area of the unit ellipse is 

1 2ellipseA π λ λ= ,                          (5) 

with λ1>λ2>0 are eigenvalues from correlation matrix R. 
 
Then, (4) can be rewritten as a function of eigenvalues: 

22

1 2

( )( ) 1yx y cx c
λ λ

−−
+ =                        (6) 

The correlation-eigenvalue method can be used to fit a unit ellipse to data in which 
input and output variables have homogeneous variance. The heat load during thermal 
hysteresis can be obtained from eigenvalues of the correlation matrix. This method 
provides a way to conceptualize the information lost by a simple linear regression 
model. However, it is not realistic to apply the correlation-eigenvalue method to real 
data when it has heterogeneous variances. The heterogeneity among variables may 
change the rotation of the ellipse. Then, the correlation-eigenvalue method will no 
longer give a reasonable representation of the data. To make the research results more 
applicable, a constrained ellipse-specific least squares method is performed.  
 
2.1.b. Ellipse-Specific Direct Least Squares Method 
Fitting of an ellipse is a classic problem in pattern recognition. Fitting generic conic 
shapes and implicit curves to real data points is an area of study in many fields such 
as engineering, biology and pharmaceutics. Many iterative methods have been 
explored on this issue. (Gander et al. 1994; Bookstein 1979; Pilu, Fitzgibbon and 
Fisher 1996; Fitzgibbon, Pilu and Fisher, 1999; Halir and Flusser 1998; O’Leary and 
Zsombor-Murray 2004)  In the current study, the shape of the hysteresis loop is 
assumed to be elliptical. Thus, the ellipse-specific direct least squares algorithm of 
Pilu and Fitzgibbon (1996) was used to fit a hysterical ellipse to real data and 
estimates for both the rotation angle and amount of heat load were calculated. 
 
Let zi =(xi, yi) be the ith observation of Ta and Tb over i=1 ... n time points. 
An ellipse can be written as a second order polynomial, 

( )

( ) ( )

2 2
1 2 3 4 5 6

1 2 4

3 5

6

2 2
1 2 3 4 5 6

( , )
/ 2 / 2

           1 / 2
1

           0,  

where ', 1

F a z az a x a xy a y a x a y a
a a a x

x y a a y
a

a a a a a a a z x xy y x y

= = + + + + +

  
  =   
  
  

=

= =

  



.      (7) 

( , )F a z d=


 is the algebraic distance of a point (x,y) to the conic ( , )F a z


=0. 

 
To fit the ellipse, the algebraic distance is minimized over the set of n points in the 
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least squares sense; that is 

( )22 2 2
1 2 3 4 5 6

1 1

ˆ min ( , ) min
N N

i i i i i i ia ai i
d F a z a x a x y a y a x a y a

= =

   = = + + + + +   
   
∑ ∑

 
   (8) 

To derive one and only one elliptical solution, a quadratic constraint 2
2 1 34 0a a a− <  is 

added to (8).  
Consequently, with the quadratic constraint (8) can be written as  

atSa - λatCa = 0 for some λ                   (9) 
 

where S=DtD with 

2 2
1 1 1 1 1 1

2 2

1
... ... ... ... ... ...

1n n n n n n

x x y y x y
D

x x y y x y

 
 

=  
 
 

 ( D is called the design matrix, 

O’Leary and Zsombor-Murray, 2004), and 

0 0 2 0 0 0
0 1 0 0 0 0
2 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

C

− 
 
 
 −

=  
 
 
  
 

such that 

2
2 1 34  0ta a a a Ca− = < . 

Then (9) can be simplified to be a generalized eigenvalue problem; that is,                       

Sa Caλ=                            (10) 

Since S is positive definite (i.e. atSa>0) and atCa<0, λ must be a single negative 
generalized eigenvalue. Therefore, the eigenvector corresponding to the negative 
eigenvalue in (10) is the unique elliptical solution to (8). 
 
To solve the generalized eigen-problem (10), two cases need to be considered 
depending on the singularity of S. Datasets where the input and output are highly 
correlated (i.e. close to a straight line) may have eigenvalues close to zero. That is, the 
matrix S may be singular (non-invertible). Hence, the solution to the generalized 
eigen-problem (10) depends on the invertibility of S. 
 
Case 1. If S is invertible, then (10) can be written as 

1 1( )a S C aλ− −=                         (11) 

and (4) can be solved by singular value decomposition. The eigenvector 
corresponding to the negative eigenvalue in (11) is the same eigenvector in (10), and 
hence, is a solution of (9).  
 
Case 2. If S is not invertible, then (10) has to be solved by the generalized 
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eigen-problem. Sa=λCa →(S - λC)a=0. The aim is to find some λ<0 such that 
det|S-λC|=0. Since matrices S and C are known, it becomes a univariate root problem, 
which means λ is the root of the function det|S-λC|=0. Thus, the corresponding 
generalized eigenvector in (10) is the kernel of (S - λC)a=0.  
 
Once the eigenvector is obtained, the real data can be written as a second order 
polynomial (7), and the ellipse is ready to be transferred into the canonical form. 
Suppose an ellipse along u and v axes is 

2 2

1 0u v

u v

u c v c
l l

   − −
+ − =   

   
,                        (12) 

(cu,cv) is the center point of the ellipse, lu and lv are the lengths of the half axes along 
the u and v axes, (u, v) are the coordinates of the point rotated from the x-y axes by the 

angleθ , i.e.,
cos sin
sin cos

u x y
v x y

θ θ
θ θ

= +
 = − +

. 

Then,    
2 2

cos sin sin cos( , ) 1u v

u v

x y c x y cF a z
l l

θ θ θ θ   + − − + −
= + −   
   

         (13) 

Solving (13) for the five coefficients gives 

2 2

1 2 2

2

2 2 2

2 2

3 2 2

4 2 2

5 2 2

2 2

6 2 2

cos sin

2sin cos 2sin cos

sin cos

2 cos 2 sin

2 sin 2 cos

1

u v

u v

u v

u v

u v

u v

u v

u v

u v

a
l l

a
l l

a
l l

c ca
l l

c ca
l l

c ca
l l

θ θ

θ θ θ θ

θ θ

θ θ

θ θ

 
= + 

 
 

= − 
 
 
 = +
 
 
 = − +
 
 
 = − −
 
 
 = + − 
   

 

Hence, estimates for the angle, centroid, and semi-axes are: 

 

( )

( )

2

1 3

1
1 2 4

2 3 5

2 2
1 2 3

1 2
6

2 3

2 2
1 2 3

1 2
6

2 3

1ˆ arctan
2

ˆ / 21
ˆ / 22

cos sin cos sinˆ
/ 2

/ 2

sin sin cos cosˆ
/ 2

/ 2

u

v

u
u

u v
v

v
u

u v
v

a
a a

c a a a
c a a a

a a al
a a c

c c a
a a c

a a al
a a c

c c a
a a c

θ

θ θ θ θ

θ θ θ θ

−

 
=  − 

     
= −     

     

+ +
=

  
−  

  

− +
=

  
−  

  

          (14) 

The estimated area of the hysteresis loop is ˆˆˆ
ellipse u vA l lπ= . 
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To predict Tb from Ta, a general parametric trigonometric form of an ellipse is 
required.  Using the trigonometric form for Ta and Tb gives 

( ) cos( )sin( ) sin( ) cos( )
( ) cos( ) cos( ) sin( )sin( )

u u v

v u v

Ta t c l t l t
Tb t c l t l t

θ θ
θ θ

= + +
= + −

               (15) 

where (cu ,cv) is the center of the ellipse, lu and lv are the lengths of the semi-axes, θ is 
the rotation angle and t varies from 0 to 2π. The input, Ta, and output, Tb, can be 
predicted by substituting the parameter estimates (14) into (15).  
 
The ellipse-specific least squares method and simple linear model are compared by 
goodness-of-fit statistics such as MSE, Information Criteria (AIC and SBC), and 
prediction plots. The model with lower MSE, AIC and SBC, and no large residuals is 
preferred. The MSE for an ellipse was calculated using residuals from the algebraic 
distance (5) and df=n-5. All analyses in this study were done in R 2.11.0.  
 
2.2. Data: Simulated and Collected 
The implementations of the proposed methodologies methodology were is approached 
as proof-of-concept by applying the method to both simulated and collected data. 
Simulated data with homogeneous variances was is used to display the thermal 
dynamics and compare the results of fitting an elliptical model using 
correlation-eigenvalues to the results from a simple linear regression. Real data was 
fit using generalized eigenvalues to demonstrate the ellipse-specific direct least 
squares algorithm. 
 
2.2.a. Simulated data 
Ta was simulated in a sinusoidal pattern with mean 32, amplitude 1, period 24h, and 
no error. Tb was simulated in the sinusoidal pattern with the same amplitude, period, 
and no error, but with a different mean 39.9, and lags at 0, 1, 2, 3, 4, 6h from the Ta. 
  
2.2.b Collected Data 
Data from one ad-lib-fed Hereford steer was randomly chosen from two steers in a 
controlled environment chamber. In an effort to emulate daily patterns of temperature 
behavior, the steers in the chamber were housed in a sinusoidal Ta regime. Tympanic 
temperatures were recorded on a one hour basis from 8:00am until the next day’s 
7:00am for fifteen days. Environmental conditions during the first 192 hours were 
thermoneutral cyclic (10oC±7oC). At hour 192, conditions were elevated to hot cyclic 
(28oC±7oC). In this study, the Tb-Ta for two days under hot cyclic conditions 
corresponding to acute stage (day 10) and chronic stage (day 14) were examined.  
 
3. Results and Discussion 
3.1. Correlation-Eigenvalues from Simulated Data 
In order to illustrate the advantages of an elliptical model, the correlation-eigenvalue 
method was applied to simulated data with homogeneous variances. The Tb-Ta phase 
diagrams provide visualizations of the thermal hysteresis loop (unit ellipse) for six 
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delays (0, 1, 2, 3, 4 and 6 h) corresponding to periods of  0 to ¼ of a 24 h, Fig 2. 
 
The shapes of the ellipses fit by the correlation-eigenvalue method changed from a 
straight line to a circle as the length of the delay increased from 0 to 1/4 period. Hence, 
heat accumulation, in terms of area of the unit ellipse (hysteresis loop), increases from 
0 toπ as the length of delay increases. Notice the linear regression (dashed line) 
becomes less and less plausible as a model for the data as hysteresis increases. 
 
Fig 2. Simulated Hysteresis Loop (Unit Ellipse) Fit By Correlation-Eigenvalue 
Method (Solid Line) And Simple Linear Regression (Dashed Line). 

 
Table 1 further explores the loss of information as the delay increases. The correlation 
between Tb and Ta (cos(D egrees)) deteriorates, as does the proportion of total 
variation accounted for by the regression model (R-square). Estimates of the delay in 
Tb in response to Ta and the area of the unit ellipse were calculated using the 
correlation-eigenvalue method. The area of the hysteresis loop (unit ellipse) ranges 
from 0 to a unit circle. 
 
Table 1. Comparison of Tb-Ta Correlation, R-square and Unit Ellipse Area for 
Different Delays. 

A
re

a 
of

 
H

ys
te

re
s 

Lo
op

 DELAY 
for Tb in response to Ta 

Tb-Ta 
CORRELATION

 R-square 
Unit  

Ellipse  
Area Hour Period Degrees Cos(Degrees) 

0 0 0 0 +1 1 0 
Small 

| 
| 
| 

Large 

1 1/ 24 15 .9659 .9330 0.8134 
2 1/ 12 30 .8660 .7500 1.5709 
3 1/ 8 45 .7071 .5000 2.2215 
4 1/ 6 60 .5 .2500 2.7207 
6 1/ 4 90 0 0 3.1416 
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3.2. Estimating Thermal Hysteresis Characteristics from Collected Data  
Experimental data from acute and chronic stages of HS for one ad-lib-fed Hereford 
steer housed in a sinusoidally controlled (28oC±7oC) HS chamber were fit by the 
ellipse-specific direct least-squares method. The results from the ellipse-specific and 
simple linear regression models are compared in Fig 3. Both plots show that 
predictions from the ellipse-specific least squares method have smaller departures 
from the observed data than the linear regression method.  
 
Fig 3. Predicted Tb-Ta from Ellipse-specific Hysteresis Model (solid line) and 
Simple Linear Regression (dashed line) Compared to Data Points (open circles) 

 
 
Statistics from both the ellipse-specific and linear regression models are summarized 
in Table 2. When compared to the linear regression model, the goodness-of-fit 
statistics (MSE, AIC and SBC) from the ellipse-specific model were much smaller in 
both stages. The results indicate an ellipse-specific model is significantly better than a 
linear regression model.  
 
Table 2. Estimates of Thermal Characteristics and Goodness-of-Fit Statistics for 
Acute and Chronic Stages. 

  ACUTE CHRONIC 
Angle of Rotation(o) 5 5.63  
Lag (h) from CCF 4 3 

Lag from Ellipse (h) 3.84 3.36 

Semi-Major Axis (oC) 6.5 6.4 
Semi-Minor Axis (oC) 0.91 0.72 

Area: Heat Accumulation (oC2) 18.47 14.41 
MSE   

  
Ellipse 2.07e-29 8.25e-29 

Regression 0.44 0.28 
AIC 

 
Ellipse 2.11 1.81 

Regression 52.47 41.11 
SBC  Ellipse 1.35 1.05 

Regression 56.01 44.65 
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3.3 Comparing Thermal Characteristics of Acute and Chronic Heat Stress Stages  
Table 2 shows that the angle of rotation was 5.00o in an acute stage and was 5.63o in a 
chronic stage. The estimated lag from CCF in the acute stage was 4 h, which was 
larger than lag 3h in chronic stage. The estimated lag from ellipse-specific model was 
3.8 h in the acute stage and was 3.4 h in the chronic stage. When rounded to the 
nearest whole number lags estimated from ellipse-specific model agreed with lags 
estimated from CCF in both stages. The ellipse estimated for the acute stage had a 
semi-major axis of length 6.5 oC, a semi-minor axis of length 0.91 oC and area of 
18.47 oC2; while for the chronic stage, the length of the semi-major axis was 6.4 oC, 
the length of the semi-minor axis was 0.72 and area was 14.41 oC2. In this study, the 
heat accumulation in the acute stage (18.5 oC2) was 4 oC2 more than in the chronic 
stage (14.4 oC2). The results from the ellipse-specific model agree with those stated 
by Hahn, et.al (1997) and suggest that animals dissipate more energy in acute stage 
HS than in chronic stage HS.  
 
4. Conclusion 
The ellipse-specific least squares method is a more accurate way to estimate the lag 
between Tb and Tb than estimating cross-correlation coefficients.  Moreover, an 
ellipse provides a good model for the thermal hysteresis loop. The ellipse-specific 
direct least squares method allows us to fit a rotated ellipse to real data and to 
calculate the angle of rotation, length of the axes and area of the ellipse. The size of 
the thermal hysteresis loop depends on the size of the delay in Tb, which in turn 
depends on the environment and how quickly an animal reacts to the change in the 
environment. Once an animal becomes entrained in a thermal hysteresis loop, they 
may experience acute or chronic HS until physiological or environmental conditions 
change. Hence, the size of the thermal hysteresis loop represents the amount of energy 
dissipated by an animal during a 24h period.  
 
5. Summary 
Health of animals is compromised if they were exposed to a thermally challenging 
environment. During heat stress, there is a noticeable delay in the Tb-Ta relationship 
when an animal is exposed to a controlled hot sinusoidal thermal environment. The 
Tb-Ta phase diagram shows a hysteresis effect in the form of a rotated elliptical 
hysteresis loop. The angle of rotation of the hysteresis loop indicates the amount of 
lag between Ta and Tb; the area of the hysteresis loop indicates the amount of heat 
accumulated during a thermal challenge. To estimate the lag and heat loss, two 
methods can be used. The correlation-eigenvalue method works well in a datasets 
with homogeneous variances, while the ellipse-specific direct least-squares method 
provides a more general approach to include datasets with heterogeneous variances. 
To demonstrate how the Tb-Ta relationship changes in the presence of hysteresis, an 
elliptical model was fit to simulated homogeneous data by solving the 
correlation-eigenvalue system. Results from the simulated data show how the area of 
the unit ellipse increases as Tb increasingly lags Ta. Additionally, these results call 
attention to the information lost by ignoring hysteresis and merely fitting a simple 
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linear regression. To demonstrate a practical application, the ellipse-specific direct 
least-squares method was applied to two stages of HS for an ad-lib-fed Hereford steer 
housed in a sinusoidally controlled (28oC±7oC) HS chamber. The animal in an acute 
stage had a longer lag (3.8 ~ 4 h) than it did in a chronic stage (3.4 ~ 3 h lag). The 
area of the fitted ellipse in the acute stage was larger than the area of the fitted ellipse 
in the chronic state. Depicting the thermal dynamics of an animal is a complicated 
process. The ellipse-specific direct least-squares method allows us to further the 
characterize the dynamic process by providing a way to quantify the heat load as well 
as a more accurate estimate the Tb-Ta lag. 
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