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Abstract 

Quantitative genetics is one of the most important components to provide valuable 

genetic information for improving production and quality of plants and animals. The research 

history of quantitative genetics study could be traced back more than one hundred years. Since 

the Analysis of Variance (ANOVA) methods were proposed by Fisher in 1925, several useful 

genetic models have been proposed and have been widely applied in both plant and animal 

quantitative genetics studies. Useful examples included various North Carolina (NC) and diallel 

cross mating designs. However, many genetic models derived from these mating designs are 

ANOVA method based, so there are several major limitations. For example, ANOVA based 

methods are constricted to simple genetic models and specific mating designs and require 

balanced data structures. Though mixed linear model approaches were proposed in the 1960s, 

their applications in quantitative genetics study were limited until the early 1990s. The 

advantages of the mixed linear model approaches include the flexibility for unbalanced genetic 

data structures and complex genetic model systems. In the past years the mixed linear models 

have been applied to analyze various useful genetic models and a number of computer programs 

have been developed. In addition, researchers are not only interested in finding appropriate data 

structures needed for specific genetic models but also want to identify appropriate genetic 

models suitable for a specific data structure. Therefore, a generalized computer tool has been 

developed for both model evaluations and actual data analyses. In this paper, various genetic 

models will be detailed and generalized by mixed linear model approaches and the features of 

the new computer tool GenMod will be described. 

1. Introduction 

Since an analysis of variance (ANOVA) approach was proposed (Fisher, 1925), 

geneticists have been extensively using this approach for quantitative genetic data analyses 

because of its convenience and simplicity (i.e. Garder and Eberhart, 1966; Borges, 1987; 
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Haullauer and Miranda, 1988; Das and Griffley, 1994; Lynch and Walsh, 1998). However, 

ANOVA based approaches are often associated with several major limitations. For example, 

these methods are often challenged by various irregular genetic mating designs and unbalanced 

data structures. It is often difficult to follow specific genetic mating designs (Comstock and 

Robison, 1948; Griffing, 1956) when a large number of parents are used for crossing either due 

to flowering differences or resource constraints (i.e. Cheatham et al., 2003; Saha et al., 2006). In 

addition, insect damage and/or environmental conditions could contribute to data missing or data 

structures being unbalanced. It is also very common that F2 (second generation) populations are 

used to replace F1 (first generation) populations because of F1 seed supply (i.e. Meredith, 1990; 

Tang 1996; Jenkins et al., 2006, 2007, 2009); however, the genetic structures for F2 are different 

for F1. Furthermore, genetic model structures can be very complex. For example, some seed 

traits may be controlled by gene systems in seeds and their maternal plants because maternal 

plants provide nutrition to seed growth and development (i.e. Zhu and Weir, 1994a,b; Wang et 

al., 1996a,b; Wu et al., 2010). Thus, genetic data containing important genetic information can 

be underscored and underutilized if inappropriate statistical methods or genetic models are used. 

Since the 1960s, mixed linear model approaches have been proposed and can be used for 

unbalanced data structures and complex models (i.e. Hartley and Rao, 1967; Patterson and 

Thompson, 1971; Rao, 1971; Searle et al., 1992; Little et al., 1996; Zhu, 1998). These 

approaches are matrix- and vector- based approaches, which offer flexibility to analyze complex 

genetic models and/or data structures. For example, procedure mixed in recent SAS versions can 

be used not only for missing data but also for various repeated measurements. Typically, there 

are three types of mixed linear model approaches: maximum likelihood (ML), restricted 

maximum likelihood (REML), and minimum norm quadratic unbiased estimation (MINQUE) 

(Hartley and Rao, 1967; Rao, 1971; Searle et al., 1992). Although these mixed linear model 

approaches were proposed and employed for many years, the applications to quantitative genetic 

data analyses have not been widely received until the late 1980s due to their mathematical 

complexity and computational constraints. Some valuable genetic models were proposed and can 

be analyzed by mixed linear model approaches. Various crop systems were investigated, 

including cotton, rice, barley, and canola (i.e. McCarty et al., 2004a,b; Shi et al., 1997; Yan et 

al., 1998) and covering agronomic traits (i.e. McCarty et al., 2004a,b; Jenkins et al., 2006, 2007), 

seed traits (Wu et al., 1995, 2010; Wang et al., 1996a,b; Shi et al., 1997), developmental traits 
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(Ye et al., 2003; McCarty et al., 2006; Wu et al., 2009), and traits for chromosome substitution 

lines (Saha et al., 2006; Jenkins et al., 2006; 2007; McCarty et al., 2008; Wu et al., 2006a).   

In quantitative genetic data analysis, two important questions are often asked. The first 

question is which genetic models are appropriate for a given genetic data set. The second 

question is that given a biologically meaningful genetic model being employed, what types of 

genetic data structures are required. Since genetic data structures to be analyzed or genetic 

models to be employed for a given data structure are case-specific, a computer program that can 

specifically evaluate such appropriateness of data structures or genetic models is needed. 

In this paper, various commonly used genetic models will be addressed and generalized 

in terms of vectors and matrices, so that quantitative genetic data analyses can be conducted in a 

more generalized way. Section 2 will detail various genetic models and their generalization. 

Mixed linear model approaches for generalized genetic models will be addressed in Section 3. In 

Section 4, a computer program will be briefly introduced and results from an actual cotton 

genetic data set in cotton will be summarized as an example. The major objective of this study 

was to provide a generalized way to analyze various genetic data structures so that useful genetic 

information can be used for crop and animal improvement. 

 

2. A Generalized Genetic Model 

2.1. A simple genetic model 

For a number of genotypes grown in multiple environments with repeated plots under a 

random complete block (RCB) design, a linear genetic model can be expressed as in equation 

(1): 

𝑦𝑦 = 𝜇𝜇 + 𝐸𝐸 + 𝐺𝐺 + 𝐺𝐺𝐸𝐸 + 𝐵𝐵(𝐸𝐸) + 𝑒𝑒        (1) 

Where y is an observed value, 𝜇𝜇 is population mean, E is an environmental effect, G is a 

genotypic effect, GE is a genotype-by-environment (GE) interaction effect, B(E) is a block effect 

within environment, and e is a random error. In equation (1), three components are partitionable. 

For example, E could be year, location, treatment, and their interaction effects. A genotypic 

effect could include additive, dominance, and epistatic effects (Cockerham, 1980). A GE 

interaction effect can include various GE interaction effects corresponding to the partitioning of 

a genotypic effect. 
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For the purpose of consistency, all of the following genetic models are expressed with 

genetic effects and their corresponding genotype-by-environment (GE) interaction effects with 

possible block effects (within environment). If an experiment follows a completely randomized 

(CR) design, the block effects can be deleted from each genetic model. In addition, if an 

experiment is only conducted in one environment, the environmental effect and all GE 

interaction effects should be deleted from the model. The difference in considering fixed and 

random effects is debatable; however, based on our experience in data analyses we observed 

there is not much difference in environmental and genetic effects being obtained when they are 

considered fixed or random. For this reason and for convenience, we may treat all effects as 

random effects except population mean and environmental effects. Several genetic models are 

detailed as follows. 

2.2. Genotype and genotype-by-environment interaction (GE) model 

The observation 𝑦𝑦ℎ𝑖𝑖𝑖𝑖  for ith genotype grown in jth block in hth environment can be 

expressed as the following linear model in equation (2): 

𝑦𝑦ℎ𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝐸𝐸ℎ + 𝐺𝐺𝑖𝑖 + 𝐺𝐺𝐸𝐸ℎ𝑖𝑖 + 𝐵𝐵𝑖𝑖 (ℎ) + 𝑒𝑒ℎ𝑖𝑖𝑖𝑖          (2) 

where µ  is the population mean, hE is the environmental effect, iG  is genotypic effect, hiGE  is 

the genotype-by-environment interaction effect, )(hjB  is the block effect, and hije  is the random 

error. 

2.3.Nested model 

In breeding programs, a number of lines are often derived from each of multiple crosses 

(families) and are evaluated in different environments with repeated plots. In this or similar 

cases, a nested genetic model can be applied. This model can be applied for evaluation of 

germplasm lines collected from different regions. The observation 𝑦𝑦ℎ𝑖𝑖𝑖𝑖𝑖𝑖  for jth line within ith 

family grown in kth block within hth environment can be expressed in equation (3): 

𝑦𝑦ℎ𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜇𝜇 + 𝐸𝐸ℎ + 𝐹𝐹𝑖𝑖 + 𝐿𝐿𝑖𝑖 (𝑖𝑖) + 𝐹𝐹𝐸𝐸ℎ𝑖𝑖 + 𝐿𝐿𝐸𝐸ℎ𝑖𝑖 (𝑖𝑖) + 𝐵𝐵𝑖𝑖(ℎ) + 𝑒𝑒ℎ𝑖𝑖𝑖𝑖𝑖𝑖      (3) 

where 𝐹𝐹𝑖𝑖  is the family effect; )(ijL  is the within family line effect; hiFE is the family-by-

environment interaction effect, )(ihjLE  is the within family line-by-environment interaction 

effect;  )(hkB  is the block effect; and hijke  is the random error. 

2.4. Additive-dominance (AD) model  
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The AD model is one of the most popular genetic models. A large number of applications 

of AD model in quantitative genetic study can be found in the literature (i.e. Tang 1996; Jenkins 

2006, 2007, 2009; McCarty et al., 2007). Given a number of parents and their F1 or F2 progenies 

evaluated in multiple environments, the AD genetic model can be expressed in linear form as 

follows regarding parent i or a cross between parents i and j at different generations. 

For parent 

𝑦𝑦ℎ𝑖𝑖𝑖𝑖𝑖𝑖 (𝑃𝑃) = 𝜇𝜇 + 𝐸𝐸ℎ + 2𝐴𝐴𝑖𝑖 + 𝐷𝐷𝑖𝑖𝑖𝑖 + 2𝐴𝐴𝐸𝐸ℎ𝑖𝑖 + 𝐷𝐷𝐸𝐸ℎ𝑖𝑖𝑖𝑖 + 𝐵𝐵𝑖𝑖(ℎ) + 𝑒𝑒ℎ𝑖𝑖𝑖𝑖𝑖𝑖     (4) 

For F1: 

𝑦𝑦ℎ𝑖𝑖𝑖𝑖𝑖𝑖 (𝐹𝐹1) = 𝜇𝜇 + 𝐸𝐸ℎ + 𝐴𝐴𝑖𝑖 + 𝐴𝐴𝑖𝑖 + 𝐷𝐷𝑖𝑖𝑖𝑖 + 𝐴𝐴𝐸𝐸ℎ𝑖𝑖+𝐴𝐴𝐸𝐸ℎ𝑖𝑖 + 𝐷𝐷𝐸𝐸ℎ𝑖𝑖𝑖𝑖 + 𝐵𝐵𝑖𝑖(ℎ) + 𝑒𝑒ℎ𝑖𝑖𝑖𝑖𝑖𝑖 (𝐹𝐹1)  (5)  

For F2: 

𝑦𝑦ℎ𝑖𝑖𝑖𝑖𝑖𝑖 (𝐹𝐹2) = 𝜇𝜇 + 𝐸𝐸ℎ + 𝐴𝐴𝑖𝑖 + 𝐴𝐴𝑖𝑖 + 1
4
𝐷𝐷𝑖𝑖𝑖𝑖 + 1

4
𝐷𝐷𝑖𝑖𝑖𝑖 + 1

2
𝐷𝐷𝑖𝑖𝑖𝑖 + 𝐴𝐴𝐸𝐸ℎ𝑖𝑖+𝐴𝐴𝐸𝐸ℎ𝑖𝑖      

+ 1
4
𝐷𝐷𝐸𝐸ℎ𝑖𝑖𝑖𝑖 + 1

4
𝐷𝐷𝐸𝐸ℎ𝑖𝑖𝑖𝑖 + 1

2
𝐷𝐷𝐸𝐸ℎ𝑖𝑖𝑖𝑖 + 𝐵𝐵𝑖𝑖(ℎ) + 𝑒𝑒ℎ𝑖𝑖𝑖𝑖𝑖𝑖 (𝐹𝐹2)      (6)  

For F3: 

𝑦𝑦ℎ𝑖𝑖𝑖𝑖𝑖𝑖 (𝐹𝐹3) = 𝜇𝜇 + 𝐸𝐸ℎ + 𝐴𝐴𝑖𝑖 + 𝐴𝐴𝑖𝑖 + 3
8
𝐷𝐷𝑖𝑖𝑖𝑖 + 3

8
𝐷𝐷𝑖𝑖𝑖𝑖 + 1

4
𝐷𝐷𝑖𝑖𝑖𝑖 + 𝐴𝐴𝐸𝐸ℎ𝑖𝑖+𝐴𝐴𝐸𝐸ℎ𝑖𝑖      

+ 3
8
𝐷𝐷𝐸𝐸ℎ𝑖𝑖𝑖𝑖 + 3

8
𝐷𝐷𝐸𝐸ℎ𝑖𝑖𝑖𝑖 + 1

4
𝐷𝐷𝐸𝐸ℎ𝑖𝑖𝑖𝑖 + 𝐵𝐵𝑖𝑖(ℎ) + 𝑒𝑒ℎ𝑖𝑖𝑖𝑖𝑖𝑖 (𝐹𝐹1)      (7) 

Where μ is the population mean, a fixed effect; Eh is the environment effect, either random 

or fixed (fixed in this study); 𝐴𝐴𝑖𝑖  (or 𝐴𝐴𝑖𝑖 ) is additive effect from parent i or j; 𝐷𝐷𝑖𝑖𝑖𝑖 , 𝐷𝐷𝑖𝑖𝑖𝑖  or 𝐷𝐷𝑖𝑖𝑖𝑖  is the 

dominance effect; 𝐴𝐴𝐸𝐸ℎ𝑖𝑖  (or 𝐴𝐴𝐸𝐸ℎ𝑖𝑖 ) is additive by environment interaction effect; 𝐷𝐷𝐸𝐸ℎ𝑖𝑖𝑖𝑖 , 𝐷𝐷𝐸𝐸ℎ𝑖𝑖𝑖𝑖 , or 

𝐷𝐷𝐸𝐸ℎ𝑖𝑖𝑖𝑖  is the dominance by environment interaction effect; 𝐵𝐵𝑖𝑖(ℎ) is the block effect; and 𝑒𝑒ℎ𝑖𝑖𝑖𝑖𝑖𝑖 (.) is 

the random error. 

2.5. Additive-dominance with additive-by-additive interaction (ADAA)  

The ADAA model is one of the important extended AD models, investigating additive-

by-additive interaction (epistatic) effects (Cockerham, 1980; Zhu 1998). Several applications are 

available in the literature (Xu and Zhu, 1999; McCarty et al., 2004a,b, 2005, 2008, Saha et al., 

2010). This model was also evaluated when data structures are unbalanced (Wu et al., 2006a). 

Additive-by-additive interaction effects can be used for both inbred line and hybrid development 

(Xu and Zhu, 1999; McCarty et al., 2004a, b). Given a number of parents and their F1 or F2 

planted in multiple environments, this genetic model can be expressed in linear form as follows 

regarding parent i or a cross between parents i and j  at different generations. 
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For parent: 

𝑦𝑦ℎ𝑖𝑖𝑖𝑖𝑖𝑖 (𝑃𝑃) = 𝜇𝜇 + 𝐸𝐸ℎ + 2𝐴𝐴𝑖𝑖 + 𝐷𝐷𝑖𝑖𝑖𝑖 + 4𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 + 2𝐴𝐴𝐸𝐸ℎ𝑖𝑖 + 𝐷𝐷𝐸𝐸ℎ𝑖𝑖𝑖𝑖 + 4𝐴𝐴𝐴𝐴𝐸𝐸ℎ𝑖𝑖𝑖𝑖+𝐵𝐵𝑖𝑖(ℎ) + 𝑒𝑒ℎ𝑖𝑖𝑖𝑖𝑖𝑖   (8) 

For F1: 

𝑦𝑦ℎ𝑖𝑖𝑖𝑖𝑖𝑖 (𝐹𝐹1) = 𝜇𝜇 + 𝐸𝐸ℎ + 𝐴𝐴𝑖𝑖 + 𝐴𝐴𝑖𝑖 + 𝐷𝐷𝑖𝑖𝑖𝑖 + 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 + 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 + 2𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 +  

𝐴𝐴𝐸𝐸ℎ𝑖𝑖+𝐴𝐴𝐸𝐸ℎ𝑖𝑖 + 𝐷𝐷𝐸𝐸ℎ𝑖𝑖𝑖𝑖 + 𝐴𝐴𝐴𝐴𝐸𝐸ℎ𝑖𝑖𝑖𝑖 + 𝐴𝐴𝐴𝐴𝐸𝐸ℎ𝑖𝑖𝑖𝑖 + 2𝐴𝐴𝐴𝐴𝐸𝐸ℎ𝑖𝑖𝑖𝑖 +𝐵𝐵𝑖𝑖(ℎ) + 𝑒𝑒ℎ𝑖𝑖𝑖𝑖𝑖𝑖 (𝐹𝐹1)   (9)  

For F2: 

𝑦𝑦ℎ𝑖𝑖𝑖𝑖𝑖𝑖 (𝐹𝐹2) = 𝜇𝜇 + 𝐸𝐸ℎ + 𝐴𝐴𝑖𝑖 + 𝐴𝐴𝑖𝑖 +
1
4
𝐷𝐷𝑖𝑖𝑖𝑖 +

1
4
𝐷𝐷𝑖𝑖𝑖𝑖 +

1
2
𝐷𝐷𝑖𝑖𝑖𝑖 + 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 + 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 + 2𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 + 

𝐴𝐴𝐸𝐸ℎ𝑖𝑖+𝐴𝐴𝐸𝐸ℎ𝑖𝑖 +
1
4
𝐷𝐷𝐸𝐸ℎ𝑖𝑖𝑖𝑖 +

1
4
𝐷𝐷𝐸𝐸ℎ𝑖𝑖𝑖𝑖 +

1
2
𝐷𝐷𝐸𝐸ℎ𝑖𝑖𝑖𝑖 + 𝐴𝐴𝐴𝐴𝐸𝐸ℎ𝑖𝑖𝑖𝑖 + 𝐴𝐴𝐴𝐴𝐸𝐸ℎ𝑖𝑖𝑖𝑖 + 2𝐴𝐴𝐴𝐴𝐸𝐸ℎ𝑖𝑖𝑖𝑖  

+𝐵𝐵𝑖𝑖(ℎ) + 𝑒𝑒ℎ𝑖𝑖𝑖𝑖𝑖𝑖 (𝐹𝐹2)         (10) 

For F3: 

𝑦𝑦ℎ𝑖𝑖𝑖𝑖𝑖𝑖 (𝐹𝐹3) = 𝜇𝜇 + 𝐸𝐸ℎ + 𝐴𝐴𝑖𝑖 + 𝐴𝐴𝑖𝑖 + 3
8
𝐷𝐷𝑖𝑖𝑖𝑖 + 3

8
𝐷𝐷𝑖𝑖𝑖𝑖 + 1

4
𝐷𝐷𝑖𝑖𝑖𝑖 + 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 + 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 + 2𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖  

 +𝐴𝐴𝐸𝐸ℎ𝑖𝑖+𝐴𝐴𝐸𝐸ℎ𝑖𝑖 + 3
8
𝐷𝐷𝐸𝐸ℎ𝑖𝑖𝑖𝑖 + 3

8
𝐷𝐷𝐸𝐸ℎ𝑖𝑖𝑖𝑖 + 1

4
𝐷𝐷𝐸𝐸ℎ𝑖𝑖𝑖𝑖 + 𝐴𝐴𝐴𝐴𝐸𝐸ℎ𝑖𝑖𝑖𝑖 + 𝐴𝐴𝐴𝐴𝐸𝐸ℎ𝑖𝑖𝑖𝑖 +  

2𝐴𝐴𝐴𝐴𝐸𝐸ℎ𝑖𝑖𝑖𝑖 + 𝐵𝐵𝑖𝑖(ℎ) + 𝑒𝑒ℎ𝑖𝑖𝑖𝑖𝑖𝑖 (𝐹𝐹3)         (11) 

Where 𝐴𝐴𝑖𝑖  (or 𝐴𝐴𝑖𝑖 ) is the additive effect from parent i (or j); 𝐷𝐷𝑖𝑖𝑖𝑖 , 𝐷𝐷𝑖𝑖𝑖𝑖 or 𝐷𝐷𝑖𝑖𝑖𝑖  is the dominance effect; 

𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 , 𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖 , or  𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖  is the additive-by-additive (AA) epistatic effect; 𝐴𝐴𝐸𝐸ℎ𝑖𝑖  (or 𝐴𝐴𝐸𝐸ℎ𝑖𝑖 ) is additive-

by-environment interaction effect; 𝐷𝐷𝐸𝐸ℎ𝑖𝑖𝑖𝑖 , 𝐷𝐷𝐸𝐸ℎ𝑖𝑖𝑖𝑖 or 𝐷𝐷𝐸𝐸ℎ𝑖𝑖𝑖𝑖 is the dominance by environment 

interaction effect; 𝐴𝐴𝐴𝐴𝐸𝐸ℎ𝑖𝑖𝑖𝑖 , 𝐴𝐴𝐴𝐴𝐸𝐸ℎ𝑖𝑖𝑖𝑖 , or  𝐴𝐴𝐴𝐴𝐸𝐸ℎ𝑖𝑖𝑖𝑖  is the AA-by-environment interaction effect; 𝐵𝐵𝑖𝑖(ℎ) 

is the block effect; and 𝑒𝑒ℎ𝑖𝑖𝑖𝑖𝑖𝑖 (.) is the random error. 

 

2.6. Other extended AD models 

Genetic modeling is case or data structure specific. For example, genetic systems for 

agronomic traits could be different from seed traits. Thus, genetic modeling needs to maximally 

reflect its biological meaning for a trait to be investigated. In addition to AD and ADAA models, 

other different genetic models have been reported in the literature. Examples include AD model 

with cytoplasmic effects (ADC model: Wu et al., 2010), AD model with maternal effects (ADM 

model: Zhu, 1994), seed models (Zhu and Weir 1994a, b; Wu et al., 1995; Wang et al., 1996a, 

b); AD model with single marker effects (Wu et al., 2000), and a chromosome model (Wu et al., 

2006a).  
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2.7. Genetic model generalization 

As we have seen, genetic models can be trait or case dependent. In addition, genetic 

structures vary at different generations for the same model and data can be missing or 

unbalanced, which often cause data analyses to be performed on a case by case basis. Thus, it 

will be helpful to generalize different genetic models in a simple yet practical way: not only for 

model extension but for data analyses as well. With the use of mixed linear model approaches, 

these genetic models can be expressed in forms of vectors and matrices described as follows. 

𝒚𝒚 = ∑ 𝑿𝑿𝒊𝒊𝒃𝒃𝒊𝒊
𝒇𝒇
𝒊𝒊=𝟏𝟏 + ∑ 𝑼𝑼𝒖𝒖𝒆𝒆𝒖𝒖𝒓𝒓

𝒖𝒖=𝟏𝟏 = 𝑿𝑿𝒃𝒃 + ∑ 𝑼𝑼𝒖𝒖𝒆𝒆𝒖𝒖𝒓𝒓
𝒖𝒖=𝟏𝟏       (12)  

where 𝒚𝒚 is an observed vector with size of 𝑛𝑛 × 1; 𝒃𝒃𝑖𝑖  is an unknown fixed effect vector to 

be estimated with dimension of 𝑡𝑡𝑖𝑖 × 1 and 𝑿𝑿𝑖𝑖  is the known information for vector 𝒃𝒃𝑖𝑖 ; 𝒆𝒆𝑢𝑢  is an 

unknown random effect vector to be calculated with dimension of 𝑠𝑠𝑢𝑢 × 1 and 𝑼𝑼𝑢𝑢  is the known 

information for vector 𝒆𝒆𝑢𝑢 . Note that the last item 𝒆𝒆𝑟𝑟  in equation (12) is random error. When 𝒆𝒆𝑢𝑢 is 

independently and identically distributed, then 𝑼𝑼𝑟𝑟  is an identical matrix. Since the values of f and 

r in equation (12) can be any numbers, it can generalize various genetic models for various data 

structures and it can generalize computer programming.  

3. Statistical Approaches 

3.1. Variance component estimation 

ANOVA based approaches are challenged by missing data points, irregular genetic 

mating designs, and/or complex genetic models. On the other hand, mixed linear model 

approaches offer flexibility for analyzing complex genetic models and various unbalanced data 

structures. There are three general types of mixed linear model approaches, which can be used 

for analyzing mixed linear models: maximum likelihood (ML), restricted maximum likelihood 

(REML), and minimum norm quadratic unbiased estimation (MINQUE) approaches (Hartley 

and Rao, 1967; Patterson and Thompson, 1971; Rao, 1971; Searle et al., 1992; Zhu, 1998). Both 

ML and REML approaches require iteration process and assuming data being normally 

distributed. MINQUE approaches require no iteration process and can be applied to different 

data distribution (Rao, 1971). Given a reasonable large data set with normal distribution, each 

variance component can be tested by asymptotic chi-square distribution. However, chi-square 

test has some limitations: (1) a reasonable size of a data structure for a specific model is difficult 

to determine; (2) data structures may not follow normal distributions; (3) it may be difficult to 

test parameters like genetic correlations, genetic covariances, and proportions. An alternative 
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method is using resampling approaches including jackknife, permutation, and bootstrap tests 

(Miller, 1974; Efron, 1982; Davison and Hinkley, 1997; Wu et al., 2008). Jackknife methods 

have been widely used for testing significance of each parameter of interest (Miller, 1974; Wu et 

al., 2008). The results are equivalent through permuting and bootstrapping residuals; however, 

bootstrapping observations often result in abnormal variance component estimation and effect 

estimation or prediction. We observed that group-based jackknife methods are stable for the data 

set with replications; however, it might be more appropriate to use permutation test for data sets 

with only single replication or very irregular data sets.  

3.2. Genetic effects, heterosis, and genotypic values 

Breeders are not only interested in estimated genetic variance components, but genetic 

effects as well. Predicted genetic effects give information about which parents should be used for 

crossing or which crosses should be used for selection. If genetic variance components are 

known, a best linear unbiased prediction (BLUP) for genetic effects can be obtained. However, 

genetic variance components normally are unknown, estimated variance components are 

normally used for predicting genetic effects using the BLUP approach. These predicted genetic 

effects cannot be guaranteed to be linear or best since estimated variance components are 

quadratic functions of observations. Two other prediction methods, which can result in linear and 

unbiased predictions, are linear unbiased prediction (LUP) (Zhu and Weir, 1994a) and adjusted 

unbiased prediction (AUP) (Zhu, 1993) methods. When the genetic effects were predicted 

subject to different genetic models, heterosis and genotypic values of each cross either over 

environments or in a specific environment can be calculated as well (i.e. McCarty et al., 2004b, 

2005). 

 

4. GenMod: A Generalized Computer Program 

4.1.The features of GenMod 
 

Using C++ language, we developed a new computer program GenMod specifically for 

implementing previously described genetic models. When using the MINQUE approach, prior 

values for each variance components are required. Our analysis based on simulated and actual 

data showed that different prior values generate almost identical results. The methods used in 

this computer program are detailed as follows: MINQUE approach with all prior values being 1, 
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MINQUE1 approach (Zhu, 1989) for variance component estimation; adjusted unbiased 

prediction (AUP) method for genetic effect prediction; and two jackknife methods for calculating 

standard error of each parameter. Though many genetic models can be added to this computer 

program, only several commonly used genetic models are available. They include genotype 

model with GE interaction model, nested model, AD model, ADAA model, ADC model, and 

ADM model. However, other biologically meaningful genetic models and more functions can be 

easily added to this computer program. 

The computer program has the following advantages: (1) it simultaneously conducts 

analysis for an actual data set or model evaluation for a data set with only experimental design 

information but no traits included; (2) it can analyze a data set with missing data points, crosses, 

irregular genetic mating designs; (3) it can analyze data sets where genotypes vary across 

environments; (4) it is able to analyze data sets for different generations; and (5) it provides a 

significance test for each parameter with jackknife methods.   

For actual data analysis, the program provides estimated variance components, estimated 

proportional variance components to the phenotypic variances, and predicted genetic effects if a 

variance component estimate is numerically greater than zero. For simulation studies, the 

computer program provides the parameter values 𝜎𝜎𝑢𝑢2 (true or preset values of variance 

components), estimated values 𝜎𝜎�𝑢𝑢2 , and the respective bias calculated by bias=𝜎𝜎�𝑢𝑢2 -𝜎𝜎𝑢𝑢2 . The 

statistical testing power is defined in this program as power=1-β, where β is the probability level 

for type II error at different levels. The mean square error (MSE) for each parameter is calculated 

by MSE= )ˆvar( 22
ubias σ+  and the coefficient of efficiency, 𝐶𝐶𝐸𝐸 = �

𝑀𝑀𝑀𝑀𝐸𝐸
�𝜎𝜎𝑢𝑢2�+|𝑏𝑏𝑖𝑖𝑏𝑏𝑠𝑠 | (Zhu and Weir, 

1994a, Wu et al., 2006a, b, 2010). If a preset value is zero, then the power is actually the Type I 

error at a specific nominal value α. Thus, this computer program can be used to test both Type I 

error rate and testing power. 

4.2. The use of GenMod 

Since this computer program is able to analyze different genetic models with different 

functions, a full user manual will be developed separately. However, the use of this computer 

program is straightforward and general procedures to run this computer program are briefly 

described as follows. 

Step 1: Prepare a data file. 

93

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2010/proceedings/7



Different models require different data format. For purpose of demonstration in this 

paper, a cotton data set (realf2.txt) including 12 F2 populations and their eight parents (two years 

and six replications for each year) will be analyzed subject to an AD model. Given this genetic 

model, the first five columns in the example data file (Table 1) are required and represent 

environment (e.g, year or location), female, male, generation, and block (replication). The data 

identifiers should be consecutive positive integers, each beginning with 1 for columns 1, 5, and 2 

or 3. The generation codes for column 4 are 0 for parent, 1 for F1, 2 for F2, and 3 for F3. Enter 

observed data in columns 6 to p if they are available. In addition, data need to be sorted by 

environment followed by sorting by replication, which can be done easily in Excel.  

Step 2: Prepare an information file. 

Given the data set in Table 1, an information file (i.e. adinf.txt) can be developed in 

second column with comments in third column of Table 2.  

Step 3: Conduct data analysis 

Given the above data sample in Table 1 and the information file in Table 2, we can 

conduct an actual data analysis for the data set mentioned in Step 1. After clicking the computer 

program GenMod and entering in the information file (adinf.txt) the results will be saved in 

realf2advar.csv. For each trait, the results include estimated variance components (excluding 

block), proportional variance components, population means in each environment, predicted 

genetic effects (if the corresponding variance component is numerically greater than zero). In 

addition, standard error (SE), probability value (P value), and significance (Sign.) for each 

parameter are provided. NS means non-significant while S+, S*, and S** mean significance at 

probability levels of 0.10, 0.05, and 0.01, respectively. The following results included additive 

effects, dominance effects, additive × environment interaction effects, and dominance × 

environment interaction effects calculated for lint percentage (LP). Estimated variance 

components and proportional variance components are listed in Tables 3 and 4, respectively. 

Predicted additive effects and dominance effects are listed in Tables 5 and 6, respectively. 

Estimated variances for additive effects was 1.545, dominance effects, 3.287, additive × 

environment effects, 0.114, dominance × environment effects, 0.003, residuals, 0.641, and total, 

5.589, which were all significantly different from zero for lint percentage (Table 3).  Next are the 

estimated proportional variance components to the phenotypic variance that measure the narrow 

sense heritability (1.545/5.589*100=28%) and broad sense heritability (27.6%+58.8%=86.4%) 
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(Table 4).  Additive effects for eight parents were provided, showing that all were different from 

zero (P=0.05) (Table 5). Parents 1 and 2 were two good general combiners that can be used as 

parents to increase lint percentage (Table 5). The other parents except 7 were associated with 

negative additive effects, indicating that these lines will reduce lint percentage if they are used as 

parents. Dominance effects, including homozygous and heterozygous are summarized in Table 6. 

Among eight homozygous dominance effects, six had significantly positive effects for lint 

percentage while heterozygous dominance effects either were significantly negative or not 

different from zero (Table 6). Results suggest that most crosses showed reduced lint percentage 

(negative heterosis) at their early generations. Then following the dominance effects were the 

predicted additive × environment and dominance × environment interaction effects (not listed in 

this paper due to limited space).  

The above application is an example of demonstration of using GenMod for actual data 

analysis. Random data points (some lines in Table 1) can be deleted and new data sets can be 

generated for additional data analyses. Interested readers may compare results from the complete 

data set and reduced data sets. By deleting the values of lint percentage various simulations can 

be conducted as well. New data structures can be generated by deleting lines either randomly or 

on purpose (for example, delete last replication in second environment). Other genetic models 

can be applied for other data analyses by using this computer program. For detailed information, 

please contact the contact author of this paper (Jixiang.wu@sdstate.edu). 

 

 

 

Summary 

Quantitative genetics is one of the most important components to provide valuable 

genetic information for improving production and quality of plants and animals. ANOVA based 

methods are very common statistical methods for quantitative genetics study but are constricted 

to simple genetic models and specific mating designs and require balanced data structures (i.e. 

Griffings, 1956; Garder and Eberhart, 1966; Borges, 1987; Haullauer and Miranda, 1988; Das 

and Griffley, 1994; Lynch and Walsh, 1998). Mixed linear model approaches that were proposed 
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in the 1960s and 1970s (Hartley and Rao, 1967; Patterson and Thompson, 1971; Rao, 1971) offer 

the flexibility to analyze unbalanced data structures and complex model systems. However, since 

the 1980s, these approaches have been introduced into the quantitative genetics study and 

various useful genetic models and a number of computer programs have been developed (i.e. 

Zhu, 1998). This paper gives an overview of several useful genetic models that can be 

generalized by mixed linear models suitable for various data structures. 

In addition to actual quantitative genetic data analyses, researchers are not only interested 

in finding appropriate data structures needed for specific genetic models but also want to 

determine appropriate genetic models suitable for a specific data structure. Using C++ language, 

we developed a new computer program GenMod specifically for implementing genetic models 

being described in this paper. This computer program has the following advantages: (1) it 

simultaneously conducts analysis for an actual data set or model evaluation for a data set with 

only experimental design information but no traits included; (2) it is suitable for various genetic 

data structures; and (5) it provides a significance test by jackknife resampling approaches.  

Additional genetic models can be added to this computer program. Interested readers can contact 

the authors of this paper. 
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Table 1. A cotton data set including 12 F2 and their eight parents with two years and six 

replications. 

Env Female Male Gen Rep LP 

1 1 3 2 1 37.15 

1 2 3 2 1 36.44 

1 1 4 2 1 37.03 

1 2 4 2 1 36.28 

1 1 5 2 1 37.76 

1 2 5 2 1 36.26 

1 1 6 2 1 38.14 

1 2 6 2 1 37.09 

1 1 7 2 1 37.88 

1 2 7 2 1 37.63 

1 1 8 2 1 36.3 

1 2 8 2 1 35.08 

1 3 3 0 1 34.22 

1 4 4 0 1 36.07 

1 5 5 0 1 34.69 

1 6 6 0 1 33.97 

1 7 7 0 1 35.43 

1 8 8 0 1 32.99 

1 1 1 0 1 40.95 

1 2 2 0 1 41.19 

. . . . . . 

2 1 3 2 6 37.6 

2 2 3 2 6 37.07 

2 1 4 2 6 36.2 

2 6 6 0 6 34.58 

2 7 7 0 6 37.26 

2 8 8 0 6 36.6 

101

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2010/proceedings/7



Table  2.  An information file with comments for an AD model analysis 

Line  Comments 

1 2 Code for AD model 

2 0 Code for actual data analysis 

3 Realf2.txt Input data file name 

4 Realf2advar.csv Output file name 

5 1 Code for block (1 for yes and 0 for no) 

6 1 Code for block jackknife 

7 1 Number of blocks to be jackknifed 

8 1 Pseudo value based jackknife (0 for non-

pseudo value based) 

9 1 Negative variance components are adjusted 

to zero (0 for no adjustification) 
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Table 3. Estimated variance components for lint percentage 

Parameter† Estimate SE. Pvalue Sign. 

Var<Add.> 1.545 0.338 <0.001 S** 

Var<Dom.> 3.287 0.691 <0.001 S** 

Var<Add.*Env.> 0.114 0.109 0.316 NS 

Var<Dom.*Env.> 0.003 0.274 0.991 NS 

Var<Resi.> 0.641 0.092 <0.001 S** 

Var<Pheno.> 5.589 0.388 <0.001 S** 

†: Var<Add.> = additive variance, Var<Dom.> =dominance variance, Var<Add.*Env.> = 

variance for additive-by-environment interaction, Var<Dom.*Env.> = variance for dominance-

by-environment interaction, Var<Resi.> = variance for residual, and Var<Pheno.> = phenotypic 

variance 

 

Table 4. Estimated variance components expressed as proportions to the phenotypic variance for 

lint percentage  

Parameter†  Estimate   SE.   Pvalue  Sign. 

V<Add.>/V<P>   0.276  0.080  0.002   S** 

V<Dom.>/V<P>   0.588  0.096  <0.001   S** 

V<Add.*Env.>/V<P>   0.020  0.022  0.338    NS 

V<Dom.*Env.>/V<P>   0.001  0.047  0.979    NS 

V<Resi.>/V<P>   0.115  0.022  <0.001   S** 

†: V<Add.>/V<P>, V<Dom.>/V<P>, V<Add.*Env.>/V<P>, V<Dom.*Env.>/V<P>, and 

V<Resi.>/V<P>  are  the proportions to the phenotypic variance for additive, dominance, 

additive-by-environment interaction, dominance-by-environment interaction, and residual. 
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Table 5. Predicted additive effects of eight parents for lint percentage 

Parameter†  Estimate   SE.   Pvalue  Sign. 

Add.<1>   1.428  0.183 <0.001   S** 

Add.<2>   1.274  0.136 <0.001   S** 

Add.<3>   -0.717  0.083 <0.001   S** 

Add.<4>   -0.485  0.092 <0.001   S** 

Add.<5>   -0.481  0.090 <0.001   S** 

Add.<6>   -0.365  0.083  <0.001   S** 

Add.<7>   0.185  0.053  0.005   S** 

Add.<8>   -0.834  0.092  <0.001   S** 

†: Additive effects for eight parents. 
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Table 6. Homozygous and heterozygous dominance effects for lint percentage 

Parameter†  Estimate SE.   Pvalue  Sign. 

Dom.<1*1>   3.909 0.551 <0.001   S** 

Dom.<2*2>   4.043 0.277 <0.001   S** 

Dom.<3*3>   1.426 0.398  0.004   S** 

Dom.<4*4>   0.949 0.275  0.005   S** 

Dom.<5*5>   0.751 0.289  0.025  S* 

Dom.<6*6>   -0.163 0.300  0.599    NS 

Dom.<7*7>   -0.260 0.287  0.385    NS 

Dom.<8*8>   1.503 0.298  <0.001   S** 

Dom.<1*3>   -1.533 0.441  0.005   S** 

Dom.<1*4>   -2.241 0.347 <0.001   S** 

Dom.<1*5>   -2.006 0.644  0.010   S** 

Dom.<1*6>   0.525 0.658  0.442    NS 

Dom.<1*7>   0.398 0.372  0.308    NS 

Dom.<1*8>   -0.975 0.579  0.120    NS 

Dom.<2*3>   -2.320 0.715  0.008   S** 

Dom.<2*4>   -0.333 0.429  0.453    NS 

Dom.<2*5>   -0.162 0.441  0.720    NS 

Dom.<2*6>   -0.699 0.230  0.011  S* 

Dom.<2*7>   0.389 0.425  0.380    NS 

Dom.<2*8>   -3.196 0.555  <0.001   S** 
†: Rows 1 to 8 are homozygous dominance effects while rows 9-20 are heterozygous dominance 

effects 
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