The Cutting Edge of Academe: Trends in the Manufacture of Academical Dress

Kenneth Crawford

Pershore Abbey, Worcestershire

Follow this and additional works at: http://newprairiepress.org/burgonsociety

Recommended Citation

This Article is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Transactions of the Burgon Society by an authorized administrator of New Prairie Press. For more information, please contact cadis@k-state.edu.
The Cutting Edge of Academe:
Trends in the Manufacture of Academical Dress

by Kenneth Crawford

Academical dress

‘It is typical of the growth of specialized costume that a fashion abandoned in everyday life is appropriated by institutions, themselves strongholds of conservatism.’ 1 Whilst ‘abandoned fashion’ might pay very little respect to ongoing continuity and symbolism, for academic institutions to adopt that which is the best in fashion and retain it symbolically is in the very vanguard of that for which those institutions stand. For academical dress to undergo fashionable change is to suggest that any symbolic constant in the world might be unnecessary.

This is not to say that the style and form of academical dress must remain immovable for ever. There are many factors controlling the style and form, such as improvement in the quality of cloth, in weaving, in dye-lots—the raw materials from which the robes are made. Universities might find that a particular colour or style of robe is no longer suitable and seek to improve it as the visual symbol of their various degrees—this has been the case particularly in the United States, where in 1959 a review committee modified the Intercollegiate Code of academical dress.2 With so many institutions of higher learning now being awarded university status, the increase in robe manufacture means that suppliers might be forced to consider more streamlined techniques.

In his fine, short treatise on the cutting of academical gowns and hoods, William D. F. Vincent has offered methods accessible to all who can follow a

This paper was submitted for the Fellowship of the Burgon Society in 2008. I am indebted greatly to The Revd Philip Goff of Ede & Ravenscroft, London, and Mr Robin Richardson of J. Wippell & Company, Exeter, for their kindness in permitting me to visit their respective offices and agreeing to talk with me about trends in the manufacture of academical dress. Also, to Professor Bruce Christianson of the University of Hertfordshire for valuable suggestions and comments.

Whilst his expression is somewhat antiquated for our day, nevertheless his system still stands as a guide for making robes. The following pages will outline a comparison of Vincent’s style and method for gowns and hoods, but will deal in more depth with the manufacturing process.

Gowns

The foundation of academical dress is the gown. Whilst early gowns, down to the end of the eighteenth century, are represented in art as full-length, what seems to be an acceptable length, now, is to have the hem 8 inches above the ground in normal shoes. Some gowns are too short or too long, making the wearer look comical rather than an achiever in higher learning. Undergraduate gowns, such as the Commoners’ gown in Oxford and the college gowns in Cambridge, may be understood nowadays to represent transition in the degree of learning and therefore shorter, alluding perhaps to a forthcoming greater dignity in the proper length of gown.

Vincent illustrates the standard portion of the gown, the coat, well in his treatise (Fig. 1—for the figures see the pages following the text). The coat pattern in Fig. 2 is now more commonly used, showing a slightly deeper underarm cut. In Fig. 1, Vincent shows the pattern for the rear half-panel of the gown as convex at the top. The pattern in Fig. 2 shows a straight cut. With this straight cut, drawing the bottom thread (that furthest from the top of the panel) slightly tighter will curve the whole gathered section (Fig. 3) to fit the bottom of the yoke. This will allow for any degree of curve in the style of the yoke. If the yoke is curved sharply, as with the Oxford doctor’s festal gown, a convex shape to the top of the back panel can be used, as Vincent illustrates in Fig. 1. To pattern this convex shape for any gown, the yoke is measured across the base, the outer points being the finished length. The distance up from the horizontal to the centre of the yoke base is added to the centre of the rear pattern and the arc drawn for the full width (Fig. 4). When gathered back, the rear panel will shape to the base of the yoke. This method will suit any shape of yoke.

To gather the back, Vincent illustrates the basic process (Fig. 5). A century later, the process is identical. Fig. 6 shows the marking closer together and more

6 The advent of gathering tape with drawing strings has changed the shape of the work. While this is expedient, it does mean that a stitch line appears on the outside of the gown at
evenly distributed over the padding than in Fig. 5. A double thickness of the same fabric as the gown coat, folded length-wise with the fold to the bottom, is sewn to the top of the section to be gathered, and then the ‘graph’ is marked out. The rows (four rows for the back) are ½ inch apart and the stitch marks are 3/16 inch apart. The drawing thread should be of a gauge such as Gutteman’s polytwist for durability.

The stitches are sewn as in Fig. 7, ensuring that they go down and up vertically rather than simply moving through to pick up each point on the graph. This ensures that, when the fabric is pulled back into its pleats, the stitching will lie horizontally through the gathers. Once all the stitching is done, the fabric thicknesses are gathered back to the required finished width (Fig. 8)—in the case of the back panel of the gown, to match the width at the bottom of the yoke. Comparison with Vincent’s illustration in Fig. 5 will show the measurements and spacing modified slightly to suit individual technique.

Vincent, using the Oxford and Cambridge patterns as examples, represents the bachelor’s gown sleeve as in Fig. 9. However, the underarm shape on the sleeve is shown more appropriately as in Fig. 10. Similarly, Vincent shows the master’s gown sleeve as in Fig. 11, but the underarm allowance to fit the coat pattern more appropriately is shown in Fig. 12. The reason for these deeper underarm shapes is that, in Vincent’s pattern for both bachelor’s and master’s sleeves, there will be a droop of fabric without an appropriate allowance for the undercut for the arm. Allowing for the underarm in the sleeve pattern takes up this droop of fabric and leaves the sleeve to drape with a minimum of excess cloth. The length of the sleeve should be to within 1½ inches of the gown hem for the Oxford and Cambridge styles.

The BA gown in the University of London—and adopted by various other universities—requires the gathering of the sleeve forearm into pleats, with a cord and button to hold the pleats in place—the custom seems to be four pleats. George W. Shaw shows this pleating bringing the gown forearm sleeve up to the elbow rather than half way down the forearm.7 In terms of style, this shows the sleeve appearing to sit properly rather than appearing to be pleated up because the sleeve is too long, hanging well over the forearm. If the pleats are simply caught up from the straight cut, the base point of the sleeve tends to curve forwards. However, if the pleats are let into the forearm and styled to gather back, the base of the sleeve will hang straight. Fig. 13 shows the BA London sleeve pattern with the pleat allowance marked out, allowing four pleats ½ inch apart—and parallel with the line of the sleeve hem.

the base of the gathers on the back and sleeves where the tape has been sewn down to hold it in place. See later reference in the text, p. 65.

7 Academical Dress of British Universities (Cambridge: Heffer, 1966), p. 21, Fig.14. Also in G. W. Shaw, Academical Dress of British and Irish Universities (Chichester: Phillimore, 1995), p. 22, Fig. 42.
The hem of the bachelor’s sleeve, being cut inevitably on the bias, often appears to twist. The maker can avoid this by sewing the hem from the sleeve wrist to the bottom point on one side and then repeating from the wrist to the bottom point for the other side. If the sewing simply starts at the wrist and continues through the bottom point and back to the wrist, one side will sit flat (that sewn from wrist to point) and the other side (from point to wrist) will twist.

In the master’s sleeve, the slit to free the arm is placed excellently in Vincent’s pattern, inclining upwards from the sleeve side seam (see Fig. 11). This upward cut is important because, when the finished gown is worn, the shape of the wearer’s shoulder will show the arm slit as slightly above horizontal. The former Cambridge firm of Bodgers has styled the Cambridge master’s sleeve with an armhole cut almost at right angles from the sleeve side seam—when worn, this gown will show a distinct descent in the cut of nearly 30°. This makes the gown look awkward and ill-fitting, the sleeve appearing almost to be inverted. The upward cut of the slit will make the gown appear to have some height, leading the viewer to see a robe which complements the wearer’s height rather than accentuating ‘width’.

Vincent does not treat the doctor’s sleeve in his treatise. However, taking again the Oxford and Cambridge patterns for the doctor’s sleeve, we can see the Oxford festal sleeve in Fig. 14 and the Cambridge festal sleeve in Fig. 15. For the Oxford festal gown, the degree colour is used to face the sleeve, as it is used also to face the gown. Following the sewing together of the sleeve seam (wrong sides together so that the seam is outwards) and the colour panel seam separately, the colour is sewn onto the outside of the sleeve, right sides together, but with the colour covering the top of the sleeve as in Fig. 16. It is turned over and pressed so that it falls over the base of the sleeve (Fig. 17), turned under the base of the sleeve (the line d-e) and pressed to form a turning for sewing down. The colour is hand-sewn to the inside of the sleeve, all stitching therefore being concealed with the sleeve seam being under the arm. The Oxford doctor’s sleeve is faced with the faculty colour; the colour does not simply form the lower three quarters of the sleeve. Scarlet, therefore, is seen inside the sleeve. The sleeve is then gathered as described for the rear gown panel, but curved and tapered (Fig. 18) and with three threads rather than four—as are the bachelor’s and master’s gown sleeves.

In gathering the master’s gown sleeve, the outer side seam needs to be caught up in the gathers so that the seam does not affect the pleating. The needle is brought up at one side of the seam, or put down through one side of the seam. Whichever way it happens, the seam is then caught in the middle of the gathering at the drawing thread, allowing the gathering to appear evenly spaced without seam intrusion in the line. Also, for the sake of expediency, some makers prefer to keep the untapered shape in the sleeves, allowing the yoke shape to cover the gathers as illustrated above.

8 In gathering the master’s gown sleeve, the outer side seam needs to be caught up in the gathers so that the seam does not affect the pleating. The needle is brought up at one side of the seam, or put down through one side of the seam. Whichever way it happens, the seam is then caught in the middle of the gathering at the drawing thread, allowing the gathering to appear evenly spaced without seam intrusion in the line. Also, for the sake of expediency, some makers prefer to keep the untapered shape in the sleeves, allowing the yoke shape to cover the gathers as illustrated above.
The Cambridge festal gown sleeve (see Fig. 15) and lining seams are sewn together separately and pressed out. The two are put together, right sides together and sewn around from wrist to point to wrist, snipped at the points, and turned in and pressed so that the colour forms a complete sleeve lining. The extended portion at the wrist is turned back to form a shallow triangular ‘cuff’ and is held back with a cord and button. Fig. 19 illustrates this sleeve in a ThD gown made for the University of Trinity College, Toronto, Canada. The sleeve and lining are then gathered with three threads. Some manufacturers now shorten the sleeve lining to finish 8 inches under the sleeve turning. This shorter lining is sewn to the sleeve shell.

The American doctoral gown is modelled on the Oxford festal gown, but the sleeve is bell-shaped, turning under at the wrist to join a tailored jacket-style sleeve lining. This gown is modelled in Fig. 20 (style only), the sleeve and lining patterns shown in Figs 21 & 22. The doctoral gown has three velvet bars on the sleeve which, along with the velvet facings, are black or in the faculty colour (Fig. 23). In some universities, the gown has the pleats in the front panels extend beyond the front yoke seam right around the neck to join at the back in the centre of the yoke (Fig. 24).

In all of these gowns, the common element is the yoke. This device locks the rear panel and the sleeves in place. Style and depth of the yoke often seem to be at the whim of the various robemakers. The lie of the yoke fabric is important: normally there is a vertical seam in the yoke at the centre back. It is best to cut the yoke panels with the front of the yoke on the grain. This means that the rear seam will have both yoke panels on the bias. For cotton/viscose ribbed fabric or faille, this will mean that the ribs in the fabric will form a chevron shape when sewn together. The more important aspect of this particular cut is that the line of the gown from the front panels will show the grain line from the hem to the centre back of the yoke. This adds strength to the front; the canvas interlining being cut on the grain will strengthen the yoke overall even though the outer fabric is on the bias.

The basis of the yoke is the interlining. This is cut as one piece with the centre back on the grain. Turnings are allowed ½ inch for the base and sides, and ¼ inch for the fronts and neck curve. On the underside of the interlining is sewn a piece of fabric cut to the yoke finished size. Because the yoke interlining is cut longer than the finished top yoke, the fronts of the interlining need covering in the gown fabric back to the point where the top yoke seam will sit. The top yoke fabric is sewn to the front panels of the gown coat, and then the whole top yoke is sewn to the interlining. The rear panel gathers are sewn to the yoke first, then the sleeves. The base yoke turning is snipped and then pinned to the rear gathers and sewn first (Fig. 25), then the sleeve gathers. Once the back is sewn, the gathes are turned back onto the interlining and sewn back to the underside fabric (Fig. 26). This holds the gathers and yoke flat. At the corners, where the rear gathers and sleeve
gathers meet, all gathers are turned back on themselves for sewing. This enables the yoke to sit flat at the corner points. Following Figs 25 & 26 is a series of yoke designs with description.

These methods all apply to hand-gathered gowns, as do Vincent’s methods, allowing for care and custom finishing in the work. Modern manufacturers, however, are faced with a major dilemma: given the dearth of training in hand needlework, machine work and finishing, especially at school level, the number of people able to provide hand-gathered gowns is decreasing. Also, with the volume of new universities emerging within the past twenty years, the manufacturers are having trouble keeping up with the demand. The development of gathering tape to enable traditional gown manufacture to keep up with demand has compensated for both of these issues, but has its own problems: it requires extra visible stitching on the gown, making the finish look somewhat cumbersome and the process ‘exposed’; the tape manufacturer is discontinuing the wide tape for the backs of the gowns. While the narrower tape for the sleeves is still in production, the maker must use either a double width of the sleeve tape for the back—being difficult to apply because of the need to line up the drawstring spaces (requiring extra lines of visible stitching on the outside at the back)—or a single row of tape, making the gown appear wide at the bottom of the yoke rather than the deeper gathering emphasizing the height.

The flap-collar gown, used extensively for degrees at Oxford, has facings which turn out and join at the front of the square collar. The inside edges of the gown front panels are extended 7½ inches in the cutting, turned back and hemmed on the inside of the panels—the ½ inch being the hem turning. The collar (see Fig. 27) and lining are sewn at first only on the two sides, the wide base of the collar, the neck and the two curved sides left open. The collar is not turned out at this point. Once the back panel is gathered to the finished width, the two side panels are placed inside the collar through the wide straight edge (Fig. 28). While the process causes some ‘congestion’, it allows for the side panels to join the curved sides of the collar. When sewn, the whole collar is snipped on the curved edges, turned out and pressed. The wide straight edge is turned through the small gap in the centre between the side panels and sewn. The corners are snipped and shaped. When the hem is pushed back through the centre gap, the hem is inside the collar. All is then pressed flat and the collar and side panel joining is complete. The small gap in the centre, along with the side panel straight extensions, is then sewn to the gathered rear panel of the coat. To conceal the gathers and the turnings, when the rear panel is sewn to the complete collar section, a strip of fabric is sewn on top of the gathers. When the rear panel gathers are pressed back onto the base of the collar panel, the extra strip is then turned over the top to conceal the turnings and the whole is sewn down. The ‘gathers’ on the rear panel of this gown are better done as pleats, evenly spaced out from the centre, rather than piped gathers as in the other
gowns. This pleating enables the gown to sit quite flat under the flap-collar. The sleeve for this gown is the square-ended Tudor boot sleeve with inverted T-slit armhole (Fig. 29). The sleeve is not gathered, but sewn into the coat as in a suit or jacket.

Hoods

Vincent shows various styles of hood in his treatise but, being a cutter, his patterns are a guide to dimensions for cutting out. He gives no description about making up. In his Cutter’s Guide to Clerical Garments, Vincent details the pattern dimensions of all hoods for Oxford, Cambridge and Trinity College Dublin. He shows the Cambridge MA hood as in Fig. 30 and the BA hood as in Fig. 31. The Cambridge MA shape may have had rounded corners in the past. In any event, Vincent indicates the lining as ‘white silk, edged or bound with the same, the bordering or binding overlapping the outside ¼-inch’ all round the tippet (cape). He states, also, that it is ‘always lined throughout with white silk and sometimes not edged’. Standard documents on the subject of the Cambridge hood shape seem consistently to show all Cambridge hoods with square tippet (as in Fig. 31) and the lining not turned out.

When making up a Burgon or simple shape hood with a full lining, either the anterior or posterior side of the hood will be on the bias rather than the grain. This can produce weakness in the hood if both shell and lining are cut on the same grain line: with both hood and lining cut on the same side, the bias side will be susceptible to stretching.

10 London tailors used to make Cambridge hoods with rounded corners. Cambridge University forbade this practice by statute in 1934. From then, all Cambridge hoods have been with a square tippet. See the Council of the Senate of Cambridge University Report on Academical Dress of 16 May 1932, point 6, which states that tippets should always have square corners. Reproduced in Charles A. H. Franklyn, *Academical Dress from the Middle Ages to the Present Day including Lambeth Degrees* (Lewes: Baxter, 1970), p. 178. Also see Franklyn, p. 194, for the 1934 ordinance. Also, *The Cambridge University Reporter*, No. 2965, 6 February 1934.

11 Vincent and Tonkin, p. 17.

Cutting the hood shell with the posterior side on the grain, leaving the crescent cut and anterior side on the bias, works very well especially with cotton/viscose weaves or faille. If, then, the lining is cut with the anterior side on the grain, leaving the posterior side on the bias, the shell and lining will stabilize each other on both edges when sewn together as both sides of the hood will have one grain and the other bias (Fig. 32 & 33).

In the Durham MA simple shaped hood (for pattern see Figs. 32 & 33) the lining turns out ¼ inch onto the shell on both anterior and posterior sides. In measuring out the lining, ½ inch must be added to both sides before cutting. The stitch line will be ¼ inch in from the cut edge, and the ½ inch allowance will be the lining’s return to the shell’s finished edge. Then the lining will fold over and fall into the shell as a full lining. The reason for the ½ inch return rather than a ¼ inch is that all fabric needs space. If the return allowance were only ¼ inch, fabric width would be lost in the stitching and then in the turning over into the inside of the shell. By allowing the extra ½ inch in the return, the stitching and crease on the finished edge are allowed for and the shell edge will sit flat inside the lining turnings (Fig. 34).

When joining the lining to the shell at the crescent cut on the anterior side, the lining allowances must be mitred so that they match the angle of the hood sides when laid out flat (Fig. 35). On the posterior side for the simple shape hood, the sewing together is quite different. The seam stitching in the shell from the liripipe base to the anterior side must be left 1 inch short at the top (for cutting the lining, see Fig. 36). The lining turnings are sewn on each side through the gap in the stitching to the edge of the shell turnings and then pressed back so that the ½ inch allowance is on the outside. Once this is done on both sides, the 1 inch gap in the shell is then sewn together so that lining turnings and shell are seamed as one piece. Once this is complete, the liripipe side of the lining is sewn. When all seams are pressed out, the crescent on the anterior side can be sewn together and the anterior turnings of the lining sewn down. This process applies to all simple shape hoods, British and American.

The Burgon shape does not have this problem: the anterior and posterior sides join to form outward Vs at the top both of the crescent and the liripipe. The method of joining the lining to the anterior and posterior sides is the same as for the simple shape hood at the crescent.

Lining full shaped hoods without outer turnings is straightforward as both shell and lining fabric can be cut on the grain line. When turning out the lining onto the shell, either the grain line can be used or the whole lining can be cut on the bias. This bias cut will allow a slightly softer turning back on the stitch line where the grain will not be apparent (Fig. 37). The corners of the hood need to have the lining mitred in the same way as for the Burgon and simple shape hoods at the crescent point on the anterior side.
Turning the lining out on the curved tippet of the full shape hood is best done with the shell fabric cut on the grain line and the lining cut on the bias (Fig. 38). The usual turning allowance for British hoods is ¼ inch (plus ¼ inch return). The lining is placed on the shell, right sides together, so that the central seams in the tippet match. From there, on each side, the grain line point should be pinned and the lining pinned again at the beginning of the tippet vertical straight sides. The lining should pin all round the shell, except for the spaces around the tippet curves. All points should match.

The lining needs to be eased in from the centre tippet seam towards the pin at the grain line point and pinned closely, then in from the other side (Fig. 39). Once the lining is sewn around, the whole hood is turned out through the liripipe lining and the lining turning dry-pressed gently, working from the hood shell towards the edges. When pressing initially with the dry iron, the lining should be eased into shape to ensure that the lining spreads evenly. The cut edge of the shell should remain flat beneath the turned-over lining edge at all times, otherwise buckling will occur. When the curve is pressed flat, a light steam press will ensure the flatness of the curved turning. This is done only on the front of the shell, otherwise stitch lines will show on the lining. Fig. 40 illustrates the finished turning on the curved tippet.

Worcester University has opted for a modified Aberdeen shape hood (Fig. 41), lined fully with the university colour (BSI Standard 381 Col.103 Peacock Blue), and faced on the anterior side 1 inch with silver grey silk. Because the anterior side has an extended curve to the tippet crescent, the silver grey silk is cut on the bias, 2½ inches wide and one third as long again as the anterior side, one strip for each side. The strips are seamed together. After pinning the strip seam onto the lining crescent seam, right sides together, the binding strip is then placed on the lining and eased and pinned. When sewn down, the strip is turned over to the lining edge and the lining sewn to the shell (Fig. 42). This produces a flat, custom-finished facing.

Hoods of the American Intercollegiate Code (hereinafter the ICC), unless of a single colour lining, have an added requirement—the sewing in of one or more chevrons, pales, bars—and perhaps different colours—on either side of the hood. The patterns in Figs.43 & 44—master’s hood and doctor’s hood respectively—

13 In heraldry, the chevron is always portrayed as an inverted ‘V’, with point upwards. The pale is a vertical block. The bar is a horizontal block. In the American ICC, the chevron is always V-point downwards, and described as ‘chevron reversed’ if the V-point is upwards. A chevron is that of another colour placed on the field of the hood lining. Per chevron means the chevron shape, but as a dividing line with one colour above the other. Likewise, per pale and per bar.

14 The doctoral hood pattern shown is the standard ICC pattern. However, a number of universities has opted for a different doctoral hood style. For a complete review of non-ICC American doctoral hoods with illustration, see Smith and Sheard, Vol. 2, pp. 1575–1620. Also, Kevin Sheard, Academic Heraldry in America (Marquette, MI: Northern Michigan College Press, 1962). Not mentioned in either publication is the doctoral hood pattern for
show the placing of a chevron on the hood. For the doctor’s hood, the chevron is placed so that the inner edge of the chevron falls just short of the return back on the curved seam between liripipe and tippet. It is placed this way to ensure that, when the tippet is open, the chevron does not show as part of the lining. Two or more colour linings require that all the colours are made up in their positions before the actual hood pattern is marked out.

The binding of the hood on the anterior side is always with velvet, except where stipulated in a university’s statutes, cut on the bias to allow for the curved shape of the anterior base, ½ inch inside on all hoods (Fig. 45), then 2 inches outside (bachelor), 3 inches outside (master), and 5 inches outside (doctor). A soft interlining for shape is recommended (Fig. 46: a master’s hood with 3 inches of velvet—Columbia University MEd).

All ICC hoods require the lining on the posterior side for bachelors and masters and the tippet for doctors to turn out onto the shell ¾ inch. The process is the same as described for the Durham MA simple shape and the full shape hood with curved tippet. But some universities diverge wildly: Columbia University, in which the ICC began, has chosen to have the doctoral ‘hood’ as a single tippet (Fig. 47), taking away the whole sense of a real hood. The Columbia master’s ‘hood’ bears no resemblance to a hood of any kind, being more like a draped scarf (Fig. 48). For some, dismissive; for others, progressive; for still others, a travesty. Graduates may choose the ICC or the contemporary style.

While the manufacture of academical hoods requires the same custom finishing as the gowns, again the modern manufacturers are faced with a dilemma: for manufacturers to maintain their supply of robes and be responsible for some degree of standard, there is a need for simplified hood design. Because of the detail required for hoods, those such as the University of Exeter—grey stuff, bound all round with two inches of blue—might need revising so that simplicity of manufacture is possible. Mitred corners and other time-consuming processes cannot always be maintained, except at increasingly prohibitive costs. Institutions need to recognize that manufacturers are at the mercy of the dyers: one batch of dyes will not necessarily be compatible with the previous batch. Wear and tear on

Stanford University in California—a hood of the Cambridge shape of black cloth lined with scarlet silk faced with two inches of the faculty colour in which the degree was conferred edged around the tippet with two inches of philosophy blue velvet (philosophy blue regardless of the conferring faculty).

Union Theological Seminary, New York, for example, has prescribed that the degree of MDiv should have a hood of the master’s shape, black, lined with scarlet silk, the 3-inch master’s binding on the anterior side being of the lining silk rather than scarlet velvet. This is to differentiate the MDiv hood from that of STM—Master of Sacred Theology—which is prescribed as a master’s hood of black stuff, lined with scarlet silk and bound over the anterior side ½ inch inside and 3 inches outside with scarlet velvet, the lining turned out ¾ inch on the posterior side.

15 Union Theological Seminary, New York, for example, has prescribed that the degree of MDiv should have a hood of the master’s shape, black, lined with scarlet silk, the 3-inch master’s binding on the anterior side being of the lining silk rather than scarlet velvet. This is to differentiate the MDiv hood from that of STM—Master of Sacred Theology—which is prescribed as a master’s hood of black stuff, lined with scarlet silk and bound over the anterior side ½ inch inside and 3 inches outside with scarlet velvet, the lining turned out ¾ inch on the posterior side.
hoods made for hire compounds this problem; with dry cleaning and exposure to the light, various dye-lots will alter.

On the other hand, part of the maintenance of the tradition of academical dress lies in the importance of consistent colour representation. Anything approximating the Oxford MA shot crimson or the Royal College of Organists three-colour shot pearl will not really be good enough. If the approximation is good enough, the institution’s view of itself and its reputation might well come into question—the any-old-thing-will-do issue. Equally, if an approximation is accepted as good enough, it might not be long before the approximation becomes confused with other institutions using the same ‘colour’. Given that modern-day weaving looms cannot handle adequately the production of shot silks and other thread mixtures, proper shuttle looms must be used. Modern weaving looms seem unable to handle two different thread types, perhaps silk in warp and polyester/rayon in weft, with one of the threads breaking frequently. Shuttle looms will handle the different threads easily.\(^\text{16}\) The tension for manufacturers now lies in the balance between maintaining the tradition of excellence the very fine companies have established and catering for the enormous number of gowns and hoods required, either for purchase or for hire. If for purchase, the leading companies have a responsibility to themselves and their clients to explain that they can provide a quick economical dress fast, or something custom-made for the appropriate price. This will require the continuous training of good workers in the craft of custom-made robes. If the great companies ever dispense with the custom-tailored, hand-made academical dress, it will spell the end of the tradition—academical dress will not be seen as anything more than ‘grad togs’, representing in their cheapness a cheap view of academical excellence. Dignity requires dignity: if academical achievement is a dignity to which people aspire, the visual dignity of that achievement must be commensurate.

The manufacture of academical dress, while seeking to preserve its own evolution, nevertheless is governed by exigencies which make the process interesting, challenging and worthy of maintaining the very best in continuing the ancient traditions of dignity and symbolism. Modern manufacturers should be applauded for working so hard to maintain a balance in demand, supply and standard. If the world of academe has taken the best of fashion and made that best its own, institutions and manufacturers must work together sympathetically to maintain that ‘best’.

\(^{16}\) The problem with modern weaving machinery is that it is set to handle one kind of thread—silk, polyester, cotton, rayon, for example. Because each of these threads has a different tensile structure and strength, one will be seen to be stronger than another in warp and weft for weaving shot fabrics. Modern machinery does not differentiate these strengths of various threads, whereas the shuttle machinery will compensate for different strengths because of its more mechanical rather than automotive technology. The same principle is evident in industrial sewing machines when compared with treadle machines.
Glossary of terms

GOWNS

Coat
The back and sides, possibly seamed under the arms, the back gathered into the base of the yoke (q.v.) and the sides joined to the top yoke (q.v.).

Flap Collar
The square-shaped portion of the gown in lieu of a yoke. The collar holds the side panels together across the back, the side panels extending over the shoulder to meet the horizontal seam. The collar then folds back on the outside, forming a square across the shoulders and supporting the facings.

Sleeve
That which is indicative of the degree of bachelor, master, or doctor, the style of which is illustrated in the text.

Top Yoke
The portion of the yoke which extends from the back just forward of the shoulder and on top of the interlining, the interlining extending further forward for balance when the gown is worn. The side panels are sewn to the top yoke.

Yoke
The collar portion of the gown, made up of three parts—the interlining, the underlining cut to the yoke finished size, and the top yoke (q.v.)—into which the back and sleeves are sewn.

HOODS

Anterior Side
The side of a simple shape hood which extends from the neck to meet the cut of the crescent (q.v.) shape.

Cowl
The alternative name for the posterior side (q.v.) of a simple shape hood. Also, the side of the full shape hood extending from the neckband to the top of the liripipe (q.v.).

Crescent
The hook shape on a simple shape hood which is the stylized remnant of the curved space separating the tippet (q.v.) and the liripipe (q.v.) on the full shape hood. It extends in various styles from the base of the anterior (q.v.) side of the simple shape hood to meet base of the liripipe (q.v.).

Liripipe
On a simple shape hood, the ‘boot’ of the hood with the crescent (q.v.) on one side to meet the base of the anterior side (q.v.); and on the other side a straight or curved line to meet the base of the posterior side (q.v.). On a full shape hood, the ‘tail’ which is adjacent to the tippet (q.v.) and which extends upwards as a straight or curved line to meet the cowl (q.v.). The liripipe itself is a remnant of the extended scarf which wrapped around the wearer’s neck, securing the hood in place on the shoulders.

Posterior Side
The side of a simple shape hood which extends from the neck to meet the top of the liripipe (q.v.). Sometimes referred to as the cowl (q.v.).

Tippet
The square cape on the full shape hood, either with square or rounded corners, which sits flat against the wearer’s back. Sometimes simply called the cape.
Fig. 2 - The line represents the underarm seam in the back and front panels compared with the seam in the rear panel in Fig. 1.

Fig. 3

Drawn tighter

Measurement from base of yoke to hem of rear panel

Fig. 4a illustrates the made-up result of a convex rear panel as described in Fig. 4.
The illustrations in Figs. 16 and 17 show the Oxford festal sleeve laid out flat for the sake of explaining the sewing of the sleeve facing fabric. The lines marked a-b and f-g are sewn together to form the cylindrical sleeve.

Fig. 16

Taper, according to pattern, at each end

Fig. 18

Fig. 19

Fig. 20

Fig. 21

Fig. 22

Fig. 23

Fig. 24
The distinctive feature of this yoke is that the top yoke is cut on the diagonal at the front, giving a sense of height to the wearer. The yoke depth is very shallow at only 3 inches.

Six inches deep at the centre back, this yoke was the standard yoke design for E&R in the ‘60s and ’70s. The company now use an even wider yoke.

A ‘square’ collar, used extensively for Oxford degrees and Chancellors’ gowns. For Oxford degrees, the collar is edged with gimp.

A fine yoke, it is five inches deep at the centre. Used for doctoral gowns in particular, it sits as one piece without an extended underyoke.

An elongated yoke, this is the pattern for Oxford doctors’ gowns. It is applied with a stiff interlining for shape, but sits over the gathers.

This is the standard size yoke for all Oxford and Cambridge gowns. A four-inch-deep yoke at the centre back, it sits well.

The standard yoke for Bristol University, it is quite shallow at 2.75 inches. Because of the wide neckline, this yoke tends to sit awkwardly.

A doctoral gown yoke, it shows the pattern for the velvet neckline and the extended pleats from the front to the centre back of the yoke.
Fig. 37

Fig. 38

Fig. 39

Fig. 40

Fig. 41

Fig. 42

Fig. 42a

5/8" extra

Cut edge

Stitch line 1/4" in from cut edge

Grain point

Finished edge

Cut on bias

Grain

Edge of shell and lining flash

Stitch line

Grain point

Ease lining in on either side towards grain point

5/8" extra

Cut edge

Stitch line 1/4" in from cut edge

Grain point

Finished edge

Cut on bias

Grain

Edge of shell and lining flash

Stitch line

Grain point

Ease lining in on either side towards grain point
Illustrations

With the exception of Figs 1, 5, 9, 11, 30 and 31 all line drawings are from the author’s set of illustrations, prepared over the past twenty years in a log of the processes of making up.

Figs 1, 5, 9 and 11 are reproduced from The Cutter’s Practical Guide to the Cutting of all Kinds of Garments, Part 9, including the ‘Cutting and Making Various Kinds of Robes, Gowns, Surplices, Hoods, Vestments, etc. (London: John Williamson, 1898), pp. 69–84.

All patterns on green cutting boards are from the author’s library of patterns for gowns and hoods.

Fig. 23 is reproduced from O. J. Hoppner, Academic Costume in America: A Compendium (Albany, NY: Cotrell & Leonard, 1965).

With the exception of Figs 4a and 48, all gowns and hoods in photographs and on green cutting boards are made by the author. The gown in Fig. 4a was made by the former firm of James Neal & Company, Cambridge, and is part of the Burgon Society Archive. The ‘hood’ in Fig. 48 was made by Cotrell & Leonard, Albany, New York, in 1979. Fig. 47 is reproduced from a set of twelve advertising brochures, the gift of Mr Anthony Harden of Cotrell & Leonard, Albany, New York, in 1978.

The Revd Kenneth Crawford, MA, BD, BMus, MEd, FBS, is Vicar of Pershore Abbey, Worcestershire. He is a Freeman of the Worshipful Company of Merchant Taylors and a manufacturer of academical, ecclesiastical, judicial and civic robes.