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APPROXIMATE BAYESIAN APPROACHES FOR REVERSE ENGINEERING BIOLOGICAL
NETWORKS
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2INRA AgroParisTech, Animal Genetics and Integrative Biology, Populations Statistics

Genomes, 78350 Jouy-en-Josas, France
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∗Corresponding author: arau@stat.purdue.edu

ABSTRACT: Genes are known to interact with one another through proteins by regulating the
rate at which gene transcription takes place. As such, identifying these gene-to-gene interactions is
essential to improving our knowledge of how complex biological systems work. In recent years, a
growing body of work has focused on methods for reverse-engineering these so-called gene regula-
tory networks from time-course gene expression data. However, reconstruction of these networks
is often complicated by the large number of genes potentially involved in a given network and the
limited number of time points and biological replicates typically measured. Bayesian methods are
particularly well-suited for dealing with problems of this nature, as they provide a systematic way
to deal with different sources of variation and allow for a measure of uncertainty in parameter esti-
mates through posterior distributions, rather than point estimates. Our current work examines the
application of approximate Bayesian methodology for the purpose of reverse engineering regula-
tory networks from time-course gene expression data. We demonstrate the advantages of our pro-
posed approximate Bayesian approaches by comparing their performance on a well-characterized
pathway inEscherichia coli.

1 Introduction

The development of microarray technology in the mid-1990s (Schena et al., 1995, 1996; Lipschutz
et al., 1999) made possible large-scale studies of gene expression. Since that time, microarrays
have become a popular platform to study the behavior of genes during specific biological pro-
cesses in a variety of organisms, such as the cell cycle inSaccharomyces cerevisiae (Spellman
et al., 1998) and the life cycle ofDrosophila melanogaster (Arbeitman et al., 2002). By collecting
tissue samples from an organism and measuring gene expression over several time points, gene
expression profiles can be assembled to elucidate information about the relationships occurring
among genes in an organism during a particular biological process. Although microarrays are
presently the most prominent and least expensive platform for such time-course studies, the de-
creasing cost and refinement of next generation sequencing (NGS) technologies (Mardis, 2008)
suggests that time-course expression profiles may be studied with sequence-based approaches in
the near future.

In spite of the abundance of data generated from time-course studies of gene expression, it
can be very difficult to unravel the complexity of the chemical dynamics that occur within a cell.
One reason for this is that cell development is regulated by well-orchestrated patterns of expression
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Figure 1: A simple gene regulatory network made up of four genes,represented by colored boxes.
In this example, each gene is transcribed and translated into a transcription factor protein (colored
circles), which in turn binds to the promoter regions of genes (rectangles) in the network to regulate
their expression. The gene regulatory network may be represented using the graph in lower right
corner, made up of four nodes (genes) and five directed edges (gene-to-gene interactions). Image
taken from Rau (2010).

among groups of genes, often referred to asgene regulatory networks (Friedman, 2004; Wilkinson,
2009). Gene regulatory networks are generally believed to govern the rate at which genes in the
network are expressed, and as such they often play a critical role in the control of complicated
cellular functions. Correctly identifying the components of gene regulatory networks and the gene-
to-gene interactions contained therein is thus essential to understanding how complex biological
systems work.

Within regulatory networks, genes interact with one another indirectly through proteins known
as transcription factors (TF). By binding to the promoter region (i.e., an upstream region of DNA
that facilitates transcription) of a gene, a TF controls the transfer of information during transcrip-
tion by promoting (activating) or blocking (repressing) RNA polymerase, which in turn affects the
level of expression of that gene (Schlitt and Brazma, 2007, see Figure 1). Graphs are often used to
visualize gene regulatory networks, where nodes represent genes and edges represent interactions
among the genes (Figure 1, bottom right). In addition, gene regulatory networks are often charac-
terized by a set of properties common to such biological pathways (Figure 2). First, feedback loops
(Figure 2, images 1 and 2) are common motifs that are able to shape signalling responses over time
or given particular cellular conditions (Brandman and Meyer, 2008). Second, gene regulatory net-
works tend to be composed of spoke-and-hub type structures (Figure 2, image 3), where regulated
genes are one step away from their regulator (Alon, 2007). Third, gene networks are typically
sparse, and genes are often regulated by a limited number of other genes (Leclerc, 2008). In terms
of a graphical structure, this means that the fan-in (or in-degree) of each node is typically small
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Figure 2: Illustration of characteristics of gene regulatory networks. (1) A positive feedback loop,
where gene A activates gene B (represented by an edge with an arrowhead), and gene B in turn
activates gene A. (2) A negative feedback loop, where gene A activates gene B while gene B
represses gene A (represented by an edge ending in a bar). (3) A spoke-and-hub type structure,
with gene A acting as a central regulator gene. (4) The fan-in (number of regulators) for gene A is
3. Image taken from Rau (2010).

(Figure 2, image 4). Finally, because it can be difficult to measure the abundance of a particular
TF experimentally, the level of expression of its corresponding gene (i.e., the gene that produces
the TF through the process of transcription and translation) is typically used as a proxy.

Understanding how genes interact with one another during a biological process is currently a
major goal of the systems biology community. Two basic types of approaches are used to identify
the gene-to-gene interactions present in a set of observed gene expression data (Tegnér et al.,
2003): the forward engineering approach, which identifies and quantifies fundamental equations of
gene regulation based on principles of biochemistry, and the reverse engineering approach, which
attempts to discover gene-to-gene interactions (i.e., the structure of the corresponding graph) from
a set of gene expression data. We focus our attention on the latter goal, where gene expression
is measured within the same organism across time. In this context, statistical methods are used
to infer either an adjacency matrix or a parameter matrix from time-course gene expression data
(Figure 3). An adjacency matrix is composed of ones and zeroes that indicate the presence or
absence of a gene-to-gene interaction (edge) in the network (graph), respectively. A parameter
matrix contains additional information about the magnitude and type (i.e., positive for activations
and negative for repressions) of each gene-to-gene interaction (i.e., non-zero edges in the graph).
That is, the larger the magnitude of a particular element of the parameter matrix, the larger the
regulatory effect of the gene-to-gene interaction (and consequently, the thicker the edge in the
graph).

The process of reverse engineering gene regulatory networks from time-course gene expression
data is a challenging task for several reasons. First, in time-course studies of gene expression using
high-throughput technologies (e.g., microarrays), the number of genes observed is typically far
greater than the number of samples (e.g., biological replicates or time points). For this reason,
the task of reverse engineering gene regulatory networks from such data falls squarely within the
n � p paradigm typical of genomic studies. As such, to avoid an explosion in model complexity,
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Figure 3: An illustration of the process of reverse engineeringa gene regulatory network from
longitudinal data. High throughput technologies (e.g., microarrays) are used to measure the gene
expression in biological samples taken across several time points. Statistical methods then may
infer a network adjacency matrix (bottom left), where ones and zeroes indicate the presence or
absence of an edge in the graph (i.e., gene-to-gene interaction in the network), respectively. Al-
ternatively, other approaches also include more detailed descriptions of network structure through
a parameter matrix (bottom right), where non-zeroes indicate the magnitude and type (activation
or repression) of interactions present in the network, and zeroes represent the absence of an in-
teraction. In this representation, thick edges in the graph represent stronger effects, arrowheads
activations, and barred lines repressions. Image taken from Rau (2010).
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model parameters are typically set such that the transition probabilities between time pointst− 1
andt are the same for allt (Husmeier et al., 2005). In addition, because genes within a regulatory
network interact with one another while reacting to the cellular environment, the structure of the
network can inherently be very complex itself. A direct consequence of this network structure is
that the resulting expression data often exhibit high multicollinearity. In this work, two approaches
based in approximate Bayesian methodology (Carlin and Louis, 2000; Beaumont et al., 2002)
are described to reverse engineer gene regulatory networks from time-course gene expression data.
The two methods are jointly applied to analyze a well-characterized pathway in the model organism
Escherichia coli.

2 Approximate Bayesian Methods

The Bayesian framework is well-suited to the inference of gene regulatory networks for a vari-
ety of reasons. First, as the number of genes potentially involved in a given network increases, the
number of possible networks structures increases exponentially (Husmeier et al., 2005). This prob-
lem of high dimensionality is exacerbated by the limited number of biological replicates and time
points measured in most real data. In addition, it is often the case that many network structures
may yield similarly high likelihoods, making it difficult to determine a single globally optimal
structure. As such, posterior distributions for network structures may be more informative about
network structures, as well as specific gene-to-gene interactions. Finally, a Bayesian framework
also enablesa priori biological information (e.g., from bioinformatics databases) to be incorpo-
rated in a particular model via the prior distribution structure.

In the Bayesian paradigm, a modelf(Y |Θ) is fit to observed dataY , where the parameters
Θ are also random variables following a prior distribution,π(Θ). Inference is then passed on
the conditional distribution of the parameters given the observed data,π(Θ|Y ) ∝ f(Y |Θ)π(Θ),
also referred to as the posterior distribution. Because it can be difficult to conduct a full Bayesian
analysis in closed form for complex models, such as for gene regulatory networks, we focus here on
two approaches based in approximate Bayesian methodology: namely, empirical Bayes methods
(Carlin and Louis, 2000) and Approximate Bayesian Computation (Beaumont et al., 2002).

2.1 Empirical Bayes Methods

In the first approach, we develop an empirical Bayes estimation procedure to perform network
inference (Rau et al., 2010; Rau, 2010). This method was motivated by that of Beal et al. (2005),
based on variational Bayesian learning of linear feedback state space models (SSM). Under the
SSM framework, a pair of linear equations is used to describe the interactions occurring among
a set of genes and a set of hidden states from one time point to the next. Specifically, consider
observed time-course gene expression dataY = {ytr} and unobserved hidden statesX = {xtr}
with P genes,K hidden states,T time points, andR biological replicates. Letytr andxtr represent
the expression of the sets of genes and hidden states, respectively, in replicater at timet. The state
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Figure 4: A visual representation of the linear feedback state space model, with the observed
expression of a set of genes (light blue nodes) and the unobserved expression of a set of hidden
states (dark blue nodes) at two time points,T = 1 andT = 2, whereA,B,C, andΘ correspond to
the matrices in Equation 1. The solid arrows, representing the nonzero elements ofΘ, correspond
to the direct gene-gene interactions that make up the gene regulatory network. Image taken from
Rau (2010).

and observation equations, respectively, for the SSM are:

xtr = Axt−1,r +Byt−1,r + wtr (1)

ytr = Cxtr + Θyt−1,r + ztr.

wherewtr ∼ N(0, I) andztr ∼ N(0, V −1 = diag(v−1)), with v being aP -dimensional vector of
gene precisions, fort = 1, ..., T andr = 1, ..., R (see Figure 4). Due to its restrictive distributional
(Gaussian) assumptions, the SSM is best suited to exploratory analyses of gene regulatory networks
where littlea priori biological information is known.

The primary entity of interest in the SSM of Equation 1 is the parameter matrixΘ, which
encodes the direct gene-to-gene interactions from one time to the next. In addition, a hierarchical
Bayesian framework may be defined on the SSM of Equation 1 (Beal et al., 2005; Rau et al., 2010).
That is, leta(j), b(j), c(j), andθ(j) denote vectors made up of thejth rows of matricesA, B, C,
andΘ, respectively. Then

a(j)|α∼ N(0, diag(α)−1) (2)

b(j)|β∼ N(0, diag(β)−1)

c(i)|γ, vi ∼ N(0, v−1
i diag(γ)−1)

θ(i)|δ, vi ∼ N(0, v−1
i diag(δ)−1)

whereα = [α1, . . . , αK ]T , β = [β1, . . . , βP ]T , γ = [γ1, . . . , γK ]T , δ = [δ1, . . . , δP ]T , vi is the
ith component of vectorv, j = 1, . . . , K andi = 1, . . . , P . Thus, we have a set of parameters
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Figure 5: Visual representation of the typical workflow of the EBDBN algorithm. After selecting
the hidden state dimensionK, two sub-loops of the EM algorithm are used to update model hyper-
parametersψ (using convergence criteria∆1 and∆2). Posterior means of the model parameters
and Kalman filter estimates of the hidden states are subsequently calculated. When global conver-
gence is attained (based on convergence criterion∆3), the posterior distribution of matrixΘ may
be obtained. Image taken from Rau (2010).

{A,B,C,Θ,v} and a set of hyperparametersψ = {α,β,γ, δ} describing thea priori precisions of
the parameter set.

The Empirical Bayes Dynamic Bayesian Network (EBDBN) method is an iterative procedure
used to infer gene regulatory networks by obtaining the posterior distribution of parameter matrix
Θ (Figure 5). To do, first the dimension of the hidden state (i.e.,K) is chosen using a time se-
ries method for model selection, based on the autocovariances between observations (see Bremer,
2006; Bremer and Doerge, 2009; Rau et al., 2010; Rau, 2010, for more details). Second, a set of
recursive calculations known as the Kalman filter and smoother (Kalman, 1960) is used to estimate
the values of the hidden states (Bremer and Doerge, 2009; Rau et al., 2010), given the current val-
ues of the model parameters. Third, posterior distributions for the model parametersA, B, C, and
Θ are calculated based on a two-step Expectation-Maximization (EM) estimation (Dempster et al.,
1977) of model hyperparametersψ. See Rau et al. (2010) for additional details on the EBDBN
algorithm.

2.2 Approximate Bayesian Computation

In the second approach, we apply a simulation-based Bayesian method to conduct a detailed anal-
ysis of small, well-characterized pathways under fewer model assumptions. By exploiting the
capabilities of modern computing, this method makes possible inference on the posterior distribu-
tion of gene networks, even in cases where the likelihood is intractable or difficult to calculate. In
this approach, we focus on a first-order vector autoregressive (VAR) model (i.e., a multivariate au-
toregressive model) as an approximation to the dynamics of the gene regulatory network occurring
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Algorithm 1 Theε-Tolerance Rejection Sampler.

0. Seti = 0.
1. Sample a candidate parameter vectorΘ? from prior distributionπ(Θ).
2. Simulate dataY ? from the model described by conditional probability distributionf(·|Θ?).
3. Compare simulated dataY ? to the observed dataY using a distance functionρ and tolerance

ε. If ρ(Y ?, Y ) ≤ ε, acceptΘ?, otherwise reject.
4. If i < N (a pre-set number of acceptances), return to 1.

in time-series expression data. Although such models are popular in econometric analyses (En-
ders, 2004), they have seen limited application in modeling gene regulatory network, due in part
to the difficulty in estimation model parameters for sparse, high-dimensional data using standard
statistical approaches (Opgen-Rhein and Strimmer, 2007).

Specifically, letY = {ytr} represent the observed time-course gene expression data as before.
The first-order VAR model, denoted VAR(1), may be written as follows:

yt = Θyt−1 + zt (3)

wherezt is a vector of white noise such thatE(zt) = 0, E(z2
t ) = σ2, andE(ztzs) = 0 for t 6= s,

andΘ is aP × P coefficient matrix representing the direct gene-to-gene interactions as before.
Note that the VAR(1) model is a simplification of the SSM in Equation 1, whereA = B = C = 0
and the distributional assumption onzt is removed. For notational simplicity, in this section we
focus on the case where only one biological replicate is available (R = 1), but the extension to
multiple replicates is straightforward.

Because no distributional assumptions are made on the error termszt in Equation 3, it may
be impossible or computationally prohibitive to compute the likelihoodL(Θ|Y ) = f(Y |Θ) of
a given network. In such cases, a sampling-based approach known as Approximate Bayesian
Computation (ABC) can enable Bayesian inference (Beaumont et al., 2002; Marjoram et al., 2003;
Ratmann et al., 2007). At their core, all ABC methods follow the same general form (Pritchard
et al., 1999), known as theε-tolerance rejection sampler (Algorithm 1), where a distance function
ρ and toleranceε are used to determine whether simulated and observed data are “close” to one
another. In the context of gene regulatory networks, gene expression data for a given networkΘ?

are simulated using one-step ahead predictors based on Equation 3, such thaty?
t = Θ?yt−1.

Whenε > 0, Algorithm 1 is approximate and its output amounts to simulating from the prior
whenε → ∞. When0 < ε < ∞, Algorithm 1 results instead in a sample of parameters from
the distributionπ(Θ|ρ(Y ?, Y ) ≤ ε). If ε is sufficiently small, then this approximate posterior
distribution is a good approximation to the true posterior distributionπ(θ|Y ). However, in practice
a balance must be achieved between a small enough tolerance to obtain a good approximation to the
posterior, and a large enough tolerance to allow for feasible computation time and acceptance rates.
Typically, ABC algorithms must be repeated a large number of times (on the order ofN = 1×106

or more), and only parameter values corresponding to the smallestα% (e.g., 1%) ofε are used for
inference (Beaumont et al., 2002).

Several adaptations and improvements have been proposed to the standard ABC form, includ-
ing methods based on summary statistics calculated on the simulated and observed data (Beaumont
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et al., 2002), post-adjustments of the approximate posterior distributions based on the calculated
distances (Beaumont et al., 2002; Leuenberger and Wegmann, 2009), and Monte Carlo techniques
to improve efficiency (Marjoram et al., 2003; Sisson et al., 2007; Beaumont et al., 2009). In this
work, we focus on an adaptation of the ABC-Markov chain Monte Carlo (MCMC) technique of
Marjoram et al. (2003) called the ABC-MCMC Network (ABC-Net) method (Rau, 2010). In the
ABC-Net method, a Markov chain is constructed using the Metropolis-Hastings algorithm (Hast-
ings, 1970) where the equilibrium distribution of the chain is chosen to be the approximate poste-
rior distributionπ(Θ|ρ(y?,y) ≤ ε). If π(Θ) andq(Θ?|Θi) represent the prior distribution of the
network parameter matrix and the probability of moving fromΘi to Θ? at the(i + 1)st iteration,
then a proposed network parameter matrixΘ? is accepted with probability

α = min

{

1,
π(Θ?)q(Θi|Θ?)

π(Θi)q(Θ?|Θi)
I(ρ(y?,y) ≤ ε)

}

(4)

whereI(·) is an indicator function. Implementing the ABC-Net method in practice requires several
adaptations specific to gene regulatory networks, in particular defining an appropriate distance
functionρ, thresholdε, prior distributionπ(·), and proposal distributionq(·|·). See Rau (2010) for
additional details on these considerations.

3 Data Analysis

The S.O.S. DNA repair system ofEscherichia coli is a small, well-characterized gene network that
is responsible for repairing DNA after damage (Ronen et al., 2002). Specifically, under normal
cellular conditions a master repressor called lexA suppresses the expression of genes within the
S.O.S. system (Figure 6). However, when DNA damage is detected by one of the S.O.S. proteins
(recA), it becomes activated and provokes the autocleavage of lexA, which subsequently drops in
abundance. This in turn suspends the repression of the remaining S.O.S. genes, and these genes
become activated. When the detected DNA damage has been repaired, the levels of the recA
protein drop, allowing lexA to reaccumulate in the cell and suppress the S.O.S. genes. At this
point, the cell returns to its original state.

The S.O.S. DNA repair system is a useful example to illustrate the complementary nature of
the EBDBN and ABC-Net methods, as it is a benchmark dataset in which specific gene-to-gene
regulatory interactions are well understood. In particular, we make use of data collected by Ronen
et al. (2002), which focus on a sub-network within the S.O.S. DNA repair system made up of eight
genes: uvrD, lexA, umuD, recA, uvrA, uvrY, ruvA, and polB. Using green fluorescent protein
(GFP) reporter plasmids, Ronen et al. (2002) measured the expression of these eight S.O.S. genes
at fifty time points (every six minutes following ultraviolet irradiation of the cells to provoke DNA
damage). The authors performed a set of four experiments for each of two different intensities of
ultraviolet light; in this work, we focus on the data collected for Experiment 3 (using 20JM−2).
The data are directly available at the authors’ website (http://www.weizmann.ac.il/mcb/

UriAlon).
Because the gene-to-gene interactions in the S.O.S. DNA repair system are well-defined and

no hidden states are believed to be involved in the network, we apply the EBDBN method with
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Figure 6: The S.O.S. DNA repair system ofE. coli. Under normal conditions, the master repressor
lexA represses the expression of the S.O.S. genes (uvrD, umuD, uvrA, uvrY, ruvA, and polB)
responsible for DNA repair. When DNA damage is detected by the protein recA, it becomes
activated and provokes the autocleavage of lexA. This in turn provokes the de-repression of the
S.O.S. genes. After DNA damage is repaired, the level of recA drops, lexA reaccumulates in the
cell, and the S.O.S genes return to their original state. Image taken from Rau (2010).

a hidden state dimension ofK = 0, where a 99.9% cutoff is used as a threshold for the z-scores
of the edges. We also apply the ABC-Net method to these data. We set the Gaussian proposal
standard deviation of the ABC-Net method to0.5 (see Rau, 2010, for more details), and we ran
the algorithm for ten independent chains of length1 × 106, with a thinning interval of 50. The
VAR(1) simulator of Equation 3 was used to generate simulated dataY ?, and the bounds of the
prior distribution on the parameter matrixΘ were set to (-2,2). A Euclidean distance function was
used to compare simulated and observed data, where the thresholdε was selected based on the 1%
quantile of distances based on 5000 randomly generated networks. Due to the small size of the
network, the maximum fan-in of each node in the graph was constrained to 2 or less (i.e., each
gene has a maximum of two regulators). For additional details on the analysis, see Rau (2010).

The results of the EBDBN and ABC-Net methods for the S.O.S. repair system are shown in
Figure 7. In this figure, blue and red solid edges represent “true positives” and “false postives”
identified using the EBDBN method, according to the previously described behavior of the S.O.S.
network. However, note that we use these terms somewhat loosely, as even for well-understood
networks such as the S.O.S. DNA repair system, the absence of a particular gene-to-gene inter-
action in the literature cannot indicate with absolute certainty that such a relationship is absent.
Gray dotted lines represent gene-to-gene interactions supported by the literature that are not iden-
tified by the EBDBN method. In Figure 7, we also include the marginal approximate posterior
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Figure 7: Results for the S.O.S DNA repair system for the EBDBN and ABC-Net methods. Blue
and red solid edges in the network represent gene-to-gene interactions identified by the EBDBN
method that are “true positives” and “false positives”, according to the known behavior of genes
in the S.O.S. network. Dotted gray lines represent gene-to-gene interactions supported by the
literature that are not identified by the EBDBN method. Blue-filled densities represent the marginal
approximate posterior distributions found through the ABC-Net method. The feedback loops on
the S.O.S. genes (uvrD, uvrY, ruvA, and polB) appear to be flexible edges, while other identified
edges exhibit greater rigidity. Image taken from Rau (2010).

distributions for each of these gene-to-gene interactions obtained by the ABC-Net method. These
approximate posterior distributions seems to fall into two categories: diffuse distributions (e.g.,
the feedback loops on uvrD, uvrY, ruvA, and polB) and peaked distributions (the remaining inter-
actions). We refer to these types of posterior distributions as flexible and rigid edges within the
graph, respectively.

By examining the results of the EBDBN and ABC-Net methods in tandem, the information
gleaned from each approach individually about the structure of the gene regulatory network can be
augmented. For example, gene-to-gene interactions identified by the EBDBN method with rigid
approximate posterior distributions from the ABC-Net method appear to be supported by fairly
substantial evidence, as those particular interactions are restricted to a smaller range of values in
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their posterior distributions. On the other hand, gene-to-gene interactions identified by the EBDBN
method that are associated with flexible approximate posterior distributions may indeed represent
false positives, as those parameters may take on a wider range of values without negatively im-
pacting the proximity of simulated and observed data in the ABC-Net method. In this way, the
distinctive results of the EBDBN and ABC-Net methods are able to yield complementary informa-
tion about specific gene-to-gene interactions within the S.O.S. DNA repair system, as well as the
overall dynamics of the full biological system.

4 Summary

Reverse engineering the structure of gene regulatory networks from longitudinal expression data is
an intrinsically difficult task, given the complexity of network topology within biological systems,
the large number of potential gene-to-gene interactions in typical networks, and the small number
of replicates and time points available in real data. In this paper, we discussed two approximate
Bayesian methods to reverse engineer regulatory networks from time-course gene expression data.
The two approaches, while not comparable, are complementary, and help illustrate the need for a
variety of network inference methods adapted for different contexts. The first proposed approach,
known as the EBDBN method, is based on an empirical Bayes estimation procedure using a linear
Gaussian state space model. In the second approach, known as the ABC-Net approach, we apply
a simulation-based Bayesian method to conduct a detailed analysis of small, well-characterized
pathways under less restrictive model assumptions.

Continuing to improve knowledge of gene regulatory networks is an important goal in agricul-
tural studies, as gene regulatory networks are implicated in the coordination of genes underlying
complex traits, including those that may be of economic value. Although the example in this paper
of the S.O.S. DNA repair system inEscherichia coli is based on a very simple model organism,
the methods illustrated in this paper could be adapted to the analysis of agriculturally relevant
networks. For example, in the model plantArabidopsis thaliana, gene regulatory networks are
known to be involved in starch metabolism during the diurnal cycle (Smith et al., 2004; Opgen-
Rhein and Strimmer, 2007), dehydration stress tolerance (Shinozaki and Yamaguchi-Shinozaki,
2006), flowering time control (Welch et al., 2003), cold acclimation (Chawade et al., 2007), and
nitrogen response affecting growth and development (Gifford et al., 2006). As time-course studies
of such networks become increasingly cost-effective, we anticipate that the reverse engineering
approaches presented in this paper will provide greater insight into the complicated interactions
occurring among genes in real biological systems. In addition, we can anticipate rapid progress
in this field as state space models can greatly benefit from recent simulation techniques such as
particle-filtering and Sequential Monte Carlo (Del Moral et al., 2010) which make more flexible
versions of these models (non-linearity, discrete states) computationally feasible (Toni and Stumpf,
2010).
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