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AFTER FURTHER REVIEW: AN UPDATE ON MODELING AND DESIGN 
STRATEGIES FOR AGRICULTURAL DOSE-RESPONSE EXPERIMENTS 

 
M.J. Frenzel, Department of Statistics, University of Nebraska, Lincoln  
W.W.  Stroup, Department of Statistics, University of Nebraska, Lincoln 
E.T. Paparozzi, Department of Agronomy and Horticulture, University of Nebraska, 

Lincoln 
 
ABSTRACT:  Research investigating dose-response relationships is common in agricultural 

science. This paper is an expansion on previous work by Guo, et al. (2006) motivated by 
plant nutrition research in horticulture. Plant response to level of nutrient applied is typically 
sigmoidal, i.e. no response at very low levels, observable response at mid-levels, point-of-
diminishing returns and plateau at high levels. Plant scientists need accurate estimates of 
these response relationships for many reasons, including determining the lower threshold 
below which plants show deficiency symptoms and the point of diminishing returns, above 
which excessive doses are economically and environmentally costly.  Guo et al. presented 
models and designs that address these requirements and a simulation study to assess and 
compare the small-sample behavior of these models and designs.  This paper expands on that 
simulation study.  In addition, a simulation study based procedure for exploring designs for 
experimental scenarios fitting this description is presented.  This simulation study approach 
utilizes simulation based fit statistics in conjunction with various lack-of-fit plots to produce 
a design robust to multiple candidate models.   

 
KEY WORDS: response surface, nonlinear regression, Central Composite Design, face centered 

cube design, Hoerl model, Gompertz model, Mitscherlich model, Logistic model 
 
1. Introduction 
 

A frequent focus of agricultural researchers is the characterization of the effect of two or 
more quantitative factors on some response.  Common examples include the effect of pesticides 
on insect control or the effect of nutrient levels on plant growth.  The latter example was the 
focus of a paper presented by Guo, Stroup, et al. in the 2006 conference proceedings. This paper 
begins by reiterating and expanding on the results presented by Guo, Stroup et al. while 
addressesing concerns and questions raised by the 2006 conference participants.  

The work of Guo, et al. focused on research scenarios characterized by three main issues: the 
response variable of interest reacts nonlinearly to change in the levels of the quantitative factors, 
interaction among the factors is certainly present, and severe restrictions exist concerning the 
amount of time and experimental material available to the researchers.  The working example 
used by Guo, et al. in the 2006 paper focused on the effect of varying levels of several elemental 
nutrients (specifically N, S, Fe, and Mn) on Poinsettia plants. 

The nonlinear effect of nutrient levels on Poinsettia plants and the interaction between 
nutrient levels is depicted in Figure 1. The plants in this figure are arranged by increasing level 
of N on the left-to-right axis and increasing level of S along the front-to-back axis.  At low levels 
of either N or S, the plants perform poorly, as indicated by the pale color of the plants.  The poor 
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performance at a low level of one of the factors occurs irrespective of the level of the other 
factor, indicating an interaction between the two factors exists.  The nonlinear pattern of 
response is evident based on the apparent diminishing returns with respect to both factors.  As 
each factor reaches an appropriate level the plants appear much darker than at low levels of 
either factor.  However, further increase in either factor does not increase the response, as plants 
exposed to medium levels of both N and S display the same color as plants exposed to high 
levels of both N and S.  Thus, the characterization of nutrient levels on Poinsettia plants is, in 
essence, a dose response problem. 

A common goal of studies addressing problems similar to the Poinsettia problem is to 
estimate the optimum dosage of the various factors, i.e. the combination of factor levels that 
produces the target response while using the minimum level of each factor possible to achieve 
this response.  Clearly, any combination of factor levels that produces a response that is below 
the target is undesirable.  In addition, excessive application of the factors beyond that required 
for the target response may be undesirable for economic or environmental reasons.  The 
traditional approach to estimation of the optimum combination of factor levels is response 
surface methodology (RSM), which is described in many well respected texts (Box, Hunter, & 
Hunter, 2005; Myers & Montgomery, 2009; Cornell & Khuri, 1996).  However multiple issues 
arise when attempting to implement RSM to solve the Poinsettia problem or a similar problem. 

A typical agricultural dose-response problem is depicted in Figure 2.  As one factor 
increases, the response increases, but this increase is limited by a low level of the other factor.  In 
addition, the response is limited; once the optimum level each of the two factors is reached, 
further increase in the level of either factor does not result in an increased response.  RSM 
methodology attempts to model a surface such as the one depicted in Figure 2 using a 2nd order 
polynomial.  In general, the 2nd order polynomial can be written as: 

 
2

0( ) i i ii i ij i j
i i i j

E y X X X Xβ β β β
<

= + + +∑ ∑ ∑ , where     (1) 

( )E y  denotes the expected value of the response, 

0β  denotes the intercept, 

iX  denotes the level of the ith quantitative factor, 

iβ  denotes the linear regression coefficient for the ith quantitative factor, 

iiβ  denotes the quadratic regression coefficient for the ith quantitative factor, 

ijβ  denotes the linear ×  linear, or 1st order, regression coefficient for the interaction between 
the  ith and jth quantitative factors 

 
When modeling response patterns such as the one depicted in Figure 2, two issues arise.  

Often interactions other than two factor 1st order interactions, i.e. linear by quadratic 
interactions, quadratic by quadratic interactions, or interactions involving more than two factors, 
exist.  The existence of these interactions in plant nutrition research specifically was established 
by Paparozzi et al. (2005).  The second issue is the inadequacy of the 2nd order terms in 
describing the dose-response pattern.  This is evidenced in the single factor case in Figure 3.  In 
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Figure 3, the true optimum dose is over estimated by the quadratic curve.  Again, this 
overestimation is undesirable as it may result economic or environmental loss. 

The inadequacy of the 2nd order polynomial is addressed by all the aforementioned texts.  
While specific implementation of RSM differs from account to account, the basic strategy is the 
same.  First, an exploratory experiment is done using some broad set of combinations of factors 
levels to find a general region of the factor space in which the optimal combination exists.  
Further experimentation in this region is then performed to narrow the set possible of factor 
level combinations even further.  This process is repeated until the region of the factor space 
being studied is small enough that modeling the response as a 2nd order polynomial is an 
acceptable approximation to the true response. 

It is in this process that standard RSM fails researchers when attempting to estimate the 
optimum factor level combination in situations similar to the Poinsettia problem.  The third 
major characteristic of problems studied by Guo, et al. was the existence of severe restrictions 
on the amount of time and experimental material available to the researchers. Often, the length 
of a single run of the experiment is very long, in the Poinsettia case corresponding to the length 
of the growing season of the plant.  Thus, estimating the optimum by repeated experimentation 
may require years of research.  For economic and academic reasons, a study such as this often 
must be completed in one to two years, restricting the number of experimental runs to one, 
perhaps two.  Therefore alternatives to standard RSM are needed. 

The goals of the study by Guo, et al. included examining the performance of alternatives to 
standard RSM.  This included evaluating the performance of models other than the 2nd order 
polynomial in addition to evaluating the performance of various incomplete factorial designs, 
deemed necessary due to the restriction of experimental material.  This study expands on 
previous study by including more models and designs in the analysis.  In addition, the 
comparison of models and designs by Guo, et al. utilized simulation based statistics for 
comparing models.  This study aims to demonstrate why simulation based fit statistics are 
necessary for comparison by also comparing models and designs using traditional fit statistics.  
All comparison is done via a simulation study.  Following the results of the study, a discussion 
section explains the results and proposes the use of simulation in selecting models and designs 
when planning an experiment displaying characteristics similar to the Poinsettia problem.  In 
summary, the goals of this study are three fold: first, to evaluate the performance of various 
designs and models when restrictions are placed on the number of experimental runs and 
experimental units within a run; second, to propose a method via simulation for the selection of 
designs and models in the  planning of a response surface oriented experiment when standard 
RSM cannot be applied; and finally, to argue the necessity of simulation based evaluation in the 
selection of designs and models.  The simulation assumes all responses are Gaussian in nature. 

 
2. Alternatives to the 2nd Order Polynomial 
 
 The inadequacy of the 2nd order polynomial is not unique to agricultural experiments.  
Standard RSM address this inadequacy by running a sequence of experiments and progressively 
restricting the design space to one in which the true response can be reasonably approximated by 
a 2nd order polynomial.  As this is not a reasonable approach to the type of research problem 
considered here, alternative models to the second order polynomial are needed.  
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 The inadequacy of the 2nd order polynomial results from its inability to effectively describe 
the diminishing returns effects of factors on the response and the effects of higher order 
interactions on the response.  One approach to modeling diminishing returns, or linear plateau, 
effects of factors on a response is the use of spline or segmented models (Anderson & Nelson, 
1975).  However, these models are not conducive to efficient design selection.  Alternatively, 
multifactor nonlinear models can be used.  Landes, et al. (2000) presented adaptations of 
Gompertz and Mitscherlich nonlinear models to fit plant nutrition data described by Macz et al. 
(1997).  In a multifactor setting, the Gompertz and Mitscherlich models, respectively, can be 
written as: 
 

( ) exp exp ...i i ij i j ijk i j k
i i j i j k

E y X X X X X Xα β γ γ γ
< < <

  
= × × − − − −  

   
∑ ∑ ∑   (2) 

and, 

( ) ...i j i j ki X X X X XX
i ij ijk

i i j i j k

E y α β γ γ γ
< < <

 
= −  

 
∏ ∏ ∏ .     (3) 

 
Here, ( ) and iE y X  are defined as in the 2nd order polynomial model.  In both models, the 
parameterα  denotes the maximum expected response. In the case of the Gompertz model, β  
denotes the log of proportion of the asymptote that ( )E y increases from Xi=0 to the values of Xi 
at which ( )E y is effectively at asymptote.  While in the case of the Mitscherlich model, β  
denotes the difference between the maximum expected response and the expected response when 
all factor levels are set to zero. Finally, in both models, , , ,...i ij ijkγ γ γ  denote the rates of increase 
associated with the ith main effects, ijth two-way interactions, ijkth three-way interactions, etc. 
While not shown explicitly in the model equation, up to n-way interactions can be included for 
n-factor factorial experiments.  Following the presentation of this study by Guo, et al. in 2006, it 
was suggested a Logistic model may also be a viable option for this modeling scenario.  In a 
multi-factor setting, the logistic model can be parameterized as follows: 
 









−−−−+

=

∑∑∑
<<<

...exp1
)(

kj
kji

iijkj
ji

iij
i

ii XXXXXX
yE

γγγβ

α   (4) 

 
where all parameter interpretations are similar to those of the Gompertz and Mitscherlich 
models. 
 While nonlinear models with asymptotic properties can capture the diminishing returns 
effects of factors on a quantitative response, the possibility of convergence issues while fitting 
these models motivates the exploration of linear model alternatives.  One such model is the 
linearized Hoerl model, suggested by Olson, et al. (2001).  For a single factor the deterministic 
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component of the Hoerl model is ( ) 2
0 1( ) expE y X X ββ β  = +    which can be linearized to 

[ ] 0 1 2ln ( ) ln( )E y X Xβ β β= + + .  In a multifactor setting, the linearized Hoerl model is: 
 
[ ] [ ]0 1 2 1 2

1 2

ln ( ) ln( ) ln( ) ln( )

ln( ) ln( ) ln( ) ...

i i i i ij i j ij i j
i i j

ijk i j k ijk i j k
i j k

E y X X X X X X

X X X X X X

β β β β β

β β
<

< <

 = + + + + 

 + + + 

∑ ∑

∑
.  (5) 

 
Here, 0β  denotes the intercept, 1 1 1, , ,....i ij ijkβ β β denote main effect, 2-way interaction, 3-way 
interaction, etc. coefficients associated with the literal levels of the factors, and 2 2 2, , ,....i ij ijkβ β β  
denote main effect, 2-way interaction, 3-way interaction, etc. coefficients associated with the log 
levels of the factors.   
 The relative fit of the Gompertz model and the Hoerl model in a single factor scenario is 
displayed in Figure 4.  The fitted curves of the Logistic and Mitscherlich models are omitted for 
clarity because in the single factor case, these two models produce curves similiar to that of the 
Gompertz model.  Both the Gompertz and Hoerl models produce a much better fit than that of 
the 2nd order polynomial.  While the single factor fit of these alternative models is promising, the 
main objective of this study is to evaluate the performance of the models in a multifactor setting.  
Figure 5, Figure 6, and Figure 7 depict the 2-factor of the 2nd order polynomial, Hoerl, and 
Gompertz model respectively, when fit to the surface depicted in Figure 2.  As in the single 
factor case, the Gompertz and Hoerl model provide better approximations of the surface than the 
2nd order polynomial. 

One major advantage of the alternative models over the 2nd order polynomial is the inclusion 
of interactions higher than 1st order.  It may be argued that augmenting a 2nd order polynomial to 
include higher order interactions may produce a similar result to that of one of the alternative 
models discussed thus far.  For example, in the three factor case, the addition of a 3-way linear 
interaction, 2-way quadratic interactions, and a 3-way quadratic interaction may produce much 
better fit than the usual 2nd order polynomial. Thus, as a final model, the simulation study that 
follows will also include a model such as this referred to as the “augmented polynomial.” 
 
3. Candidate Designs 
 
 The alternative models described in the previous section are necessary due to the restriction 
of the number of experimental runs.  Likewise, researchers often faced with severe restrictions 
on the number of experimental units in any given experimental run.  For example, consider a 
three factor experiment.  To estimate the multifactor models described in the previous section, 
Landes, et al. (2000) suggests a minimum five levels of each factor are required.  Thus, a full 
factorial experiment would require 53, or 125, experimental units.  But this many experimental 
units is often the upper limit of a plant science experiment due to limited greenhouse space.  In 
the case that less space is available, or more than three factors are to be tested, a full factorial 
experiment is not possible.  Thus, the choice of a partial factorial design is necessary.  As a 
working example, this paper explores candidate designs in the three factor, five leve, case in 
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which only 25 experimental units are available. For a more in depth discussion concerning 
design considerations, including scenarios involving more than three factors and comparisons of 
designs with respect to optimality criteria, we refer the reader to the original proceedings paper 
concerning this study (Guo, et al. 2006).  The following designs are considered.  
 All standard response surface designs are based on the 2nd order polynomial.  Of these 
designs, the Central Composite Design (CCD) is the only design that allows for five levels of 
each factor. It is unclear if the design will be robust to the use of the alternative models described 
in the previous section.  In the 3-factor setting, the design requires only 14 experimental units, 
thus 11 experimental units are available for replication.  The simulation study included three 
versions of the Central Composite Design: one in which the replicates were placed at the center 
point of the design, one in which the replicate points were placed at the corner points, and one in 
which the replicate points were placed at the axial points. 

 Olson, et al. (2001) proposed an alternative design based on the argument that fractions 
of 3N factorial designs are inadequate but can be augmented toallow for estimation of the models 
described previously. As an example for a three-factor experiment, Olson suggested a possible 
design based on the “Face Centered Cube” essentially a Central Composite Design with “face” 
points instead of axial points augmented by a 23 factorial. We will henceforth refer to this design 
as an “augmented face centered cube.” 

The augmented face centered cube design assumes five levels of each of three factors (0, 1, 
2, 3, and 4). Olson, et al. used five levels to guarantee that one would be able to estimate a 
nonlinear response surface model such as the Gompertz or Mitscherlich.  The “face centered 
cube” uses levels 0, 2, and 4 in a 23 factorial using levels 0 and 4 plus six “face points (level 2 of 
any two factors in conjunction with either level 0 or 4 of the third factor) and a center point 
(level 2 of all three factors). Embedded within the face centered cube is a 23 factorial using levels 
1 and 3. This design thus requires a total of 23 treatment combinations out of 125 possible factor 
level combinations.  For the purposes on this study, the two replicate points were placed at the 
center point of the design. 

In addition to the augmented face centered cube, Guo, et al. considered various designs that 
were either D- or U-optimal with respect to one of the alternative models described in the 
previous section.  Specifically, the original study considered D-optimal designs with respect to 
the augmented polynomial, Hoerl, and Gompertz models in addition to a U-optimal design with 
respect to the Mitscherlich model.  The inclusion of the Logistic model in the current study 
motivated the inclusion of D-optimal and U-optimal designs with respect to this model.   

Of these “alphabetically optimal” designs, only the D-optimal designs with respect to the 
augmented polynomial and Hoerl models are exact designs.  The remaining designs are 
approximately D-optimal and U-optimal.  This is due to the dependency of the remaining designs 
on the hypothesized values of the parameters of their respective nonlinear models.  Thus the 
designs are only locally optimal with respect to the parameter values used in their construction.  
Specific details concerning the construction of these designs can be found in the original 
proceedings paper or in the text by Atkinson, Donev, and Tobias (2007).  The parameter values 
used for construction of the designs were obtained by fitting each model to the surface to be used 
in the simulation study, depicted in Figure 10.  The resulting designs can be found in Table 1. 

The designs in this section can be placed into two broad categories: those requiring prior 
information about the surface to be estimated and those requiring no prior information.  The 
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approximate D-optimal designs with respect to the Gompertz and Logistic models and the U-
optimal designs with respect to the Logistic and Mitscherlich models require information 
concerning the surface via the dependency of the designs on hypothesized values for the model 
parameters.  The Central Composite Designs, augmented face centered cube design, and D-
optimal designs with respect to the augmented polynomial and Hoerl models require no prior 
information concerning the surface to be modeled.  Therefore, it is of particular interest if the use 
of the designs based on hypothesized parameter values increases the accuracy of the results of a 
study such as the one described by the simulation study. 

 
4. Simulation Study and Results 
 

A simulation study was conducted to explore two aspects of the behavior of the models 
described in section two under the designs described in section three: first, how well a each 
model/design combination reproduces a surface similar to that in Figure 2, and second, the 
convergence rate of the various nonlinear models under each candidate design.  An “ideal” 
population, or true surface, based on the situation portrayed in Figure 2 was constructed. This 
expected response of this surface is a result of the levels of three factors: X1, X2, and X3, each 
with levels 0, 1, 2, 3, and 4, where level 0 for each factor was defined to be “limiting” and level 4 
was defined to be the maximum. Figure 11 depicts the true surface.  

Under each of the ten designs described in the previous section, 1500 simulated data sets 
were generated. Simulated observations were generated by taking the response value for the true 
for each given 1 2 3X X X× ×  treatment combination and adding a deviate generated from a 
normal distribution with a mean of 0 and a variance of 3. The responses in the ideal population 
range from 5 for the limiting treatment levels to a maximum of 14, thus the variance corresponds 
roughly to a 10-20% coefficient of variation, typical for plant science studies.   

Each model was estimated using each simulated data set.  The 2nd order polynomial, 
augmented polynomial, and Hoerl models were estimated using PROC GLM (SAS, 2008). For 
the Hoerl model, the right-hand side of equation (4) was fit to directly to the response variable, Y, 
in lieu of fitting the model to log(Y). This was done based on the researchers’ experience that 
applying the right-hand side of the linearized Hoerl directly to Y produces better results (Guo, et 
al. 2006). The Gompertz, Mitscherlich and Logistic models were fit using PROC NLIN (SAS, 
2008).  

The models were evaluated using two classes of statistics.  Two traditional fit statistics, 
Aikaike’s Information Criteria (corrected) (AICC) and sums of squares for error (SSE), were 
included to describe the performance of the models as observed by a researcher attempting to 
determine the ideal model for predicting the surface.  The median AICC and SSE for each 
model/design combination can be found in Table 2.  Two simulation based fit statistics were also 
included, both calculated to compare the predicted surface of each model to the true surface.  For 
each model fit to each data set, the estimated coefficients were used to compute predicted 
responses for all 125 1 2 3X X X× ×  treatment combinations in the population. The two simulation 
based statistics calculated were the correlation between the true and predicted responses and the 
sum of squared prediction errors (SSPE) over the 125 1 2 3X X X× ×  treatment combinations. 
Because PROC NLIN is an iterative procedure, it failed to converge for some of the simulated 
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data sets when fitting the nonlinear models. As some designs were more prone to non-
convergence than others, the convergence percentage across the 1500 experiments was an 
additional criterion for the simulation study.   The median correlation, median SSPE, and 
convergence percentages for each model and design combination can be found in Table 3. 

Table 2 shows the AICC and SSE results.  Other than the 2nd order polynomial model 
yielding the highest AICC and SSE under all designs, no clear patterns for the alternative models 
emerge.  Across all designs, the Hoerl model provides the smallest SSE.  However, the Hoerl 
model requires more parameters than the nonlinear models.  Thus, the nonlinear models provide 
the smallest AICC.  Using AICC and SSE as fit criteria, the individual performances of the 
nonlinear models are virtually indistinguishable.  However, as will become clear in the next 
paragraph, AICC and SSE present a misleading picture of model/design performance. 
 Consider the results of the simulation study (Table 2) under the D-optimal Hoerl design using 
the Hoerl model and the Logistic model.  Sums of squares for error, 29.33 and 50.96 for the 
Hoerl model and Logistic model respectively, indicate the two models models fit the data at 
considerably different levels of adequacy.  Under ideal conditions, this would indicate that the 
Hoerl model predicts the true surface more accurately than the Logistic model.  However, the 
predicted surfaces for the two models (Figure 12), averaged over the 1500 simulated 
experiments, appear to predict the true surface almost equally well, with the Logistic model 
perhaps predicting somewhat more accurately.  While this may seem a minor issue, this 
discrepancy between fit statistics and the accuracy of surface prediction can take extreme forms.  
Consider the results under the Central Composite Design with replication at the center point.  
Sums of squares for error, 27.94 and 47.49 for the Hoerl model and Logistic model respectively, 
indicate the two models perform approximately the same under this design as under the D-
optimal Hoerl design.  However, average predicted surfaces under this design (Figure 13) 
indicate this is not true.  Both models produce predicted surfaces that differ considerably from 
the true surface.  In fact, the surface produced by the Hoerl model under the Central Composite 
Design does not produce a surface that even resembles the true surface.   While this poor 
prediction is not apparent when traditional fit statistics are used, it is apparent when simulation 
based statistics such as SSPE are utilized.  For example, the SSPE values under the D-optimal 
Hoerl design for the Hoerl and Logistic models respectively were approximately 197 and 148.  
Under the Central Composite Design, the poor prediction is reflected by SSPE values of 
approximately 220,000,000 for the Hoerl model and 1260 for the Logistic model. These results 
indicate model/design performance is better described by simulation based fit statistics. 

The results as summarized by SSPE, correlation, and convergence percentages are described 
in Table 3.   An analysis of these results yields several conclusions.  The performance of the 
Central Composite Designs is unacceptable.  The median SSPE values across all models are 
orders of magnitude larger than those under other designs.  The D-optimal design with respect to 
the Hoerl appears to be the most robust design. The three nonlinear models and the linearized 
Hoerl model all produce results with SSPE less than 200 and correlation between the true 
response and predicted response greater than 0.95. The convergence percentage for each 
nonlinear model is at or close to 100%. The three nonlinear models perform nearly as well with 
the augmented face centered cube as with the D-optimal Hoerl design. The augmented 
polynomial and the 2nd order polynomial are progressively worse. Under the D-optimal design 
with respect to the augmented polynomial, the augmented polynomial model’s performance is 
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indeed optimized, but the results are noticeably worse that that the Hoerl and Gompertz.  In 
addition, although the Gompertz model results in the best fit when it converges, the convergence 
rate is only 85.3%.   
 The design/model combinations with similar SSPE values can be further analyzed using 
levelplots, which can be produced using software such as the Lattice package in the software 
program R.  This type of plot, in conjunction with squared prediction error, can provide 
information concerning how a model or set of models performs in certain regions of the design 
space under a hypothesized surface.  An example is given in Figure 11. 
 In lieu of summing the squared prediction errors to form sum of squared prediction error, 
squared prediction error (SPE) can be analyzed for each of the 125 factor level combinations 
over the 1500 experiments under each design and model combination.  In the simulation study, 
the D-optimal Hoerl design appeared to be robust to model selection.  This levelplot provides 
information concerning the performance of the Logistic, Hoerl, and Gompertz models under this 
design.  The results for each model are arranged by row.  The levels of X1 and X2 increase from 
left to right, while the level of X3 increases from the bottom of the plot to the top.  The value of 
interest for each combination of X1, X2, and X3 is the median SPE over the 1500 experiments 
simulated under the D-optimal Hoerl design.  Small values of SPE, displayed by a light color 
with respect to the spectrum displayed at the right edge of the plot, indicated good fit for that 
combination of factor levels.  Likewise, dark color with respect to the spectrum, indicates poor 
fit for that combination of factor levels.  The actual design points for the D-optimal Hoerl design 
are overlayed on the plot to display in the relationship between design point selection and model 
performance of each combination of factor levels. 
 In this particular example, the large regions of light color for the Logistic and Gompertz 
models indicate the models tend to fit the surface well for the majority of the factor level 
combinations.  However, the particularly dark regions indicate the models tend to fail to 
adequately describe the hypothesized surface for these factor level combinations.  In contrast, the 
Hoerl model does not provide the best fit for the majority of factor level combinations, but does 
tends to predict all factor level combinations equally well.  In the context of researcher 
attempting to select a design and a set of candidate models for a nonlinear dose-response 
experiment, the levelplot provides the researcher with additional information concerning the 
potential performance of various candidate models that may be used to analyze data collected 
from such an experiment. 

As a final point, the designs ostensibly optimized for the nonlinear models in practice 
perform only marginally better than the D-optimal Hoerl design, and only then for their intended 
models.  The lack of results under these approximately optimal designs for nonlinear models is 
amplified by the fact that the true parameter values, which would not be available in practice, 
were used to produce the designs. Thus nothing is gained by attempting to tailor a design to a 
particular nonlinear model.  These results and their limitations are explained further in the 
discussion section. 
 
4. Discussion 
 
 The goals of this expansion of the study by Guo, et al. were three fold: first, to evaluate the 
performance of various designs and models when restrictions are placed on the time and 
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experimental material available; second, to propose a method via simulation for the selection of 
designs and models in the  planning of a response surface oriented experiment when standard 
RSM cannot be applied; and finally, to argue the necessity of simulation based evaluation in the 
selection of designs and models.     
 The results of the simulation study suggest that the nonlinear Gompertz, Logistic, and 
Mitscherlich models and the linearized form of the Hoerl model used in conjunction with a D-
optimal response surface design optimized for the Hoerl provide a good general purpose 
approach to exploratory investigation of nonlinear, diminishing return response surfaces in 
agriculture when resources are limited. While the simulation study is limited to a specific 
scenario, it is a typical scenario for many kinds of agricultural research from a variety of 
disciplines.  In any scenario where standard RSM does not appear to be applicable due to time 
and experimental material restrictions, the choice of an appropriate experimental design and 
useful models is a difficult one.  Thus, we propose the simulation study as the first step in the 
design of an experiment similar to the one described. 
 The true surface of interest is unknown to the researchers prior to the experiment.  But 
agricultural researchers can often provide sufficient information concerning the relationship 
between the factors of interest and the response variable to the consulting statistician.  Thus, the 
process of exploring designs and models via simulation should start with a “sketching out” of a 
hypothesized surface based on information provided by the agricultural researcher.  The shape of 
the hypothesized surface can be used determine candidate models and designs for the study.  
Once these models and designs have been identified, data sets can be simulated under each of the 
candidate designs using the hypothesized surface as the true response.  Finally, in a manner 
similar to the previously described simulation study, the designs and models can be analyzed by 
fitting the candidate models to each of the simulated data sets and producing simulation based fit 
statistics such as SSPE, correlation, and convergence percentage.   
 In the previously described simulation study, no one model appeared to outperform any other 
across all, or even many, of the possible designs.  And in the framework of a simulation study for 
the purpose of planning an experiment, it would be premature to select only one model as a 
candidate for estimating the true surface.  However, as in the case of the D-optimal Hoerl design 
used in the simulation study, one design may stand out as fairly robust to model selection.  That 
is, the design produces acceptable model fit across a range of possible candidate models.  If so, 
this can lead the researcher to an appropriate design for use in the experiment.  Or, at a 
minimum, this process may eliminate designs that perform poorly across many models under 
consideration.   
 The evaluation of models and designs under a hypothesized surface need not be restricted to 
statistics describing the overall fit of a model under a design.  Often, multiple research questions 
concerning the surface of interest need to be answer in the course of a single study.  As a result, 
the estimation of specific regions of the surface may be of more importance than others.  For 
example, the researchers may be interested in the response in the region of initial change with 
respect to the increasing values of the factors, in the region of some particular combination of 
factor levels, or in the region where the response begins to plateau.  While the exact region of 
interest may be unknown, it too can be hypothesized providing the consulting statistician with 
more information to include in the construction of the design.  Using the method illustrated in the 
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results section, this information can be utilized in conjunction with levelplots to determine the 
accuracy of various models in predicting a certain region of the surface of interest. 
 The original study, and this expansion of the study, utilized simulation based statistics to 
evaluate the performance of various models and designs.  The third goal of this study is to 
motivate the use of these simulation based statistics in lieu of traditional fit statistics by 
demonstrating the inadequacy of traditional fit statistics when utilizing simulation to design a 
dose response experiment.  As the examples in the results section illustrated, traditional fit 
statistics such as SSE and AICC can provide misleading information when determining useful 
models and designs.  Hence, simulation based statistics such as SSPE, correlation, and 
convergence percentage are necessary to provide an accurate description of model performance.  
 The final conclusions of this study are two-fold.  First, in experiments involving multiple 
factors with diminishing returns or dose-response relationships with the response, traditional 
response surface methodology is not applicable and alternative methods are needed.  Traditional 
designs and models, such as the Central Composite Design and the 2nd order polynomial, cannot 
adequately describe the response when time and experimental material are limited.  The results 
of this simulation study indicate a design based on the linearized Hoerl model may be useful in 
this context and the use of the Hoerl model or a nonlinear model may applicable.  Second, 
simulating the experiment being planned under a hypothesized surface constructed using 
information provided the agricultural scientists can be a very useful process in determining what 
designs and models may be applicable to the situation at hand.  Simple statistics and plots, such 
as correlation, squared prediction error, and the levelplot, can be used to inform the researchers 
of the performance of models and designs while planning an experiment under time and material 
restrictions. 
 
5. Summary 
 

This research expanded on the work by Guo, et al. that investigated design and analysis of 
nonlinear dose response experiments.  Specifically these experiments must be designed under 
severe constraints of time and experimental material.  In addition, the response is measure with 
respect to several experimental factors, the effect of each being limiting in nature.  Traditional 
response surface methodology is inadequate when designing an experiment under these 
conditions.  Guo et al. concluded a design based on a candidate set of 5 levels per factor, 
constructed to be D-optimum with respect to a linearized Hoerl model, is efficient when model 
estimates are produced using a Gompertz model.  The expansion of this study to include both 
Central Composite Designs and a Logistic model resulted in similar findings.  While the results 
of one simulation study cannot be universally accepted for all dose-response scenarios, a 
reasonably efficient design for any dose-response scenario can be produced using a simulation 
study, assuming some information concerning the surface of interest is available.          
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Figure 1. Visual Response of Poinsettia to Levels of N and S Applied  

 
 
Figure 2. Plot of Poinsettia Dose-Response Profile 
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Figure 3. Quadratic Approximation of Diminishing Returns Response 

 
 
Figure 4. Gompertz and Hoerl Approximations of Diminishing Returns Response 
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Figure 5. Two-factor 2nd Order Polynomial fit of Figure 2 Dose-Response Surface 

 
 
 

Figure 6. Two-factor Hoerl fit of Figure 2 Dose-Response Surface 

 
 

Figure 7. Two-factor Gompertz fit of Figure 2 Dose-Response Surface 
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Figure 8. Two-factor augmented Polynomial fit of Figure 2 Dose-Response Surface 

 
 
Figure 9. Olson’s “CELEPSO” Three-Factor Response Surface Design 
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Figure 10. “Ideal” Population for Simulation Study – Three Factor “Diminishing Returns” 
Nonlinear Response Surface 

 

Figure 11. Squared Prediciton Error “Levelplot” under the D-optimal Hoerl Design 
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Figure 12. Predicted Surfaces under the D-optimal Hoerl Design 

 
 
Figure 13. Predicted Surfaces under the Central Composite Design (replication at center point)  
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Table 1. Designs generated as optimal with respect to models under study. 
 

D-optimal 2nd 
Order Poly. 

 D-optimal     
Hoerl 

 D-optimal 
Gompertz 

 D-optimal 
Logistic 

 U-optimal 
Logistic 

 U-optimal 
Mitscherlich 

     
X1 X2 X3 

 
X1 X2 X3 

 
X1 X2 X3 

 
X1 X2 X3 

 
X1 X2 X3 

 
X1 X2 X3 
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0 0 0 
 

0 0 0 
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0 0 4 
 

0 0 4 
0 0 4 

 
0 0 0 

 
0 0 0 
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0 1 1 
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0 2 2 
 

0 0 2 
 

0 0 0 
 

0 0 0 
 

0 2 2 
 

0 2 2 
0 2 4 

 
0 0 4 

 
0 0 4 

 
0 0 4 

 
0 3 3 

 
0 3 3 

0 4 0 
 

0 2 0 
 

0 0 4 
 

0 0 4 
 

0 3 4 
 

0 3 4 
0 4 2 

 
0 2 4 

 
0 4 0 

 
0 0 4 

 
0 4 0 

 
0 4 0 

0 4 4 
 

0 4 0 
 

0 4 0 
 

0 4 0 
 

0 4 4 
 

0 4 4 
2 0 0 

 
0 4 1 

 
0 4 0 

 
0 4 0 

 
1 1 3 

 
1 0 2 

2 0 2 
 

0 4 4 
 

0 4 4 
 

0 4 4 
 

1 3 1 
 

1 1 3 
2 0 4 

 
1 0 4 

 
0 4 4 

 
0 4 4 

 
1 3 2 

 
1 2 0 

2 2 0 
 

1 1 1 
 

0 4 4 
 

0 4 4 
 

2 0 2 
 

1 3 1 
2 2 2 

 
1 4 1 

 
1 1 3 

 
1 1 3 

 
2 1 0 

 
2 0 2 

2 2 2 
 

1 4 4 
 

1 3 1 
 

1 3 1 
 

2 2 0 
 

2 2 0 
2 2 4 

 
2 0 0 

 
3 1 1 

 
2 4 2 

 
2 2 2 

 
2 2 2 

2 4 2 
 

2 4 0 
 

3 3 3 
 

3 3 3 
 

3 0 3 
 

3 0 2 
2 4 4 

 
4 0 0 

 
4 0 0 

 
4 0 0 

 
3 0 4 

 
3 0 3 

4 0 0 
 

4 0 2 
 

4 0 0 
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3 0 4 
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4 0 4 

 
4 0 4 

 
4 0 4 

 
3 1 2 

 
3 1 1 

4 0 4 
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4 0 4 
 

4 0 4 
 

3 2 2 
 

3 3 0 
4 2 0 

 
4 1 1 

 
4 0 4 

 
4 0 4 

 
3 3 0 

 
4 0 0 

4 2 2 
 

4 1 4 
 

4 4 0 
 

4 1 1 
 

3 3 3 
 

4 0 4 
4 2 4 

 
4 4 0 

 
4 4 0 

 
4 4 0 

 
3 4 0 

 
4 2 2 

4 4 0 
 

4 4 1 
 

4 4 0 
 

4 4 0 
 

4 0 0 
 

4 3 0 
4 4 2 

 
4 4 4 

 
4 4 4 

 
4 4 0 

 
4 0 4 

 
4 4 0 

4 4 4 
 

4 4 4 
 

4 4 4 
 

4 4 4 
 

4 4 0 
 

4 4 4 
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Table 2. Small sample performance using traditional fit statistics     
   Linear Models  Nonlinear Models 

Design Criteria  2nd Order 
Polynomial 

Augmented 
Polynomial Hoerl  Gompertz Logistic Mitscherlich 

Augmented FBC SSE  108.78 50.40 29.62  52.14 51.86 50.44 
AICC   79.07 138.95 104.21   54.09 53.96 53.26 

Central Composite 
Design 1 

SSE   72.74 27.94 27.94   46.32 47.49 42.84 
AICC   69.01 124.19 102.77   51.13 51.75 49.17 

Central Composite 
Design 2 

SSE   65.66 27.95 27.95   48.47 49.95 43.96 
AICC   66.44 124.21 102.78   52.26 53.01 49.81 

Central Composite 
Design 3 

SSE   72.34 27.94 27.89   48.26 48.70 52.38 
AICC   68.87 124.21 102.73   52.15 43.80 49.71 

D-optimal Gompertz SSE   75.15 36.49 36.45   50.59 48.19 46.35 
AICC   69.82 130.88 109.42   53.34 52.12 51.15 

D-optimal Hoerl SSE   101.00 38.10 29.33   50.10 50.96 49.64 
AICC   77.21 131.96 103.99   53.09 53.51 52.86 

D-optimal Logistic SSE   64.24 34.23 34.16   53.33 51.99 56.45 
AICC   65.90 129.28 107.81   54.65 54.02 56.07 

D-optimal 2nd Order 
Polynomial 

SSE   66.18 27.84 27.84   45.07 45.69 44.93 
AICC   66.64 124.12 102.69   50.44 50.78 50.37 

U-optimal Logistic SSE   128.54 42.14 29.08   51.29 51.25 50.84 
AICC   83.24 134.47 103.77   53.68 53.66 53.46 

U-optimal 
Mitscherlich 

SSE   101.07 37.17 28.92   49.98 50.68 49.57 
AICC   77.23 131.35 103.65   53.03 53.38 52.83 
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Table 3. Small sample performance using simulation based fit statistics     
   Linear Models  Nonlinear Models 

Design Criteria  2nd Order 
Polynomial 

Augmented 
Polynomial Hoerl  Gompertz Logistic Mitscherlich 

Augmented FBC 
SSPE  809.71 809.71 427.72   165.92 163.95 146.54 
Corr  0.73 0.73 0.88  0.95 0.95 0.96 
Conv. %           100.0% 100.0% 100.0% 

Central 
Composite 
Design 1 

SSPE   1259.28 25179826.14 221399102.77   1270.67 1260.26 614539.78 
Corr  0.70 -0.09 0.01  0.74 0.73 0.02 
Conv. %           69.4% 97.0% 12.8% 

Central 
Composite 
Design 2 

SSPE   1548.58 26697720.93 249107665.58   1263.78 1263.65 1701690.37 
Corr  0.68 -0.08 0.02  0.73 0.71 0.02 
Conv. %           64.1% 95.0% 13.6% 

Central 
Composite 
Design 3 

SSPE   1622.41 27250732.08 277058178.98   1348.23 1281.09 1070243.38 
Corr  0.72 -0.09 0.02  0.72 0.72 0.02 
Conv. %           73.5% 96.0% 13.6% 

D-optimal 
Gompertz 

SSPE   1428.33 1735.15 3613.00   145.50 152.88 1240.67 
Corr  0.58 0.52 0.52  0.95 0.96 0.79 
Conv. %           99.9% 99.7% 78.1% 

D-optimal Hoerl 
SSPE   545.87 492.62 196.83   146.52 148.07 142.22 
Corr  0.83 0.89 0.94  0.95 0.95 0.96 
Conv. %           100.0% 100.0% 100.0% 

D-optimal 
Logistic 

SSPE   1276.96 1891.57 3919.20   127.59 134.37 934.52 
Corr  0.59 0.47 0.47  0.96 0.96 0.80 
Conv. %           96.6% 93.7% 75.7% 

D-optimal 2nd 
Order Polynomial 

SSPE   478.15 382.31 300.63   162.40 179.43 344.69 
Corr  0.86 0.89 0.90  0.95 0.95 0.90 
Conv. %           100.0% 98.4% 71.9% 

U-optimal 
Mitscherlich 

SSPE   767.32 1243.03 3013.63   165.22 171.06 160.87 
Corr  0.81 0.86 0.46  0.95 0.95 0.95 
Conv. %           99.1% 97.8% 97.7% 

U-optimal 
Logistic 

SSPE   842.24 7091.75 3053.06   168.12 173.53 169.63 
Corr  0.75 0.27 0.48  0.95 0.95 0.34 
Conv. %           98.7% 96.5% 94.9% 
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