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ABSTRACT: Quantitative trait loci (QTL) mapping is a popular statistical method that is often
used in agricultural applications to identify genomic regions associated with phenotypic traits of
interest. In its most common form, a QTL analysis tests one phenotypic trait at a time using a
variety of research hypotheses that depend on the application. When multiple traits are available,
there are considerable benefits to analyzing subsets of biologically related traits in a multiple-
trait QTL mapping framework. Determining the most informative subset(s) of traits is the critical
challenge that we address in this work. We present our approach, as well as simulations that
demonstrate the performance. We also discuss an application of our approach as applied to an
Arabidopsis thaliana data set.

Keywords: quantitative trait loci (QTL), sparse principal component analysis (sparse PCA), vari-
able selection, ionomic phenotype mapping

1 Introduction

It is well understood that complex traits are rarely associated with a single gene. Instead, complex
traits (e.g., yield, disease resistance, etc.) are often associated with multiple genes whose combi-
nation lends itself to the manifestation of the trait. Finding genetic determinants of these complex
traits remains a fundamental challenge for the scientific community. A powerful approach for iden-
tifying regions of the genome that are associated with these traits can be achieved via quantitative
trait locus (QTL) mapping, a statistical procedure that searches for associations between pheno-
types (traits) and genotypes (genetic markers) in experimental populations. A number of different
QTL mapping methods have been developed over the years. Simple methods such as single marker
analysis (LUO and KEARSEY, 1989) independently test each trait and each genetic marker for a
statistically significant association using simple linear regression. Interval mapping (IM: LAN-
DER and BOTSTEIN, 1989; HALEY and KNOTT, 1992; JANSEN, 1993, 1994) takes advantage of
additional information from a genetic map to locate QTL relative to an interval defined by two
genetic markers. Composite interval mapping (CIM: ZENG, 1993, 1994) extends IM by including
selected genetic markers as cofactors in the model to remove variation from other QTL outside
the testing region. Some further advances have been made by accounting for the possibility of
multiple QTL associated with one trait; these methods include multiple-interval-mapping (MIM:
KAO et al., 1999) and multiple-QTL-models (MQM: JANSEN, 1993, 1994).
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While single marker analysis, IM, and CIM are all powerful methods for detecting and locating
QTL, they are limited to the analysis of independent traits, even though it is well known that traits
are often not independent. When multiple (non-independent) traits are analyzed jointly in multiple-
trait QTL mapping procedures (JIANG and ZENG, 1995; KOROL et al., 1995, 1998; HENSHALL

and GODDARD, 1999; KNOTT and HALEY, 2000; HACKETT et al., 2001; XU et al., 2005), the
power of QTL identification increases, as does the number of biologically interesting hypothesis
tests that can be evaluated. Two notable tests that can be performed using joint analysis are tests for
genotype-environment interactions, and tests for co-localization of QTL when compared to closely
linked QTL for two or more traits.

While conducting a (joint) QTL mapping analysis on multiple traits is useful in developing a
more complete and well-rounded understanding of the genetic processes underlying the traits as a
whole, simply analyzing all traits together is not recommended, as the interpretation of the results is
difficult, and the model often becomes over parameterized. In fact, the limiting factor in performing
these types of joint analyses is the lack of direction on which traits should be analyzed together.
Certainly, it is possible to rely on prior biological knowledge about related traits as the primary
method for selecting the traits, but often this information is not available. We are motivated by
this last scenario in which a statistical procedure is needed for selecting groups of traits having
non-independent relationships among themselves.

Several different approaches can be used to define and select a desired group of traits to take
forward into a joint QTL analysis. One such approach is to jointly analyze traits that have similar
QTL results from their single trait analyses. Unfortunately, doing so has notable drawbacks. First,
since the traits were selected based on similar QTL results, the corresponding test statistics from
the joint analysis may be inflated. To overcome this, a large multiple testing correction must be
applied to accommodate the traits being selected from the set of all possible combinations of traits.
Second, since several possible definitions can be proposed to assess whether or not a set of traits are
similar in their QTL results, variants of these definitions may result in different sets of traits being
selected. Third, when traits are selected based on their QTL results alone, minor QTL results may
be missed. That is, if two or more traits have only small effect QTL in the same location, but these
QTL are not statistically significant based on single trait mapping, the traits would not be selected
for joint mapping. Therefore, the opportunity to find small effect QTL via joint mapping would be
lost. Finally, while one can imagine testing all possible combinations of trait subsets, exhaustive
testing can be computationally prohibitive when the number of traits under consideration is large.
Ignoring the empty set and the sets consisting of only one trait, there are 2p − p − 1 possible
combinations of traits to consider, where p is the number of traits measured in an experiment.

Since selecting traits based upon their single trait results has many drawbacks, we instead consider
the correlation structure of the trait data. A high correlation among groups of traits does not neces-
sarily imply that they share common QTL. It does suggest, however, the possibility that the traits
are biologically related in some way, and such non-independent traits may be well suited for joint
analysis in multiple-trait QTL mapping procedures. In recent years, a number of sparse principal
component analysis (sparse PCA) procedures have been developed by different research groups
(ZOU et al., 2006; SHEN and HUANG, 2008; WITTEN et al., 2009; JOURNEE et al., 2010) with the
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goal of finding linear combinations of variables that explain the maximum amount of variability in
the data, while restricting the number of variables in the linear combination to be relatively small.
In the context of QTL mapping, sparse PCA provides two opportunities for studying genetic deter-
minants of the complex (non-independent) relationships between traits. First, sparse PCA selects
traits (i.e., the traits receiving non-zero weight in the linear combination) that are related in some
way with one another. These traits can then be analyzed in a multiple-trait QTL mapping frame-
work to test if the traits are associated with one common QTL, or multiple linked QTL. Second, the
linear combination of the selected traits provides an estimate of the unobservable latent variable
associated with the co-variation in the trait data. This estimated latent variable can be considered
as a new trait which can then be analyzed in single trait QTL mapping to identify genomic regions
associated with the co-variation in the selected traits.

The purpose of this paper is to present a novel statistical approach for selecting groups of corre-
lated traits for QTL analysis. Our focus will be on the sparse PCA methodology, rather than on
QTL mapping analysis itself. This said, we will rely on single trait IM as the eventual QTL map-
ping methodology since it has the advantage of allowing straightforward comparisons between the
results of individual trait mapping and those of the approach being presented.

2 Methods

2.1 Experimental Designs for QTL Mapping

QTL mapping studies can be conducted for a variety of experimental breeding designs. Common
studies include backcross (BC), F2 and recombinant inbred line (RIL) populations (see Figure 1).
These designs start with two homozygous parental lines differing in a set of genetic markers, and
typically differing in the quantitative trait(s) of interest. The parental lines are crossed and give rise
to an F1 generation. A backcross (BC) individual is obtained by mating an F1 individual with one
of the parental lines. An F2 individual is obtained by self mating an F1 individual. A RIL individ-
ual is obtained by self mating an F2 individual, and then repeatedly self mating each subsequent
offspring until approximately the F8 generation, at which point almost all heterozygosity has been
eliminated, resulting in a nearly homozygous individual. RIL populations have several advantages
for QTL mapping: an increased number of recombination events, giving rise to more precise QTL
localization; a nearly homozygous population eliminates dominance and focuses on only additive
QTL effects; and since the RIL population is homozygous at nearly all loci, individuals can be
self mated to produce genetically identical individuals, allowing replicates to be grown within an
experiment, as well as allowing different laboratories to study the same population.
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Figure 1: Breeding design for a simple diploid organism with one chromosome. The blue (striped) and red (solid)
boxes represent the alleles at different genetic markers from Parent 1 and 2, respectively. Backcross (BC), F1, F2 and
recombinant inbred line (RIL) populations are shown.

2.2 Sparse Principal Component Analysis

Principal component analysis (PCA: PEARSON, 1901; HOTELLING, 1933a,b; JOLLIFFE, 2002) is
a popular statistical method for reducing the dimensionality of multivariate data by finding lin-
ear combinations of the observed variables (in this application, traits) that explain the maximum
amount of variability in the data. Provided that the traits are not all uncorrelated (i.e., independent),
PCA typically summarizes a large amount of the overall variability in the data using relatively few
principal components (PCs). Let X denote the n×p data matrix consisting of p traits measured on
n individuals, where all traits (columns) are standardized to have zero means and unit variances.
Let V denote the p×K orthonormal matrix whose K columns [V1, · · · , VK ] contain the loadings
(coefficients) for the linear combinations of the p traits. PCA seeks to maximize the criterion

arg max
V

Var (XV ) = arg max
V

V TXTXV

where V TV = IK×K and Var (XV1) ≥ · · · ≥ Var (XVK) .
(1)

The matrix V in equation (1) is typically found by eigenvalue-eigenvector decomposition ofXTX ,
however this is an ill-conditioned problem when the number of traits (p) is larger than the number
of individuals (n). To address this challenge, singular value decomposition (SVD) can be used to
sequentially find the column vectors [V1, · · · , VK ] of V . The SVD of X can be written as

X = UDV T = U1d1,1V
T
1 + · · ·+ UKdK,KV

T
K

where V TV = IK×K , UTU = IK×K and d1,1 ≥ · · · ≥ dK,K

(2)
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where X and V are as before, U is an n×K orthonormal matrix whose columns [U1, · · · , UK ] are
the standardized PC scores having zero means and unit variances, andD is a diagonal matrix whose
elements di,i are the standard deviation of the ith PC. The ith PC of the data matrix X is estimated
by XVi = Uidi,i. The leading PC of X is obtained by finding the best rank one approximation of
X by minimizing the criterion

arg min
U1,d1,1,V1

∥∥X − U1d1,1V
T
1

∥∥2

F
= arg min

V1

∥∥X −XV1V
T
1

∥∥2

F
(3)

where the squared Frobenius norm ‖ · ‖2F is the sum of the squared elements of a matrix. Additional
loading vectors Vi for i > 1 are obtained by finding the best rank one approximation of the residual
matrix after the previous i − 1 PCs have been removed. For example, Vi is found by performing
SVD on X − U1d1,1V

T
1 − · · · − Ui−1di−1,i−1V

T
i−1.

In the context of multiple-trait QTL mapping, LAN et al. (2003) and others have proposed reducing
the dimensionality of the trait data by performing PCA and then analyzing each of the PCs using
single trait QTL mapping. Here the PCs represent the unobserved latent variables associated with
the co-variation in the traits, which may or may not be associated with QTL. One notable drawback
of this procedure is that the results are often difficult to interpret since the linear combinations in
PCA typically include all traits. To address this issue, we consider a variant of PCA called sparse
PCA (ZOU et al., 2006; SHEN and HUANG, 2008; WITTEN et al., 2009; JOURNEE et al., 2010)
which finds linear combinations that are comprised of a small number of important traits. The
sparse PCA criterion can be formulated using a number of different penalties on the loading vector
Vi, including the elastic net penalty (ZOU and HASTIE, 2005) and the lasso penalty (TIBSHIRANI,
1996). Here we use the sparse PCA via regularized SVD with the lasso penalty (sPCA-rSVD-soft)
criterion from SHEN and HUANG (2008). This criterion uses the rescaled singular vectors Ṽ1 and
Ũ1 where the right singular vector Ṽ1 is free of any scale constraint while the left singular vector is
constrained to have ‖Ũ1‖2 = 1 (where ‖Ṽ1‖2 =

∑
Ṽ1

2
). The sPCA-rSVD-soft criterion minimizes

arg min
V1

∥∥∥X − Ũ1Ṽ1

T
∥∥∥2

F
+ λ1‖Ṽ1‖1 (4)

where ‖Ṽ1‖1 =
∑
|Ṽ1|. After obtaining Ṽ1, the loading vector for sparse PCA is given by

V1 = Ṽ1/‖Ṽ1‖2. Additional details on the algorithms used in the sPCA-rSVD-soft procedure
are included in SHEN and HUANG (2008). The L1 (lasso) penalty on V1 results in the smaller
magnitude loadings in V1 (corresponding to traits that contribute little to the linear combination)
being forced to zero, while keeping the larger (presumably more important) magnitude loadings as
non-zero. Sparse PCA selects groups of correlated traits (the traits having non-zero weight in V1)
that are hypothesized to be associated with an unobserved latent variable, which is estimated by
XV1. When the penalty term λ1 is large, sparse PCA retains only a small number of non-zero ele-
ments in V1; when λ1 = 0, sparse PCA reduces to PCA. SHEN and HUANG (2008) recommend that
the degree of sparsity (number of zero loadings in V1) be used as the tuning parameter rather than

271

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2010/proceedings/16



specifying the value of λ1. Separate degrees of sparsity can be specified for each estimated PC,
meaning the number of selected traits in the first PC does not necessarily equal the number in the
second PC, and so on. In this publication, our interest is restricted to only the first PC (extensions
will follow in later work).

2.3 Estimation of the Sparsity Parameter λ1

A k-fold cross-validation (CV: MOSTELLER and WALLACE, 1963; STONE, 1974; WOLD, 1978)
procedure is used to estimate the appropriate degree of sparsity for sparse PCA. More specifically,
the rows (individuals) ofX are partitioned into k equally sized groups, where k−1 groups are used
as the training setX(train) and the remaining group is used as the testing setX(test). The columns of
X(train) and X(test) are independently standardized such that each has zero mean and unit variance.
The loading vector V1(train) is found by maximizing the sparse PCA criterion (4) on the training
data X(train) for all degrees of sparsity from 0 (PCA) to p − 2 (only two non-zero loadings in
the linear combination). The variance of the linear combination of traits in the CV testing data
is evaluated by Var

(
X(test)V1(train)

)
. The CV procedure is repeated k times, so that each of the

k partitions are used as the testing set exactly once. The degree of sparsity that maximizes the
variance of the linear combination of traits in the testing data for the mean of the k CVs is chosen
as the degree of sparsity to be used in sparse PCA on the full data.

Performing k-fold CV can become computationally expensive when the number of individuals in
the sample (n), number of folds (k), or the number of traits (p) is large. Computational complexity
can be reduced by performing only one CV sample, however, the degree of sparsity estimate will
generally be less precise. If computation time is not a major concern, the k-fold CV procedure
can be independently repeated to obtain additional CV samples, thereby allowing more accurate
estimation of the appropriate degree of sparsity. Alternatively, the k-fold CV procedure can be
skipped entirely when prior biological knowledge is available on the appropriate degree of sparsity.

2.4 Mapping the Estimated Latent Variable

As previously stated, the groups of correlated traits selected by sparse PCA may be well suited
for analysis in a multiple-trait QTL mapping framework. Additionally, sparse PCA provides at
least one more opportunity to study the genetic determinants of the complex relationships between
traits. The PC scores XV1, · · · , XVK from sparse PCA estimate the unobserved latent variables in
the data which can be analyzed in single trait QTL mapping to identify genomic regions associated
with the co-variation in the selected traits. While this is similar to the PCA approach used in LAN

et al. (2003), the interpretation of the results will be less difficult when sparse PCA is used since
the PCs are comprised of a small number of traits rather than all traits.
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3 Results

3.1 Simulations

A simulation study was conducted to assess the performance of sparse PCA with respect to se-
lecting groups of correlated traits and identifying QTL for the estimated latent variable associated
with the selected traits. A RIL population was employed for this simulation. We assumed 5
chromosomes of length 100 centimorgans (cM) with marker spacing of 10cM. A single QTL was
simulated at 50cM from the left end of chromosome 1 (see Figure 2). A total of 100 traits were
simulated, of which 10 traits (X1 to X10) were associated with the QTL (additive effect of an allele
substitution equal to 0.50) while the remaining 90 traits (X11 to X100) were not associated with the
QTL (additive effect of an allele substitution equal to 0).

In addition to major QTL, additional variability in trait values commonly arise from other small
effect QTL, environmental effects, gene-by-environment interactions, and measurement errors. For
these simulations, the variability induced by these sources was simulated as independent identically
distributed normal random variables with a mean of zero and a variance of σ2

x. The performance
of sparse PCA was evaluated under 15 different simulations settings. The variance term σ2

x was
simulated under the five settings of 0.375, 0.5833, 1.00, 1.4167 and 2.25, corresponding to 40%,
30%, 20%, 15% and 10% heritability for the traits associated with the QTL (X1 to X10) and 0%
heritability for the traits that are not associated with the QTL (X11 to X100). The size of the RIL
population was simulated under the three settings of 100, 200, and 300 individuals. Each setting
was simulated 1000 times. The appropriate degree of sparsity was estimated independently for
each simulation using 5-fold CV. All possible degrees of sparsity from 0 (PCA) to 98 (only two
non-zero loadings in sparse PCA) were considered. The degree of sparsity which maximized the
variance of the linear combination of traits in the 5-fold CV testing data was then used in sparse
PCA on the complete set of RILs.

 
 
 
 
. 

. 
 
 
 
 

    Chr 1               Chr 2                Chr 3               Chr 4              Chr 5 

  X1  X2 …  X9  X10                       X11         X12         …     X99,         X100 

Latent  
Var 1 

~N(0,σx
2) 

… … 

Traits without QTLs 
or correlation structure 

~N(0,σx
2) 

Figure 2: Simulation setting consisting of 100 traits (X1 to X100) measured on a diploid RIL population with
5 chromosomes. One QTL was simulated in the center of chromosome 1 (represented with a red line) which was
associated with the traits X1 to X10. Random variation in the trait values was simulated from independent normal
distributions with a mean of zero and a variance of σ2

x.
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The trait selection performance of sparse PCA is presented in Figure 3 and the QTL mapping
performance is presented in Figure 4. The results from these simulations suggest that the trait
selection power is highest when the number of individuals in the RIL population is large and the
variance of the added noise is small (i.e., the heritability is large). These simulations also demon-
strate a notable increase in the QTL detection power and improved localization of the QTL when
the estimated latent variable from either PCA or sparse PCA is used, compared to mapping each
of the traits X1 to X10 individually. In all 15 simulation settings, the estimated latent variable from
sparse PCA had more significant results and more accurate estimates of the QTL location than the
estimated latent variable from PCA. This suggests that in addition to improving the interpretability
of the results, sparse PCA provides better estimates of the underlying latent variable in the data.
This is consistent with the motivation for our interest in sparse PCA, which seeks to create lin-
ear combinations consisting of only the traits that are truly associated with a common source of
co-variation, unlike PCA which includes all traits in the linear combination.

More complex simulation studies were also considered but are not presented here. These simu-
lations included multiple QTL, multiple latent variables, non-disjoint groups of traits, additional
sources of variation influencing the latent variable structures, varying numbers of traits in each
group and varying total numbers of traits. As a general statement, sparse PCA is able to iden-
tify multiple disjoint latent variable structures, but has difficulty separating overlapping structures
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Figure 3: Sparse PCA performance by trait heritability and population size (number of RILs) is presented based
on 1000 simulations. (a) The vertical axis represents the group identification power of sparse PCA, which is defined
as the proportion of the 10 truly correlated traits X1 to X10 that were correctly identified as belonging to the group
of correlated traits (i.e., true positives). These simulations show that the group identification power of sparse PCA
increases as the number of RILs and the trait heritability increase. (b) The vertical axis represents the false positive
rate of sparse PCA, which is defined as the proportion of the 90 truly uncorrelated traits X11 to X100 that were
incorrectly identified as belonging to the group of correlated traits (i.e., false positives). These simulations show that
the false positive rate of sparse PCA decreases as the number of RILs and the trait heritability increase.
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where traits are associated with multiple latent variables, or where latent variables are not indepen-
dent due to sharing identical or closely linked QTL. Simulating additional sources of variation (not
associated with the major QTL) that cause traits within a group to be more correlated, improves
the group identification accuracy of sparse PCA, however, this also reduces the QTL mapping per-
formance, as this introduces additional variability to the traits. The variable selection and QTL
mapping performance of sparse PCA typically improve as the number of traits associated with the
QTL increases.

All simulations, sparse PCA analyses, and QTL mapping analyses were performed using the R
programming environment (R DEVELOPMENT CORE TEAM, 2010).

Mean Likelihood Ratio Test Statistic
at Estimated QTL Location from Interval Mapping
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Figure 4: 1000 simulations were performed for each of the 5 heritability settings (horizontal axis) and 3 population
sizes (depth axis). Single trait IM was performed separately on each of the individual traits X1 to X10 (red) associated
with the QTL on chromosome one, as well as the estimated latent variable from PCA (green) and sparse PCA (blue).
All IM results with significant QTL on chromosome 1 were included in this figure. (a) The mean likelihood ratio (LR)
test statistic at the peak QTL location is presented on the vertical axis. In all 15 simulation settings the estimated latent
variable from sparse PCA had the highest mean LR test statistic, the estimated latent variable from PCA had the second
highest mean LR test statistic, and the results from analyzing traits X1 to X10 independently had the smallest mean
LR test statistic. (b) The mean absolute distance in morgans from the estimated to the true QTL location is presented
on the vertical axis. In all 15 simulation settings the mean location estimate from the estimated latent variable in sparse
PCA was the most accurate, the mean location estimate from the estimated latent variable in PCA was the second most
accurate, and the mean location estimate from analyzing traits X1 to X10 independently was the least accurate.
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3.2 Real Data Analysis

The “Ionome” is the elemental composition of an organism, tissue or cell. Understanding the ge-
netic basis that regulates the abundance of elements in individuals is important for understanding
several biological processes (BAXTER et al., 2007; GHANDILYAN et al., 2009). We focus on an
ionomic QTL mapping experiment (BAXTER et al., 2007; BUESCHER et al., 2010) based on a
population of 411 Arabidopsis thaliana RILs from a cross between two distant ecotypes, Bay-0
and Shahdara (LOUDET et al., 2002). Two biological replicates of each RIL were grown, as well
as several replicates of the Bay-0 and Shahdara parental lines. Ionomic measurements from 19 el-
emental isotopes (Li7, B11, Na23, Mg25, P31, S34, K39, Ca43, Mn55, Fe57, Co59, Ni60, Cu65,
Zn66, As75, Se82, Rb85, Mo98, Cd114) were measured on all viable plants. Plants were grown
in trays consisting of approximately 70 plants, where the temperature, humidity, light, water and
soil were controlled to be as uniform as possible across trays. A total of 15 growing trays were
used, each of which contained approximately 7 Bay-0 and 8 Shahdara parental lines, along with 55
different RILs. To remove effects associated with differences in growing conditions across trays,
the median trait value from each parental line was used to normalize the RIL data in each tray. Cer-
tain ionomic trait measurements were prone to occasional outliers due to machine spikes from the
inductively coupled plasma mass spectroscopy (ICP-MS) technology, and therefore outliers were
removed prior to tray normalization. After normalization, the mean of the biological replicates was
taken as the observation for each RIL.

The genotypic data used for QTL mapping consisted of 38 microsatellite markers from LOUDET

et al. (2002). The genetic map was estimated using QTL Cartographer software (BASTEN et al.,
2005, version 1.17). IM was performed on all 19 ionomic traits separately using Zmapqtl (BASTEN

et al., 2005, version 1.17) with model 3 (i.e., IM) and a walking speed of 2cM. The significance
threshold for the likelihood ratio test statistic in IM was estimated by performing 1000 permuta-
tions for each trait (CHURCHILL and DOERGE, 1994) at the α = 0.05 level of significance.

From the single trait IM results (Figure 5(a)), it is evident that several ionomic traits share similar
QTL patterns, thus suggesting the possibility of a common latent variable structure influencing cer-
tain traits. Inspection of the correlation matrix further suggests that several of these traits may be
biologically related due to the number of large correlations. The sparse PCA procedure was con-
ducted using the R programming environment (R DEVELOPMENT CORE TEAM, 2010) to identify
groups of correlated traits. A 5-fold CV sample was taken to estimate the appropriate degree of
sparsity for these data. Sparse PCA was then performed on the complete set of individuals with the
selected value for the degree of sparsity. Seven ionomic traits were selected as being correlated.
The locations of significant QTL from single trait IM on these seven traits are shown in Figure
5(b), along with the locations of significant QTL for the estimated latent variable.

Biologically validating this grouping of seven ionomic traits selected by sparse PCA is difficult
since the complex interactions among traits are not well understood. This aside, the biological
information that is available does suggest that these traits may be related, and may be involved in
similar biological processes. Their grouping is further supported by the similarities in the locations
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Figure 5: (a) Locations of significant QTL from single trait interval mapping (IM) on all 19 ionomic traits in the
population of 411 Bay × Sha RILs. The genetic position of the QTL is represented along the horizontal axis, and the
ionomic traits are represented along the vertical axis. For a given trait, all genetic positions having a likelihood ratio
(LR) score above the significance threshold are plotted. Higher trait values that are associated with Bay alleles are
represented in red, and higher traits values associated with Sha alleles are represented in blue. Positions with higher
LR scores (more significant results) are graphed with thicker lines. (b) Locations of significant QTL from single
trait IM on the seven ionomic traits selected by sparse PCA, as well as the estimated latent variable from the linear
combination of traits. Traits are ordered based on the magnitude of their weight in the linear combination. The trait
contributing the largest amount to the estimated latent variable is Ca43, and the trait contributing the least is B11.

of significant QTL, and the magnitude of the correlations among these traits. Although this is not
conclusive evidence of the validity of this grouping, it does suggest that these traits would be a
suitable selection for analysis in multiple-trait QTL mapping.

4 Discussion

When biological knowledge about the relationships between traits is not available, statistical pro-
cedures are needed to identify groups of traits for joint analysis. Performing multiple-trait QTL
mapping on related (non-independent) traits increases the QTL detection power and provides more
informative tests than can be obtained by analyzing each trait separately. In this work, we propose
a novel application of sparse PCA to search for groups of correlated traits, as these traits may share
underlying genetic determinants. Additionally, sparse PCA estimates the unobserved latent vari-
able associated with these traits, which can in turn be used for QTL mapping, resulting in improved
QTL detection power and more accurate estimates of the QTL location than mapping on each trait
independently. The procedures presented here address only the first principal component (PC),
however, subsequent components can be found by removing variation associated with previous
PCs and using the residual data matrix to search for additional PCs.
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Correlation structures in phenotypic traits can arise from various sources, including common QTL,
closely linked QTL, environmental effects and gene-environment interactions. In the simulation
study presented in Section 3.1, only correlations induced by a common QTL were considered. In
simulations where additional sources of shared variation were included (e.g., common QTL, envi-
ronmental effects, etc.), the group identification performance of sparse PCA was greatly increased,
reaching nearly 100% detection power when these effects were large.

More complex simulation studies were also performed in addition to the one QTL and one latent
variable structure presented in Section 3.1. One notable trend from these simulations was the
frequent failure to separate multiple latent variable structures with one or more traits in common.
Instead of identifying the groups of traits as being associated with separate PCs, the traits were
often selected as belonging to one large group. This insight may help to explain the results of
the ionomic trait analysis. Careful inspection of Figure 5(b) reveals that at least three different
patterns exist in the results from single trait IM on the traits selected by sparse PCA. First, B11
and Ni60 both have significant QTL on chromosome 1, but none on chromosome 2. Second,
Ca43, Mg25 and Fe57 have similar QTL results on chromosome 1 and 2, as well as significant
QTL on chromosome 4. Lastly, Rb 85 and K39 both have similar QTL patterns on chromosome
1 and 2, but unlike Ca43, Mg25 and Fe57, they do not have significant QTL on chromosome 4.
This may indicate that these ionomic traits are indeed a combination of multiple overlapping latent
variable structures, rather than one large group. Further biological research is required to validate
this hypothesis, and further statistical research is needed to develop methods to identify when the
selected traits may indeed be a combination of multiple overlapping groups.

The simulations also showed that the k-fold CV procedure frequently estimated degrees of sparsity
for sparse PCA that resulted in too many traits being selected (i.e., groups that included several
truly uncorrelated traits). Performing additional CV samples can improve the accuracy of the
estimates; however, the problem does not fully diminish even when the number of CV samples
is large. Additional research is needed to improve the degree of sparsity estimates. Alternative
evaluation measurements may be considered to supplement or replace the method presented in
Section 2.3.

Finally, further research is needed to extend the trait selection methods presented here to situations
where one wants to combine traits across different phenotypic data sets. For example, in addition
to the ionomic trait data analyzed here, additional phenotypes have been collected by different
laboratories using the same Bay × Sha RIL population. Searching for relationships between traits
from different data sets (rather than only within a given data set) has the potential to provide insight
into the genetic architecture governing relationships among apparently different phenotypes. This
problem will be addressed in subsequent publications.
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5 Summary

The procedures detailed in this paper present a novel application of sparse principal component
analysis (sparse PCA) to select groups of phenotypic traits for quantitative trait loci (QTL) map-
ping. The proposed procedures perform dimension reduction and variable selection on the pheno-
typic trait data, followed by QTL mapping on the selected traits and the estimated latent variable
associated with these traits. The simulation studies presented demonstrate that the proposed pro-
cedures are capable of identifying groups of traits associated with a common QTL. Additionally,
these simulations show the improvement in QTL detection power when the estimated latent vari-
able from sparse PCA is used compared to analyzing each trait separately. The analysis of ionomic
trait data from the Bay × Sha RIL population in Arabidopsis thaliana provides evidence of the
method’s performance on real data, where correlated traits were identified and significant QTL
were found to be associated with the estimated latent variable.
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