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ASSOCIATING SNPS WITH BINARY TRAITS 
 

Alexander E. Lipka, George P. McCabe and R.W. Doerge 
Department of Statistics, Purdue University 

West Lafayette, IN 47907-2066 
 
 

Abstract 
 
Association mapping uses statistical analyses to test for relationships between genomic markers 
called single nucleotide polymorphisms (SNPs) and traits.  This research focuses on the use of 
logistic regression to assess the additive, dominance, and epistatic effects when investigating 
associations between SNPs and binary traits, such as disease status.  A very specific phenomenon 
that results in infinite maximum likelihood estimates (MLEs) of logistic regression parameters, 
called quasi-separation of points (QSP), is investigated.  We provide a solution that relies on the 
use of Firth’s MLE to estimate logistic regression parameters.  Simulated and real data are 
utilized to investigate the use of Firth’s MLE in a QSP setting. 
 
Keywords: Single nucleotide polymorphism, quantitative trait loci (QTL), quasi-separation of points 
 
 
 
1. Introduction 
 
Many researchers are interested in finding associations between Deoxyribonucleic Acid (DNA) 
(Watson and Crick 1953) regions and biologically or economically important traits.  A popular 
method for finding such associations is called association mapping (Balding 2006), which 
performs statistical tests at genomic markers called single nucleotide polymorphisms (SNPs) 
(Brookes 1999).  The use of association mapping has led to the identification of genomic regions 
associated with multiple sclerosis (Haer et al. 2009), Parkinson's disease (Haugarvoll et al. 
2009), and oleic acid content in maize (Belo et al. 2009).   
   
Logistic regression is a common association mapping method used to identify associations 
between SNPs and binary traits (e.g., control versus cancer) (Haer et al. 2009).  Although there 
are many benefits to using this approach, the presence of a phenomenon called quasi-separation 
of points (QSP) (Albert and Anderson 1984; McIntyre et al. 2001; Heinze and Schemper 2002; 
Allison 2008) results in infinite maximum likelihood estimates (MLEs) of logistic regression 
parameters.  QSP arises in data when, for at least one SNP genotype (called a SNP type), all 
individuals have the same observed binary trait value (e.g., all individuals have the disease). The 
research presented here investigates the impact of QSP on binary trait association mapping and 
proposes the implementation of Firth's penalized likelihood function (Firth 1993) to obtain the 
MLEs of logistic regression parameters.  Heinze and Schemper (2002) showed when QSP 
occurs, Firth's MLEs exist.  We demonstrate the properties of Firth's MLEs, and show that the 
Firth's MLEs and the traditional MLEs yield similar values when QSP does not exist. 
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2. Single Nucleotide Polymorphisms (SNPs) 
 
A SNP is “a single base pair position in genomic DNA at which different sequence alternatives 
(alleles) exist in normal individuals in some populations, [with] the least frequent allele [having] 
an abundance of 1 % or greater.'' (Brookes 1999).  SNPs are found by comparing DNA 
sequences between a subset of individuals, and then looking for base pair differences among the 
individuals at each base pair location (Brumfield et al. 2003) (Figure 1).  Although a single base 
pair can have as many as four states or alleles, the vast majority of SNPs are diallelic.  For 
diploid species, SNPs have four possible SNP types and can be classified as homozygous or 
heterozygous. Typically, the two heterozygote SNP types are pooled together (Balding 2006).  
SNP types are often referred to as having additive or dominance effects. 
 
Ideally, SNPs used in association mapping are within a DNA region of interest, such as a gene 
(Balding 2006). The number of SNPs included in an association mapping study may depend 
upon the size of the genomic region under investigation.  For example, a candidate gene 
polymorphism study focuses on only a few base pairs and usually includes only one SNP, while 
a genome-wide study investigates the entire genome and may include over 500,000 SNPs. 
 
3. Association Mapping 
 
The simplest statistical analyses used in association mapping assess the association between one 
SNP and a trait, while more complicated analyses test for the association between multiple SNPs 
and a trait (Balding 2006).  These latter analyses are subdivided into whether or not haplotype 
information is used.  Haplotypes are defined as an individual's alleles at SNP loci that are near 
each other in the genome (Hartl and Jones 2005).  Although there are a wide variety of statistical 
analyses employed for association mapping, we focus on the use of logistic regression to 
estimate additive, dominance, and epistatic (the interaction of two or more SNPs) effects of 
SNPs that are associated with a binary trait. 
 
4. Logistic Regression Model within the Context of Association Mapping 
 
Consider the association between two SNPs, S1 and S2, within a genomic region of interest, and a 
disease Y (e.g., multiple sclerosis) for n individuals.  Using a logistic regression model we can 
estimate the additive, dominance, and epistatic effects of the SNPs (Cordell 2002; Cordell and 
Clayton 2002; Balding 2006).  Yi are independent Bernoulli random variables with expected 
values ( ) ( )i iE Y xπ=  and variance Var(Yi)= ( )(1 ( ))i ix xπ π− , where 
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Fisher's scoring method (Agresti 2002) is used to obtain the MLEs, which are distributed 
asymptotically as a  multivariate normal distribution with mean β and variance-covariance 
matrix I(β)-1, where I(β) is the information matrix.   
 
5. Test Statistics and Hypothesis Testing 
 
Without loss of generality, let βi denote a logistic regression parameter (i.e., additive, dominance, 
or epistatic effect).  To test the effect of a logistic regression parameter (H0: βi =0) a Wald 
statistic, a score statistic, or a likelihood ratio test (LRT) statistic can be used. (Agresti 2002).  
Each test statistic has an asymptotic χ2 distribution with 1 degree of freedom under the null 
hypothesis.  For ease of notation, let the vector β̂ denote the MLE. 
 
The Wald statistic 

2 2
ˆ

( )ˆ( )
i

i

z β
σ β

= , 

has been shown  to reduce to zero as the distance between MLE and the parameter being tested 
under the null hypothesis increases (Hauck and Donner 1977).  Additionally, the statistical 
power of the Wald statistic decreases to the type I error rate α as the distance between actual 
parameter value and the null parameter value increases. 
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The score statistic 
2 ˆ ˆ ˆ'( ) ( ) ( )Null Null NullS = U β I β U β , 

 
evaluates the slope and expected curvature of the log likelihood function when the parameters 
(i.e., the additive, dominance and epistatic effects) are restricted under the null hypothesis.    
U is a vector of partial derivatives of the log L and I is the information matrix, both are evaluated 
under the null hypothesis. 
 
The LRT statistic is 

2
1 1 1 1

ˆ ˆ2[log ( ,..., , ,..., ) log ( ,..., , ,..., )]Null n n n nG L Y Y L Y Y= − | − |β x x β x x . 
 
Because many studies can include upwards of 500,000 SNPs, some adjustment for the multiple 
testing problem is needed. While many sophisticated multiple correction procedures specifically 
for association mapping studies are being developed (Balding 2006), it is not uncommon to find 
recent studies (Pillai et al. 2009) that still use the Bonferroni procedure (Neter et al. 1996).  Here, 
we use Simes procedure (Simes 1986) to control the false discovery rate (FDR) (Benjamini and 
Hochberg 1995).     
 
6. Quasi-Separation of Points (QSP) in Association Mapping 
 
The log likelihood function is strictly concave and bounded above, and thus for most data the 
MLEs exist (Silvapulle 1981; Albert and Anderson 1984).  However, strict concavity and an 
upper bound are not sufficient conditions for the existence of MLEs (Albert and Anderson 1984; 
Agresti 2002).  Situations can arise when the log likelihood is strictly increasing towards a 
horizontal asymptote for some ιβ → ±  infinity, resulting in an infinite (i.e., nonexistent) MLE 

îβ  (Albert and Anderson 1984; Heinze and Schemper 2002).  This research investigates one 
such situation in association mapping data, namely QSP. 
 
Consider a single SNP 1S and its association to a disease state Y (present versus absent).  
Furthermore, assume that a logistic regression model is being fitted, where the SNP types from 
the thi  individual are included in the vector ix .  Then, if there exists a vector b  such that (i) 

0i ≥bx  whenever 1iY =  and (ii) 0i ≤bx  whenever 0iY = , with equality for at least one i  in both 
(i) and (ii), then QSP is said to be present (Albert and Anderson 1984;  Heinze and Schemper 
2002 ).   A common situation that results in QSP is when b  subdivides the data into two groups, 
and all individuals in one group are either 1iY =  or 0iY = .  Within the context of association 
mapping, QSP occurs if there is at least one SNP type (or combination of two SNP types if two 
SNPs are considered) where all individuals have the same disease state.  To illustrate QSP in 
association mapping, consider Table 1, where all 144 individuals with the heterozygous ( /Ss sS ) 

1S  SNP type have the disease.  These data are simulated with a dominance effect of 3.  In the 
presence of QSP, the Wald statistic cannot be used (because it uses the MLE directly in its 
calculations).  However, the score statistic (which uses the MLE under H0) can, and the LRT 
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statistic (which compares the approximate maximum of the log likelihood function to the 
maximum of the log likelihood function under H0) can be approximated. 
 
 
7. Firth's Modified Scoring Procedure 
  
Firth's penalized likelihood function is a function of the previous stated likelihood function 
multiplied by a penalty term that is known as Jeffreys prior (Jeffreys 1946).   

1
1* 2

1 1
1

( | ,..., ; ,... ) ( ) (1 ( )) | ( ) |i i
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n n i i
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L x x Y Y x x Iβ π π β−
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The influence of Jeffreys prior is asymptotically negligible (Firth 1993; Heinze and Schemper 
2002) but very important in the presence of QSP since it provides MLEs, known as Firth’s 
MLEs, that are distributed asymptotically as a  multivariate normal distribution with mean β and 
variance-covariance matrix I(β)-1 (Firth 1993; Heinze and Schemper 2002). 
 
Firth's MLE will always be finite and unique (Firth 1993; Heinze and Schemper 2002).  Recall 
that the traditional log likelihood function is strictly concave and bounded above.  Furthermore, 
the log of Jeffreys prior is strictly concave and has no lower bound as the logistic regression 
parameters tend to tend to +/- infinity (Firth 1993).  Therefore, the addition of Jeffreys prior to 
the traditional log likelihood function does not affect the concavity and boundedness of log L*, 
and ensures the existence of Firth's MLE, even in the presence of QSP.  When QSP is not present 
in the data the traditional MLEs exist and are comparable to the Firth MLEs. 
 
8. Data Analysis 
 
We investigate the impact of QSP on association mapping studies in a logistic regression setting, 
and compare the estimates and standard errors of Firth's MLEs to traditional MLEs.  
Specifically, we concentrate on SNPs where QSP occurs since, unlike the traditional MLE, 
Firth’s MLEs exist in the presence of this phenomenon.  When QSP is not present we investigate 
the similarity between Firth MLE and traditional MLEs. 
 
Simulation Study 1. We investigate estimates of additive and dominance effects in the presence 
of QSP.  Consider one binary trait and a single SNP across sample sizes n=300, 500, and 1000 
individuals.  The trait is simulated from a logistic regression model.  The data are simulated at 16 
settings of logistic regression parameters values, where the additive and dominance parameters 
vary from 0 to 3, and the intercept is either 0 or -2.08.  Note that as the additive and dominance 
parameters get larger and as the sample size decreases, the chance of observing QSP increases.  
At each parameter value and sample size, 1000 data sets are simulated, and the proportion of data 
sets where QSP occurs is noted.  These proportions are summarized in Figure 2.  At each data set 
where QSP does not occur, Firth’s MLE is compared to the traditional MLE.  These results, 
summarized in Figure 3, suggest that these two estimates are similar when QSP does not occur.  
In conclusion, this simulation study demonstrates that QSP is more likely to occur at larger 
additive effects and at smaller sample sizes.  Consequently, the implementation of Firth’s MLE 
should allow researchers to estimate the effects of more SNPs with large additive effects. 
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Simulation Study 2.  In a second simulation study we investigate QSP in the presence of 
epistasis (the interaction of two SNPs).  Consider one binary trait and two SNPs, S1 and S2, 
respectively for sample sizes of 300, 500, or 1000 individuals.  The trait is simulated from a 
logistic regression model that includes four epistatic effects which we allow to vary from 0 to 3.  
For each simulated data set, the Firth’s MLE and the traditional MLE of logistic regression 
parameters are obtained and compared.  The results of this study indicate that QSP is likely to 
occur in the presence of epistasis.  Thus, Firth’s MLEs provide estimates of epistatic effects in 
situations where the traditional MLEs do not exist.   
 
Real Data.  We rely on late onset Alzheimer's disease (LOAD) association mapping data to 
demonstrate the worth of Firth’s MLE in an actual situation where QSP exists.  It is well known 
that humans with the ε4 allele of the apoliopoprotein E (APOE) gene on Chromosome 19 have a 
greater risk of developing (LOAD) (Corder et al. 1993; Corder et al. 1994; Farrer et al. 1997).  
Reiman et al. (2007) conducted a series genome-wide association mapping studies to investigate 
additional genes that may be associated with LOAD.  Their data consist of 1,411 LOAD cases 
and controls, and a Pearson chi-squared test was employed to test each of the 312,316 SNPs.  
Their results led to the novel discovery of the GRB-associated binding protein 2 (GAB2) gene on 
Chromosome 11, which contributes to an increased risk of LOAD for carriers of the APOE ε4 
allele.  We reanalyze data from Reiman et al. (2007) in four genome-wide studies using Firth's 
MLE of logistic regression parameters, with a particular focus on SNPs where QSP occurs. 
 
The data collected by Reiman et al. (2007) consist of 861 LOAD cases and 550 controls from 
three cohorts and include a total of 312,316 SNPs.  The data also contain genotypic information 
on the APOE gene for each individual.  Of interest, 644 of the individuals are APOE ε4 carriers, 
and 767 are APOE ε4 noncarriers.  Since Reiman et al. (2007) obtained similar results across all 
three cohorts, all individuals are pooled together in the following analyses. 
 
We first estimated the additive, dominance, and epistatic (with the APOE gene) effects of the 
SNP data.  A logistic regression model based on two markers (i.e., independent variables) is 
employed.  One marker is a SNP (S1) and the other marker is the APOE gene.  In an effort to 
include as many SNPs as possible, the second, third, and fourth genome-wide analyses use a 
simpler logistic regression model that includes only additive and dominance parameters.  
Specifically, the first two analyses include all 1,411 individuals and 251,974 SNPs.  In order to 
test for interactions between the APOE gene and SNPs the third analysis includes only the 644 
APOE ε4 carriers and 234,463 SNPs, while the final analysis includes only the 767 APOE ε4 
noncarriers and 242,196.  Table 2 provides a summary of the number of SNPs and individuals 
included in each of the four studies. 
 
In each of the four analyses, Firth's MLE and the traditional MLE of logistic regression 
parameters are obtained (if they exist) for each SNP.  With the exception of the intercept 
parameter all parameters are tested using a LRT statistic.  The Simes procedure (Simes 1986) is 
used to adjust for the genome-wide multiple testing (α=0.05).. 
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Recall that a SNP can have three possible SNP types (with the two heterozygote SNP types 
pooled together), and note that there are nine possible SNP type/APOE gene combinations.  To 
obtain an accurate estimate of the probability of an individual having LOAD in each of these 
respective categories, there must be an adequate number of individuals in each category.  Using 
the guidelines recommended in Peduzzi et al. (1996) for conducting logistic regression, a SNP is 
included if there are at least ten individuals observed in each category.  Based on these criteria, a 
total of 125,613 SNPs are included in our first analysis of all the data.  The previously mentioned 
SNP numbers for the other three studies satisfy the criterion that at least ten individuals must be 
observed in each SNP type category.   
 
The number of SNPs in each of these four studies where QSP occurs is summarized in Table 3.  
Note that around 1% of the SNPs in the APOE ε4 carriers have QSP.  The phenomenon of QSP 
is more prevalent in this study because, compared to APOE ε4 noncarriers, a greater proportion 
of APOE ε4 carriers have LOAD.  Therefore, for a given SNP in APOE ε4 carriers, the chance 
of at least one SNP type being the same for all individuals with LOAD is greater.  Similar to the 
results in the simulation studies, the estimates and standard errors of Firth's MLEs are similar to 
those of the traditional MLE at SNPs where QSP is not present, and exist in situations where 
QSP occurs.   
 
The main neuropathological finding for these four genome-wide studies is that, among the APOE 
ε4 carriers, SNP A-2313615 in the GAB2 gene on Chromosome 11 has a statistically significant 
additive effect on LOAD.  At this SNP, the Firth's MLE of the additive effect is 1.25 with a 
standard error of 0.23, and the traditional MLE of the additive effect is 1.26 with a standard error 
of 0.23.  Note that since QSP does not occur at this SNP, the traditional MLE of the additive 
effect exists and is similar to Firth’s MLE of the additive effect.  Although none of their 
corresponding LRT statistics are statistically significant, the remaining nine SNPs linked to the 
GAB2 gene have large additive effects on LOAD (relative to the other SNPs) among the APOE 
ε4 carriers.  Since QSP is not present at any of these SNPs, the values and standard errors of 
traditional MLEs and Firth's MLEs are similar.  These results are suggestive of an additive 
biological effect of the GAB2 gene on LOAD that is not confirmed in the second (all 
individuals) and fourth investigation (APOE ε4 noncarriers).  Therefore, there is evidence that 
the GAB2 gene plays a role in the risk of LOAD for APOE ε4 carriers.  This reanalysis 
augments the main conclusion of Reiman et al. (2007) by suggesting that the association between 
the GAB2 gene and LOAD risk among APOE ε4 carriers is an additive effect.  Additionally, an 
interesting novel result is that among the APOE ε4 carriers, SNP A-4202283 on Chromosome 11 
has marginally significant likelihood-ratio test results when testing for its additive effect.  QSP is 
not present at this SNP. The Firth's MLE of its additive effect is -0.98 with a standard error of 
0.25, while the corresponding traditional MLE is -1.02 with a standard error of 0.24.  This result 
for SNP A-4202283 may justify further investigation into the biological function of this SNP's 
surrounding genomic region.  The results of the analysis of Chromosome 11 for APOE ε4 
carriers are summarized in Figure 4. 
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9. Conclusions 
 
It appears that the application of Firth's MLE to estimate logistic regression parameters in the 
context of association mapping is a viable solution to the problems that arise when QSP is 
present in data.  When the traditional MLE exists, the Firth's MLE and the traditional MLE yield 
similar values and standard errors, and hence similar estimates of a SNP's additive, dominance, 
and epistatic effects are obtained.  However, in the presence of QSP, Firth's MLE exists, 
guaranteeing the estimation of the additive, dominance, and epistatic effects of SNPs, and thus 
provides greater insight into the underlying genomic mechanisms that control binary traits. 
 
10. Summary 
 
This research investigates the impact of QSP on association mapping results when logistic 
regression is used. Two simulation investigations and four genome-wide association mapping 
analyses are conducted.  Firth’s MLEs can be successfully employed as estimates for additive, 
dominance, and epistatic effects of SNPs when QSP is present, and are similar to the traditional 
MLE when QSP does not exist. 
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Figures and Tables 

 
Figure 1. Comparison of DNA sequences between two individuals.  Alleles at the circled site 
differ, and are considered a SNP. 
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Figure 2.  The proportion of data sets (out of 1000) that have QSP in each of the 48 simulation 
settings. 
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Figure 3. For every simulated data set in Simulation Study 1 where QSP does not occur, the 
traditional MLE of the indicated effect is plotted against its corresponding Firth's MLE. The x-
axis on each graph is the Firth's MLE and the y-axis is the traditional MLE.  The majority of the 
points in these plots lie approximately on the identity line. This indicates that the Firth's MLE 
and the traditional MLE of the additive and dominance effects are similar when the traditional 
MLE exists. 
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Figure 4.  Chromosome 11 LRT statistic results for all 644 APOE ε4 carriers.  The top graph 
shows results from Firth’s penalized likelihood function, and the bottom graph shows the results 
from the traditional likelihood function. The statistically significant additive effect of the SNP 
(A-2313615) in the GAB2 gene is located at base pair position 77722719 and is highlighted in 
red.  The GAB2 gene is located approximately between base pairs 77608147 and 77768798.  
Additionally, SNP A-4202283, located at base pair position 25747721 and highlighted in red, has 
a significant additive effect.   
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Table 1. Illustrative example where with 300 disease cases and controls, and one SNP S1.  These 
data are simulated with a dominance effect of 3.  QSP occurs since all 144 individuals with SNP 
type Ss/sS are disease cases. 

S1 SNP Type Disease Case Disease Control 
Ss 36 38 
Ss/sS 144 0 
SS 42 40 

. 
 
Table 2. Summary of the effects assessed, the subjects included, and the number of 
SNPs included in four studies conducted for the reanalysis of the LOAD data (Reiman 
et al., 2007). 

Study  Effects Assessed Subjects Included Number of SNPs 
1 Additive, Dominance, Epistatic 1,411 125,613 
2 Additive, Dominance 1,411 251,974 
3 Additive, Dominance 644 APOE ε4 Carriers 234,463 
4 Additive, Dominance 767 APOE ε4 Noncarriers 242,196 

 
 
Table 3. Numerical summary of the number of SNPs in each of the four LOAD studies where 
QSP occurs.  Study 1 has epistatic parameters (with the APOE gene) in the logistic regression 
model and includes all 1,411 individuals; Study 2 includes all 1,411 individuals, Study 3 
includes all 644 APOE ε4 carriers; and Study 4 includes all 767 APOE ε4 noncarriers. 

 Study 1 Study 2 Study 3 Study 4 
Number of SNPs 125,613 251,974 234,463 242,196 
Number of SNPs with 
QSP 

8 88 3,226 37 
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