Identification of the Neurospora crassa mutation un-10 as a point mutation in a gene encoding eukaryotic translation initiation factor 3, subunit B.

Matthew Kinney
University of Missouri-Kansas City

Aric Wiest
University of Missouri-Kansas City

Michael Plamann
University of Missouri-Kansas City

See next page for additional authors

Follow this and additional works at: https://newprairiepress.org/fgr

This work is licensed under a Creative Commons Attribution-Share Alike 4.0 License.

Recommended Citation

This Regular Paper is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Fungal Genetics Reports by an authorized administrator of New Prairie Press. For more information, please contact cads@k-state.edu.
Identification of the Neurospora crassa mutation un-10 as a point mutation in a
gene encoding eukaryotic translation initiation factor 3, subunit B.

Abstract
The Neurospora crassa temperature-sensitive mutant known as un-10 has been shown by a map-based
complementation approach to be a single nucleotide change in the open reading frame of the eukaryotic
translation initiation factor 3b (NCU02208.3).

Authors
Matthew Kinney, Aric Wiest, Michael Plamann, and Kevin McCluskey
Identification of the *Neurospora crassa* mutation un-10 as a point mutation in a gene encoding eukaryotic translation initiation factor 3, subunit B.

Matthew Kinney, Aric Wiest, Michael Plamann and Kevin McCluskey. Fungal Genetics Stock Center, School of Biological Sciences, University of Missouri-Kansas City

Fungal Genetics Reports 56:6-7

The *Neurospora crassa* temperature-sensitive mutant known as un-10 has been shown by a map-based complementation approach to be a single nucleotide change in the open reading frame of the eukaryotic translation initiation factor 3b (NCU02208.3).

Inoue and Ishikawa defined a set of non-remediable, temperature-sensitive "unknown" mutants in *Neurospora crassa* (Inoue and Ishikawa, 1970). To this day, the actual gene altered in many of these "unknown" mutants has not been determined. In order to add value to the Fungal Genetics Stock Center collection, we continue to define the genetic defects associated with these temperature-sensitive mutations (McCluskey et al., 2007, Wiest et al., 2008).

Using a complementation-based approach, we have identified the mutation in un-10 as a missense mutation in the eIF3b open reading frame. Building on the demonstration by T. Schmidhauser, that cosmids from the pSV50 cosmid library (Vollmer and Yanofsky, 1986) complement the un-10 mutation in strain FGSC 2342 (Wilson, 1990), we had cosmids 10E12, 11D2, 16C5, and 23C1 end-sequenced. Based on this sequence data, the mutation in FGSC 2342 was predicted to be on contig 10 between bases 68,000 and 92,000 (Galagan, et al, 2003). We selected overlapping cosmids spanning this region and tested their ability to complement the un-10 mutation in FGSC 2342 using electroporation-based transformation (Margolin et. al, 2000; Table 1).

<table>
<thead>
<tr>
<th>Cosmid ID</th>
<th>Colonies at 37°C (per ug DNA)</th>
<th>Hyg Colonies at 24°C (per ug DNA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pLorist6xh 25D10</td>
<td>21</td>
<td>11</td>
</tr>
<tr>
<td>pLorist6xh 66B1</td>
<td><1</td>
<td>7</td>
</tr>
<tr>
<td>pLorist6xh 75A9</td>
<td>56</td>
<td>18</td>
</tr>
<tr>
<td>pLorist6xh 107D10</td>
<td>24</td>
<td>7</td>
</tr>
<tr>
<td>pSV50 10E12</td>
<td><1</td>
<td>ND*</td>
</tr>
<tr>
<td>pSV50 11D2</td>
<td>0</td>
<td>ND</td>
</tr>
<tr>
<td>pSV50 23C1</td>
<td>0</td>
<td>ND</td>
</tr>
<tr>
<td>No DNA</td>
<td>0</td>
<td>ND</td>
</tr>
</tbody>
</table>

Table 1. Identification of cosmids that complement un-10

Data from two different replicates

Complementation was successful with cosmids 25:D10, 75:A9 and 107:D10 but not 66:B1. There were four open reading frames in the region common to these overlapping cosmid clones: NCU02205.3, NCU02206.3, NCU02207.3 and NCU02208.3. We amplified copies of the genomic DNA for these open reading frames and used them to transform strain 2342 (Table 2). Only PCR product from NCU02208.3 complemented the un-10 mutation.

<table>
<thead>
<tr>
<th>PCR Product</th>
<th>Colonies at 37°C (per ug DNA)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCU02205</td>
<td>0</td>
</tr>
<tr>
<td>NCU02206</td>
<td>0</td>
</tr>
<tr>
<td>NCU02207</td>
<td>0</td>
</tr>
<tr>
<td>NCU02208</td>
<td>10</td>
</tr>
<tr>
<td>No DNA</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 2. Identification of PCR products that complement un-10

DNA sequence obtained directly from PCR amplified genomic DNA from strain 2342 showed a single T to C transition at position 1411, resulting in a tryptophan to arginine change in amino acid residue 471. This tryptophan residue is conserved among most fungi (Figure 1) and even higher eukaryotes. The orthologous gene in *Saccharomyces cerevisae*, PRT1, has alleles which confer a temperature-sensitive phenotype (Hanic-Joyce et al, 1987). None of these corresponds to the mutation.
in Neurospora (Evans et al., 1995).

N. crassa FGSC 2342
GVPVEVVDTIKDTVINFAWEPKGRFVITTTTEPVGATAVF

N. crassa 2489
GVPVEVVDTIKDTVINFAWEPKGRFVITTTTEPVGATAVF

Podospora anserina
GVPVEVVDTIKDTVINFAWEPKGRFVITTTTEPVGAVAV

Chaetomium globosum
GVPVEVVDTIKDTVINFAWEPKGRFVITTTTEPVGATAV

Giberella zeae
GVPVEVVDTIKDTVINFAWEPKGRFVITTTTEPVGATAV

Magnaporthe grisea
GVPVEVVDTIKDTVINFAWEPKGRFVITTTTEPVGATAV

Aspergillus niger
EFPVEVEVLKDAVTAFAWEPFGTHFALISSNDQGLTPAS

Candida albicans
DIPVEKLE-LKDSFVEFGWEPHGNRFVTISVHEVADNYAI

Saccharomyces cerevisiae
DIPVEKLE-LKDSFVEFGWEPHGNRFVTISVHEVADNYAI

Ustilago maydis
NDPEVID-LKEVVLNFWEPPSDSAFSAIGQ-LGPSM

Drosophila yakuba
DIPVEKLE-LKDSFVEFGWEPHGNRFVTISVHEVADNYAI

Homo sapiens
GVPVEVVDSLKTDTVINFAWEPNQRFVAITTEGAIQPA

Figure 1. Alignment of the amino acid sequence from eIF3b among sequenced fungi. Neurospora sequence is shown from amino acid 452 to 493. Position 471 is highlighted in white.

The demonstration that un-10 is in the eIF3b gene adds value to the strains carrying this mutation. The ability to study both the interactions of subunits of the initiation factor 3 complex and the ability to use a temperature-sensitive mutation to control protein production are significant benefits of the identification of this mutation. Further, the high degree of conservation of the tryptophan residue at position 471 opens the possibility that this mutation can generate a temperature-sensitive growth phenotype when introduced into other organisms.

Acknowledgement: The FGSC is supported by award number 0235887 from the National Science Foundation and receives additional funds from award 5P01GM068087-04 from the National Institutes of Health.

References:

