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Abstract 
A stem profile model was developed for black spruce (Picea mariana (Mill.) B.S.P.) 

trees in Alberta, Canada using a nonlinear mixed model approach. The model included two 

random parameters to capture between-subject variation and a general covariance structure to 

model within-subject residual autocorrelation. After evaluating various covariance structures, the 

4-banded toeplitz and the spatial power structures were chosen for further evaluation. The 4-

banded toeplitz structure provided a better fit. The model was further evaluated using an 

independent data set to examine its validation accuracy. Model validation results showed that the 

model was able to accurately predict stem diameters at the population and subject-specific levels. 

Both covariance structures produced reliable model predictions, but the spatial power structure 

was superior to the 4-banded toeplitz structure. One to four stem diameters were used to predict 

random parameters and to subsequently generate subject-specific predictions. At least three stem 

diameters were needed to achieve better subject-specific predictions than population-average 

predictions.  

 

Keywords: nonlinear mixed model, black spruce, autocorrelation. 

 

1. Introduction 

Repeated measurement data, obtained either from permanent sample plots measured 

periodically over time or from sectioned trees with multiple measurements taken along the stem 

of each tree, are commonly used for developing forest growth and yield models. However, such 

data are often correlated (Gregoire 1987). Although estimated model parameters remain 

unbiased, ignoring autocorrelation present in the data leads to biased variance estimation for 

model parameters. Therefore, any hypothesis testing and confidence interval estimation on 

model parameters are no longer valid (Gregoire 1987, Judge et al. 1988). 

Nonlinear mixed models offer an alternative for modeling correlated data (Gregoire et al. 

1995, Fang and Bailey 2001). Consisting of both fixed and random parameters, nonlinear mixed 

models divide data variation into between- and within-subject variations and model both 

explicitly. Between-subject variations are modeled through random parameters, while within-

subject variations are modeled directly using a general variance-covariance structure.  

Stem profile models are commonly used in forestry for predicting stem diameters, log 

volumes, and tree total and merchantable volumes. A common data source for developing stem 

profile models is tree sectioning data, with multiple measurements made on each sample tree. 

Therefore, within-tree observations are likely to be correlated. However, most stem profile 

models were developed by linear or nonlinear ordinary least squares (Kozak 1988, Huang 1994, 

Sharma and Zhang 2004). Over the last ten years, several stem profile models have been 

developed using mixed model approaches (e.g., Garber and Maguire 2003, Younger et al. 2008). 

However, model predictions using tree-specific information have not been demonstrated. 

The objective of this study was to develop a stem profile model for black spruce (Picea 

mariana (Mill.) B.S.P.) trees using a nonlinear mixed model approach. Between-tree variation in 
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stem diameters was accounted for by random parameters. Various covariance structures were 

evaluated to model residual autocorrelation. The developed model was further evaluated for its 

predictive ability using an independent data set. 

 

2. Methods 
2.1. The data 

Two data sets were used in this study, one for model fitting and the other for model 

validation. The model fitting data were a part of the tree sectioning database collected by the 

Alberta Government under the Phase 3 Forest Inventory Program (Alberta Environmental 

Protection 1988). Sample trees identified from various ecoregions, stand conditions, and ages 

were felled. Each felled tree was then cut at stump height (0.3 m above ground), breast height 

(1.3 m above ground), 1.5 m above breast height, and 2.5 m intervals thereafter to the top of the 

tree.  Two diameters inside bark were measured at the lower end of each section, taken at right 

angles to each other. The two values were averaged to get the final diameter measure at each 

point. Total tree height was also recorded for each tree. An independent data set of 183 trees 

sectioned from the buffers of the provincial permanent sample plots (Alberta Forest Service 

2000) was used for model validation. A similar tree sectioning procedure was followed. Table 1 

provides summary statistics for both data sets. 
 

2.2. Model development 

Over the years, many model forms have been proposed for modeling tree stem profiles. 

Our intent was not to compare those model forms. Instead, we focused on the variable-exponent 

model form (Kozak 1988, Newnham 1992) used in several jurisdictions in Canada and some 

parts of the United States (Kozak 1988, Garber and Maguire 2003, Sharma and Zhang 2004, 

Younger et al. 2008). It has also been shown to work well for major Alberta tree species (Huang 

1994).  

The basic formulation for a variable-exponent stem profile model is: 
CkXd          (1) 

where d is diameter inside bark (cm) at stem height h (m) above ground; k is diameter inside bark 

(cm) at the reference height p; C is a function of various tree and stand variables; and 

)1/()1( pzX , where z is the relative height h/H with H being total tree height (m), and  

is a constant. Newnham (1992) fixed the reference point at breast height (p = 1.3/H), and k 

became diameter inside bark at breast height.  

Kozak (2004) proposed several  values for formulating X: 1/2, 1/3, and 1/4. In addition, 

various functions of stand and tree variables have been adopted over the years for the exponent C 

(Huang 1994, Kozak 2004). After evaluating various formulations for each model component, 

the following model was selected as the base model for further analysis: 
3

4
4

32101 )/exp(/
0

XbHQbHDbzbba
XDad      (2) 

where D is tree diameter at breast height (1.3 m above ground), )1/()1( 4/14/1 pzX  with 

=1/4, 
4/11 zQ , Hp /3.1 , a0, a1, and b0-b4 are model parameters to be estimated, and all 

other variables are as previously defined.  

Model (2) is used for all trees in the population. Since parameter estimates from 

individual trees are likely to be different, model parameters can be divided into fixed parameters, 

common to all trees within the population, and random parameters specific to each individual 

tree. Following the nonlinear mixed model approach (Davidian and Giltinan 1995, Vonesh and 

Chinchilli 1997), model (2) can be expressed in a general form as: 

iiii
f εuβxd ),,( , ),(~

ii
N R0ε       (3) 
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where di is an (ni 1) vector of diameters inside bark observed on a subject tree i; xi is an (ni p) 

matrix of covariates; β  is a (p 1) vector of fixed parameters common to all trees; ui is a (q 1) 

vector of random parameters unique to subject tree i, assumed to follow a multivariate normal 

distribution with mean zero and a variance-covariance matrix D, with D modeled as 

unstructured; i is an (ni 1) vector of the error term; Ri is an (ni ni) positive-definite variance-

covariance matrix for the error term, and ui and i are assumed to be independent of each other. 

An important question in mixed model analysis is which parameters should be treated as 

fixed and which should be treated as random. An over-parameterized random effects matrix can 

lead to inefficient estimation and poor estimates of the standard errors of the fixed effects, 

whereas an over-restrictive random effects matrix may lead to invalid and biased estimation of 

the mean response profile (Altham 1984). Different combinations of parameter types were 

evaluated based on a method recommended by Fang and Bailey (2001). Each parameter in 

equation (2) was given the opportunity to include a random term. The Akaike’s information 

criterion (AIC) and Schwarz's Bayesian information criterion (BIC), defined in Littell et al. 

(2006), were used to compare the candidate models. The following model with two random 

parameters was found to be the best:  

ij
XbQHubHDbzbb

ij
ua

iij
ijijiiiiiji XDad
3

4
4

2321011 )()/exp(/)(
0    (4) 

where dij is the stem diameter for measurement j = 1, …, ni of tree i = 1, …, m; u1i and u2i are 

random parameters, and all other variables are as previously defined. For model fitting data, m = 

304 trees and ni varies from 4 to 12 (Table 1).  

Once the between-tree variation was accounted for by random parameters, the next step 

was to specify the within-tree variation (Davidian and Giltinan 1995, Fang and Bailey 2001). 

Repeated measurement data are often correlated, and residual variances may also be 

heterogeneous. Mixed models have the advantage of efficiently modeling within-tree 

autocorrelation and heteroscedasticity through the incorporation of random parameters and/or the 

direct modeling of the within-tree covariance structure through a general variance-covariance 

matrix Ri (Davidian and Giltinan 1995): 
5.05.02

iiii GΓGR         (5) 

where σ
2
 is a scaling factor for the error dispersion, equal to the residual variance of the model; 

Gi is an (ni×ni) diagonal matrix describing between-tree variance structure (heteroscedasticity); 

and i is an (ni×ni) matrix describing the within-tree error correlation structure. 

Preliminary analyses showed no clear evidence of heteroscedasticity for eq. (4) and Gi 

became an identity matrix that was subsequently removed from eq. (5). 

To examine residual autocorrelation, normalized residuals were evaluated (Pinheiro and 

Bates 2000): 

)ˆ()ˆ(ˆ 2/11
ii

T
ii σ ddΓr        (6) 

where di and 
i

d̂ are the observed and predicted stem diameters, and iσ Γ̂ˆ 2
 is the estimated 

variance-covariance matrix for the ith within-tree errors, which is the matrix Ri. Normalized 

residuals are an extension of studentized residuals. Studentized residuals are weighted by their 

respective variances only, while normalized residuals are weighted by both variances and 

covariances (Fortin et al. 2008). If the within-tree variance-covariance is properly handled, the 

normalized residuals should be approximately normal and independent.  

Under the null condition of no correlation, a correlation coefficient has a standard error 

which is roughly N/1 , where N is the number of independent pairs of observations (Diggle et 

al. 2002). Correlations between normalized residuals at various lags can be calculated for each 

tree or for all trees combined. For this study, correlations are calculated for all trees combined 
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due to smaller number of observations per tree (Table 1). The confidence interval at any level of 

significance can subsequently be calculated using the standard error and the t-value 

corresponding to the sample size. For this analysis, 99% confidence intervals were used to 

examine the significance of correlations between normalized residuals of various lags apart.  

For the nonlinear least squares fit of eq. (2), correlations between normalized residuals 

were significantly different from zero for measurements one to seven lags apart, but not for 

measurements further apart. After the two random parameters were incorporated, only 

correlations between normalized residuals for the first three lags were still significantly different 

from zero. To remove the remaining within-tree autocorrelation, both serial correlation structures 

and spatial correlation structures were evaluated for the correlation matrix i. The evaluated 

serial correlation structures included the first-order autoregressive AR(1), the autoregressive 

moving average ARMA(1,1), and the banded toeplitz structures with different bands. These 

structures, however, are designed for analyzing equally-spaced data (Littell et al. 2006). The tree 

sectioning data used here were only roughly equally spaced with most sections being 2.5 m long. 

The bottom two sections were 1.0 and 1.5 m long, and the top section was less than 2.5 m in 

most cases. To make sure a proper covariance structure was selected, six spatial covariance 

structures that account for unequally-spaced data, including the power, exponent, linear, linear 

log, Gaussian, and spherical structures, were also evaluated (Littell et al. 2006, Yang and Huang 

2008).  

Based on the AIC and BIC statistics, the 4-banded toeplitz and the spatial power 

structures were found to provide the best fits for each of the two groups of correlation structures. 

Between the two structures, the 4-banded toeplitz structure was better than the spatial power 

structure.  

Various methods have been proposed to estimate the parameters of nonlinear mixed 

models. The most common one is the maximum likelihood method, which maximizes the 

likelihood of the following joint probability density function (Lindstrom and Bates 1990, 

Pinheiro and Bates 1995): 

      
m

i
iiiii

dppp
1

);()|()( uDuudd       (7) 

where m is the total number of subjects (trees), )|(
ii

p ud  is the conditional density of dij given ui, 

);( Du
i

p  is the density of ui, and other variables are as previously defined. 

The integral in eq. (7) does not have a closed-form expression in general since the random 

parameters enter the model nonlinearly. Therefore, it is often approximated numerically. The 

most commonly applied methods are based on a linear approximation of the nonlinear mixed 

model by a first-order Taylor series expansion. This expansion can be either at zero, the expected 

value of ui (Sheiner and Beal 1980), or around an estimate; for example, the empirical best linear 

unbiased predictor (eblup) of the random parameters (Lindstrom and Bates 1990). 

Both expansion methods produce reliable parameter estimates, but estimated values vary 

depending on the method used (Pinheiro and Bates 1995, Wolfinger and Lin 1997). To evaluate 

the impact of the two expansion methods, model (4) was fitted by both expansion methods 

implemented through the SAS macro NLINMIX (Littell et al. 2006). 

 

2.3. Model validation 

Model (4) with the 4-banded toeplitz and the spatial power covariance structures was 

used for making the population-average (PA) and subject-specific (SS) diameter predictions for 

the validation data (Table 1). At the population level, a mean response was generated using only 

the fixed parameters by setting the random parameters to their expected value of zero:  

),ˆ,(ˆ 0βxd ii f         (8) 
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To make subject-specific diameter predictions, random parameters 
i

u  were predicted 

first using one or more stem diameter measurements from each subject (tree). For the zero 

expansion method, random parameters were predicted by an approximate Bayes estimator 

(Vonesh and Chinchilli 1997, Trincado and Burkhart 2006):  

)],ˆ,([)ˆˆ(ˆˆ 1
0βxdRZDZZDu

iii

T

ii

T

ii
f      (9) 

where D̂  is the estimated variance-covariance matrix for random parameters ui; i
R̂  is the 

estimated variance-covariance matrix for the error term; and Zi is the partial derivative matrix of 

di with respect to random parameters 
0β

u0βxZ
,ˆ|/),,(

iii
f . 

For the eblup expansion method, an iterative procedure was used to predict the random 

parameters:  

]ˆ)ˆ,ˆ,([)ˆˆ(ˆˆ 1

iiiiii

T

ii

T

ii
f uZuβxdRZDZZDu     (10) 

where D̂ , iR̂  and β̂  are as defined above, but 
i

iiii f
uβ

uuβxZ
ˆ,ˆ|/),,( .  

Since 
i

û  appears on both sides of (10), it must be solved iteratively. The initial 

predictions were obtained by setting ui at the right hand side of eq. (10) to zero. The initial 

predictions were then used to update random parameter predictions after updating Zi 

and )ˆ,ˆ,(
ii

f uβx  using the initial predictions. The procedure was repeated until the convergence 

criterion was met, i.e., until the absolute differences between the two sets of predictions were 

smaller than a predetermined value (1 10
-6

 in this study).  

After the random parameters were predicted, subject-specific predictions of stem 

diameters were derived by eq. (11) for zero expansion (Vonesh and Chinchilli 1997) and eq. (12) 

for eblup expansion: 

iiii f uZ0βxd ˆ),ˆ,(ˆ         (11) 

)ˆ,ˆ,(ˆ
iii f uβxd         (12) 

The prediction of random parameters will vary depending on the number of stem 

diameter measurements available (Calama and Montero 2004). All available stem diameter 

measures can be used for random parameter prediction and subsequent SS diameter predictions. 

Instead of using all available diameter measures, we decided to use a portion of the available 

data to evaluate how many stem diameter measures were needed to achieve accurate stem 

diameter predictions at any unmeasured stem locations. Four scenarios were evaluated, where 

one to four stem diameters were randomly selected from each tree for random parameter 

prediction. Stem diameters at the remaining locations were then predicted. The procedure was 

repeated 100 times for each scenario to account for random selection variability, and the 

diameter predictions were averaged across the repetitions.  

The PA and SS stem diameter predictions for the validation data were subsequently used 

to evaluate the predictive ability of model (4). For this study, the evaluation was focused on 

prediction errors using the following statistics: 
m

i
iij

m

i

n

j
ij

ndde
i

11 1

/)ˆ(        (13) 

dee /100%         (14) 
22 SDe           (15) 

where dij and 
ij

d̂ are the jth observed and predicted stem diameters for tree i (i = 1, 2, …, m; j = 1, 

2, …, ni), d  is the arithmetic mean of the observed stem diameters, ē is the overall mean 
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prediction bias, %e  is percent mean prediction bias, SD is the standard deviation of the 

prediction errors, and  is a combination of the bias ( e ) and precision (SD) (Cochran 1977). 

Eqs. (13) to (15) were for all observations combined. These statistics were termed in this 

paper as the overall average statistics.  

To focus on subject-specific predictions, these statistics were also calculated for each 

subject (tree) i: 

i

n

j
ijiji

ndde
i

/)ˆ(
1

              (16) 

iii
dee /100%         (17) 

22

iii
SDe           (18) 

Once those statistics were calculated for each tree, they were averaged across all trees. 

The resulting statistics were termed tree average statistics.    

In addition to the above statistics, the percentages of improvement of SS over PA 

predictions were also examined for the overall average statistics and tree average statistics for 

each scenario based on the 100 repetitions. 

 

3. Results 
3.1. Model development 

Table 2 shows the correlation coefficients between lagged normalized residuals for model 

(2) fitted by nonlinear least squares and model (4) by the mixed methods with and without the 4-

banded toeplitz and the spatial power covariance structures. It was clear that, for the nonlinear 

least squares fit, significant correlation was present for the first seven lags, as the correlation 

coefficients were much larger than the boundary values for 99% confidence intervals. These 

positive correlations could be partly due to between-tree variation in model parameters, which 

was not accommodated in model (2). This was confirmed by the mixed model fit. With two 

random parameters, model (4) reduced residual autocorrelation substantially. However, 

significant correlation was still present for the first three lags. Both covariance structures further 

reduced residual autocorrelation. The 4-banded toeplitz covariance structure successfully 

removed all residual autocorrelation. However, residual correlations remained significant for lags 

one, two and four for the spatial power structure. Though the correlation coefficients were close 

to the boundary values for lags one and four, they were nonetheless still significant. The 

conclusions were the same for both expansion methods. These results confirmed that the 4-

banded toeplitz structure was better for the data and the model evaluated. 

Table 3 provides the estimated model parameters, variance components, correlation 

parameters, as well as the AIC and BIC statistics for model (4) fitted with the 4-banded toeplitz 

and the spatial power covariance structures under the two expansion methods. All parameters 

were highly significant with p-values < 0.01. The variance components and the correlation 

parameters were later used for predicting random parameters and for making subject-specific 

predictions of stem diameters. Based on the AIC and BIC statistics, the 4-banded toeplitz 

structure was better than the spatial power structure for both expansion methods. 

  

3.2. Model validation 

Fig. 1 shows the comparison results for the overall average statistics (eqs. (13)-(15)) for 

stem diameters calibrated at the population and tree levels using one to four stem diameter 

measurements for random parameter prediction. There was a slight tendency toward over-

prediction on stem diameters, as indicated by the negative mean prediction biases (Fig. 1(a)) and 

the percent mean prediction biases (Fig. 1(b)). However, the over-predictions were very small. 
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The subject-specific predictions were always better than the population-average predictions, 

even when only one stem diameter was used for random parameter prediction. This was expected 

from a properly fitted mixed model. For SS predictions, the larger the number of stem diameters 

used, the better the predictions. Although the 4-banded toeplitz structure provided a better fit to 

the modeling data, the spatial power structure led to improved model predictions based on the 

validation data, as indicated by the mean prediction biases (Fig. 1(a)) and the percent mean 

prediction biases (Fig. 1(b)). Between the two expansion methods, zero expansion was better, 

except for SS1 in Fig. 1(a) where the two expansion methods led to similar prediction biases for 

both covariance structures. This was even more so when more stem diameters were used for SS 

predictions. When evaluated by the combined measure , the differences between the two 

covariance structures and between the two expansion methods were very small (Fig. 1(c)). 

Fig. 2 shows similar comparison results, but for tree average statistics based on equations 

(16)-(18). The same conclusions were reached. The prediction biases were in general smaller 

than their counterparts measured by the overall average statistics.  

Table 4 provides the percentages of improvement of subject-specific over population-

average predictions for the overall average statistics and tree average statistics for model (4) fitted 

by the two covariance structures and the two expansion methods. For the combined measure , the 

SS predictions were better than the PA predictions for every repetition for each covariance-

expansion combination. The percentages of improved SS over PA predictions were always 100 and 

were not listed in the table. For the overall average statistics, the percentages are the same for the 

mean prediction bias and the percent mean prediction bias since there is only one overall mean 

stem diameter. In general, we concluded the following. First, zero expansion led to higher 

percentages than eblup expansion. Second, the percentages increased steadily with the number of 

stem diameters used. When one stem diameter was used for random parameter predictions, the 

numbers ranged from 55 for the combination of spatial power structure and eblup expansion to 67 

for the combination of 4-banded toeplitz structure and eblup expansion. With three stem diameters, 

the percentages for zero expansion were above 90. Although on average the 4-banded toeplitz 

covariance structure produced less accurate model predictions, it gave similar or slightly higher 

percentages.  

For the tree average statistics, zero expansion resulted either in higher percentages over 

eblup expansion or the two expansion methods had similar results. Again, the larger the number of 

stem diameters used, the higher the percentages. For each scenario, the percentages were higher 

than their counterparts based on the overall average statistics. For example, when only one stem 

diameter was used for predicting random parameters, the mean prediction biases ranged from 67 to 

72 and the percent mean prediction biases ranged from 75 to 86, compared to 55 to 67 for the 

overall average statistics (Table 4). 

Both the overall average statistics and the tree average statistics indicated that in most 

cases three or more stem diameters were needed to ensure that subject-specific predictions were 

better than the population-average predictions. 

 

4. Discussion 
Mixed models have become a powerful and popular tool for analyzing repeatedly 

measured data. Data variation can be easily partitioned into between- and within-subject 

variations and subsequently modeled by different model components. The variance-covariance 

structure of the within-subject errors can be decomposed into two independent components: a 

variance structure and a correlation structure (Pinheiro and Bates 2000).  

Mixed models account for between-tree variation through random parameters. Two 

random parameters were found to best capture the between-subject variation for black spruce 

stem profile modeling. The inclusion of these two random parameters greatly improved the 
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model fit. In addition, the inclusion of the random parameters reduced the residual 

autocorrelations substantially, as compared to the NLS model (Table 2).  

However, even with the mixed model approach, the direct modeling of residual 

autocorrelation was still necessary since correlations between normalized residuals remained 

significant for the first 3 lags. Both the 4-banded toeplitz and the spatial power covariance 

structures further reduced residual autocorrelations. The 4-banded toeplitz structure was able to 

completely eliminate all residual autocorrelations. Inclusion of the spatial power covariance 

structure, however, did not remove all residual autocorrelations, although substantial reductions 

were observed. Similar results were reported by others (e.g., Fortin et al. 2008). These model 

fitting results favored the 4-banded toeplitz structure. However, model validation results 

indicated that the spatial power structure provided better predictions. Since the developed stem 

profile model will be used on various data sets other than the model fitting data, and because the 

spatial power covariance structure is more appropriate for unequally-space data, we recommend 

using the spatial power covariance structure for future model predictions.  

Both zero and eblup expansion methods produce reliable parameter estimates. However, 

several authors argued that eblup expansion performed slightly better than zero expansion in 

some cases but at the cost of greater computing time and instability (Pinheiro and Bates 1995, 

Wolfinger and Lin 1997). Hartford and Davidian (2000) demonstrated that eblup expansion was 

very sensitive to model specification, but less so for zero expansion. Our results showed that 

both expansion methods led to reliable model predictions, with zero expansion outperforming 

eblup expansion. Since our focus was on model predictions, zero expansion was the obvious 

choice. 

For subject-specific stem diameter predictions, we found that the larger the number of 

stem diameters used for predicting random parameters, the better the predictions. This was true 

regardless of which expansion method was used or which error covariance structure was 

modeled. Therefore, as many stem diameter measurements should be used as possible for 

making subject-specific predictions. However, even using one stem diameter measurement 

resulted in reliable predictions.   

 

5. Summary 
A variable-exponent stem profile model was developed for black spruce trees in Alberta, 

Canada using a nonlinear mixed model technique. Two random parameters were used to capture 

between-subject variation. Two covariance structures, the 4-banded toeplitz and the spatial 

power structures, were used to model within-subject residual autocorrelation. Model parameters 

were estimated by the SAS macro NLINMIX using both zero and eblup expansion methods. 

Model fitting results indicated that the 4-banded toeplitz structure provided a better fit to the 

modeling data.  

An independent validation data set was used to evaluate the predictive ability of the 

model. It was shown that the developed stem profile model was able to produce reliable 

population-average and subject-specific predictions of stem diameter, with improved predictions 

achieved at the subject-specific level. Although the 4-banded toeplitz covariance structure fitted 

the modeling data better, the spatial power structure led to better model predictions. Four 

scenarios were evaluated for making subject-specific stem diameter predictions, where one, two, 

three and four stem diameters were used for predicting random parameters. To ensure better SS 

over PA predictions, at least 3 stem diameters were needed for predicting random parameters and 

for making SS predictions. The zero expansion outperformed the eblup expansion.  
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Table 1. Summary statistics for the tree sectioning data, including the mean, standard deviation 

(SD), and data range for breast height diameter (D), tree height (H), and number of sections 

(sect) for the model fitting (304 trees) and validation data (183 trees). 

 

Data Variable Mean SD Range 

Fitting D (cm) 15.03 5.25 2.60 35.00 

 H (m) 13.02 3.84 2.95 22.70 

 sect 7.62 1.62 4 12 

    

Validation D (cm) 14.22 4.11 4.60 28.90 

 H (m) 12.97 3.70 5.31 21.79 

  sect 7.86 1.63 5 13 

 
 

 

 

 

 

Table 2. Correlation coefficients for the normalized residuals of different lags for model (2) 

fitted by nonlinear least squares (NLS), and for model (4) fitted with iid residuals and with the 

4-banded toeplitz (toep(4)) or spatial power covariance structure. The absolute boundary value 

* is for the 99% confidence interval of zero correlation for each sample size (Nm). Bold 

numbers indicate a significant correlation. 

 

Lag Nm NLS  zero    eblup  

* iid toep(4) power  iid toep(4) power 

1 2011 0.563 0.407 0.019 0.061  0.407 0.020 0.061 0.058 

2 1707 0.389 0.220 0.042 0.102  0.220 0.042 0.101 0.062 

3 1403 0.256 0.085 0.018 0.026  0.087 0.018 0.026 0.069 

4 1099 0.167 -0.045 -0.070 -0.086  -0.044 -0.070 -0.085 0.078 

5 801 0.184 0.008 0.045 0.049  0.007 0.044 0.047 0.091 

6 525 0.170 0.005 -0.001 -0.045  0.005 -0.001 -0.044 0.113 

7 295 0.142 -0.007 -0.005 -0.038  -0.003 -0.003 -0.036 0.150 

8 139 0.131 -0.009 0.008 -0.011  -0.012 0.005 -0.016 0.219 

9 55 0.013 -0.025 0.038 -0.006  -0.027 0.039 -0.002 0.348 

10 18 0.178 0.071 0.069 0.163  0.066 0.070 0.163 0.608 
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Table 3. Parameter estimates for model (4) fitted with the 4-banded toeplitz (toep(4)) and the 

spatial power covariance structure based on the model fitting data. 

 

  zero  eblup 

 parameter toep(4) power  toep(4) power 

Fixed effects a0 0.8147     0.80570      0.81680 0.80890 

 a1 1.0412    1.04510     1.04030 1.04370 

 b0 0.3434     0.33910      0.34260 0.33790 

 b1 0.4236    0.42540     0.42390 0.42550 

 b2 -0.6104     -0.59900      -0.60920 -0.59660 

 b3 0.09217     0.09143      0.09030 0.08953 

 b4 0.01581    0.01651     0.01621 0.01675 

       

Random effects 2

1
 0.000079 0.000098  0.000079 0.000098 

 2

2
 0.007956 0.009102  0.007785 0.008815 

 
12

 0.000113 0.000042  0.000119 0.000055 

 2  0.232000 0.237900  0.230800 0.237500 

       

Correlation t2 0.10900   0.10810  

 t3 0.05331   0.05279  

 t4 0.01786   0.01781  

   0.6202   0.6211 

       

Criterion AIC 3391.0 3553.7  3379.9 3541.3 

 BIC 3443.0 3598.3  3432.0 3585.9 
 

Note: 
2
is residual variance, 2

1
and 2

2
are the variances for u1i and u2i and 

12
 is covariance 

between u1i and u2i, t2 to t4 are covariance parameters for toep(4) structure, and  is correlation 

parameter for spatial power structure.  
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Table 4. Percentages of improvement of SS over PA predictions for the overall average statistics 

and the tree average statistics based on model (4) fitted with the spatial power and the 4-banded 

toeplitz (toep(4)) covariance structures by the two expansion methods.  

 

Type Criterion  n zero    eblup  

toep(4) power   toep(4) power 

Overall average  ē, ē% 1 63 62  67 55 

statistics  2 82 80  80 74 

  3 96 92  89 81 

  4 100 98  97 90 

        

Tree average  ē 1 72 67  71 67 

statistics  2 87 83  85 83 

  3 99 94  94 89 

  4 100 99  98 96 

        

 ē% 1 86 86  84 75 

  2 97 96  95 93 

  3 100 100  100 100 

  4 100 100  99 100 

 

Note: all percentages for criterion  are 100. 
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Figure 1. Comparison results for overall average statistics based on model (4) predictions at the 

population (PA) and tree levels where 1 to 4 stem diameters were used for random parameter 

prediction (SS1 to SS4): (a) the mean prediction bias, (b) the percent mean prediction bias, and (c) 

the combined measure .  
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Figure 2. Comparison results for tree average statistics based on model (4) predictions at the 

population (PA) and the tree levels where 1 to 4 stem diameters were used for random parameter 

prediction (SS1 to SS4): (a) the mean prediction bias, (b) the percent mean prediction bias, and (c) 

the combined measure . 
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