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MULTI-TRAIT QTL MAPPING USING A STRUCTURAL EQUATION MODEL 
 

Xiaojuan Mi, Kent M. Eskridge and Dong Wang  
 

Department of Statistics, Univ. of Nebraska, Lincoln, NE 68583-0963, USA 
 
Abstract 
Research on mapping quantitative trait loci (QTL) often results in data on a number of traits that 
have well established causal relationships. Many multi-trait QTL mapping methods, taking into 
account the correlation among the multiple traits, have been developed to improve the statistical 
power of the test for QTL and the precision of parameter estimation. However none of these 
methods are capable of incorporating the causal structure among the traits with the consequence 
that genetic functions of the QTL may not be fully understood. Structural equation modeling 
(SEM) allows researchers to explicitly characterize the causal structure among the variables and 
to decompose the effects into direct, indirect, and total effects. In this paper, we developed a 
multi-trait SEM method of QTL mapping that takes into account the causal relationships among 
traits.  The performance of the proposed method is evaluated by simulation study. Compared 
with single trait analysis and the multi-trait least-squares analysis, our proposed model (Multi-
trait SEM) provides important insight into how QTLs regulate traits by investigating the direct, 
indirect, and total QTL effects, which is generally not possible with other methods. The approach 
also helps with building models that more realistically reflect complex relationships among QTL 
and traits, and is more precise and efficient in QTL mapping than single trait analysis. 
 
Key words: QTL mapping; multiple traits; SEM; least squares. 
 

1. Introduction 
    Research on quantitative trait loci (QTL) often results in data on a number of traits that have 
well established causal relationships. For example, in wheat genetics it is common to collect data 
on grain yield and yield components such as, kernel weight (TKW), spikes per square meter 
(SPSM), and kernels per spike (KPS) where the causal relationships among these traits is well-
established (Dofing & Knight 1992).  A QTL may affect SPSM, KPS, and TKW, which act as 
intermediate variables and ultimately affect yield. Common single trait QTL procedures can be 
used to estimate the total QTL effects but not the direct and indirect effects. However, the 
indirect and direct effects can help to answer important questions that are not addressed by 
examining the total effect. For instance, a pleiotropic QTL can have a positive direct effect on 
grain yield, but a negative effect on a yield component. Without knowing the causal relationship, 
a breeder might select against the QTL thinking it only affects the yield component 
detrimentally, not knowing it is actually beneficial on the important trait of grain yield.  Thus the 
total effect can provide a misleading impression.  To understand the genetic effects thoroughly, 
we should understand not only their total effects, but also their direct and indirect effects through 
other traits by taking advantage of those causal relationships among traits. Such a strategy of 
QTL mapping can provide additional insight into how QTLs regulate traits directly and 
indirectly through other traits. It should also improve the power to detect the QTL and the 
precision of the location estimate.  
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    Although it is common to collect data observations on multiple traits, which are causally 
related or genetically correlated, frequently, QTLs are mapped for each trait separately using 
single trait analyses (Lander & Botstein 1989; Haley & Knott 1992; Jansen & Stam 1994; Zeng 
1994). Alternatively, several multiple traits QTL analysis (joint analysis) methods have been 
developed taking into account the correlation among multiple traits. These methods have been 
shown to improve statistical power for QTL detection and precision of parameter estimate 
compared to single trait analysis. Among the most effective approach are multi-trait maximum-
likelihood (ML) (Jiang & Zeng 1995 and Korol et al 1995, 1998), multi-trait least square (LS) 
(Korol et al. 1995, 1998; Calinski et al. 1999; Knott and Haley 2000; Hackett et al. 2001), 
principal component analysis (PCA) (Weller et al. 1996; Mangin et al. 1998; Calinski et al. 
2000), and discriminate analysis (DA) (Gilbert & Le Rol 2003). Multi-trait ML, implemented 
with the ECM algorithm, extracts maximum information from the data, but could not be 
implemented in complex data structure because of the difficulty in computations. Multi-trait LS, 
which regresses the quantitative trait value on the conditional expected genotypic value, 
produces very similar result to ML and simplifies the computation (Haley & Knott 1992). The 
PCA method transforms multiple traits into canonical variables so that the single trait analyses 
can be carried out for each canonical variable. Similarly the DA is based on the linear 
combination of the traits, specific to each tested position and analyzed by a univariate method. 
But the results of PCA and DA may be difficult to interpret. However, none of the above 
methods take advantage of causal structure among the traits. Multi-trait QTL mapping can 
provide additional insight into the genetic functions of QTL to consider causal structure. 
    Structural equation modeling (SEM) is an important method in finding the appropriate model 
and estimating the causal relationships among variables. It allows researchers to decompose the 
effects of one variable on another into direct, indirect, and total effects. Direct effects are the 
influence of one variable on another that are not mediated by any other variable. Indirect effects 
are mediated by at least one other variable, and the total effect is the sum of direct and indirect 
effects. By explicitly accounting for the causal structure among traits, SEM can provide more 
insight into multiple trait QTL analysis.  
    In this paper, we developed a multi-trait SEM method of QTL mapping using a population of 
recombinant inbred lines (RILs). The method is sufficiently flexible in that it can handle a 
variety of genetic models, such as dominance effects, epistasis, and multiple interval mapping. 
The proposed model is compared with multi-trait LS composite interval mapping and single-trait 
LS composite interval mapping in terms of the statistical power of QTL detection, and the 
precision of parameter estimate. The performance of the proposed method is evaluated by 
simulation of a RIL population, which is derived by crossing two inbred parents and repeatedly 
mating the resulting siblings for 10 generations or more to ensure that they are inbred. 

 
2. Statistical Method 

    In this section, we develop our model using a RIL population as an example applying the 
composite interval mapping method. Consider p causally related traits y1, y2 …, and yp affected 
by a QTL located between two flanking markers (A and B), and a number of genetic cofactor 
markers located on the same chromosome. There are four possible flanking marker genotypes 
(AABB, AAbb, aaBB, and aabb) and two possible QTL genotypes (QQ and qq) assuming no 
double crossover. Our approach is based on two steps.  
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Step1: Derive the conditional expected genotypic value at a given position from the observed 
flanking marker genotypes since the QTL genotype is not observed.  The genotypic effects of the 
two QTL genotypes are set at u + a and u – a for QQ and qq respectively, where u is the mean 
and a is the genetic additive effect. Haldane’s (1931) mapping function is used to transform 
genetic distance in Morgans into recombinant fraction. Then, the expected values for four marker 
genotypes can be derived in terms of the putative QTL (Table 1) (Knapp, et al., 1990; Sari-Gorla 
et al., 1997).  The coefficients (denoted as xQTL) of α in terms of recombination fractions for each 
of the four flanking marker combinations can be expressed as: 

                                

1
( ) /
( ) /
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where R=RA+RB;  RA is the recombination frequency between marker A and QTL Q; RB is the 
recombination frequency between marker B and QTL Q; R is recombination frequency between 
marker A and marker B respectively.  
Step 2: Construct the SEM by treating the coefficients xQTL of the genetic effect as observed 
values. The term SEM denotes a class of analytic techniques that usually include estimation of 
the unobserved or latent factors and of the structure of the relationships among these latent 
factors (Loehlin 1992). We restrict this paper to the special case of a SEM known as path 
analysis (Marcoulides & Schumacker 1996) where every variable in the model is directly 
measured or observed. The statistical model for mapping a QTL for multiple traits is specified in 
matrix form (Bollen 1989): 
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where yk is the phenotypic value for trait k; βkl is the regression coefficient of trait l on trait k;  αk 
is the additive effect of the putative QTL on trait k; xQTL is the calculated coefficient of the 
additive QTL effect; γkj is the regression coefficient of cofactor marker j on trait k, assuming q 
markers are selected as cofactor markers to control the variation from these QTLs; xj is the 
genotype of the jth cofactor marker, which takes values of 1 and -1  for marker genotype MM 
and mm respectively; and ek, the residual effect on trait k which is assumed to be multivariate 
normally distributed with means zero and covariance matrix  
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Model (1) is more compactly written as 
y = Βy +Γx + ζ ,  where ~ (0, ) Nζ Ψ                            (2) 

Where y is a p x 1 vector of yk, B is the p x p coefficient matrix (contains βs) that describes the 
causal relationships among the p traits, where 1( )−−I B  exists; Γ  is the p x (q+1) coefficient 
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matrix (contains αks and γkjs) that describes causal relationship between endogenous variables 
(traits); and exogenous variables (QTL and markers); x is a (q+1) x 1 vector of exogenous 
variables, which include xQTL and q cofactor markers used for background control, and ζ , a p x 1 
vector of errors, is assumed to be multivariate normally distributed with mean zero and 
covariance matrix Ψwhich is diagonal. Elements in , ,B Γ Ψ are parameters that need to be 
estimated. 
    We consider only recursive models, which are characterized by the fact that the matrix B is 
upper triangular. This assumption is reasonable in many domains, since it basically forbids 
feedback causation. 
Parameter estimation: Under the SEM, the unknown parameters are estimated so that the 
model implied covariance matrix ( )Σ θ is close to the sample covariance matrix S. The closeness 
requires a fitting function based on ( )Σ θ  and S to be minimized. The commonly used fitting 
functions for SEM are maximum likelihood (ML): 

1
ML log | ( ) | tr( ( )) log | | ( 1)F p q−= + − − + +Σ θ SΣ θ S  

where 
( ) ( ) ( ) ( )
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⎛ ⎞
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`
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Σ Σ
S

Σ Σ
 is the observed sample covariance matrix among manifest variables, p is the 

number of traits, and q +1 is the number of cofactor markers including one for the QTL.  
Although ML is based on the assumption of multivariate normality, its estimation procedures are 
robust to moderate violation of this assumption (Joreskog and Sorbom 1989; Bollen 1989).  
Hypothesis tests: For QTL mapping, we are most interested in the existence of a QTL. The 
hypothesis test can be formulated as: 
H0: α1 = α2,…, = αp = 0 (restricted model, i.e., the putative QTL does not exist) 
HA: at least one of them is not zero (unrestricted model, i.e., the putative QTL exists) 
 The Likelihood Ratio (LR) statistic is 

2[log ( ) log ( )]r uLR L L= − −θ θ
� �

 

where rθ
�

is the estimator under the restricted model, and uθ
�

 is the estimator under the 
unrestricted model. LR is approximately chi-square distributed when the restricted model is true. 
The degrees of freedom is the difference in the degrees freedom for the two models. In the SEM 
framework, the LR statistic is calculated as the difference in the usual chi-square estimators for 
the restricted and unrestricted models, with the degrees freedom equal to the difference in 
degrees of freedom between the two models (Bollen 1989). Because the test is performed for a 
number of intervals, the distribution of the maximum LR statistic is very complicated. Therefore, 
it is difficult to determine an exact significance critical value. Zeng (1994, 1995) suggested that 
the error rate of the test per interval, a, can be approximated by using the Bonferroni correction, 
that is, use χ2

α/M, m+1 to approximate the critical value of the test where M is the number of 
intervals involved in the test, m is the number of traits including one for the position of the 
putative QTL. 
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    Note that, the multi-trait SEM and the multi-trait LS models have similar structure, but are 
used to test different hypotheses of QTL effects, and estimate different parameters. With the 
multi-trait SEM, the existence of direct QTL effects is tested, and the total, indirect and direct 
QTL effects are estimated. While with the multi-trait LS approach, the existence of the total QTL 
effects are tested, and only the estimates of the total QTL effects are provided.  
 

3. Simulation Study 
    We investigated the multi-trait SEM method by simulation experiments. The data were 
simulated for 100 replicates of 300 lines from a RIL population. On a single chromosome 
segment of length 100 cM, 11 evenly spaced markers were simulated. A single additive QTL 
was placed at 42 cM to affect three traits, which are causally related as in Figure 1, where Y3 is 
yield component 3, Y2 is yield component 2, and Y1 is yield.   

    The phenotypic values for each individual are determinated by the equation (3),  the causal 
relationship among traits, effects of QTL sampled (where QTL takes values of 2 and 0 for 
genotype QQ and qq respectively), and random residual effects were sampled from the 
multivariate normal distribution with mean zero and covariance matrix (4). 

1 1 1

2 2 2

3 3 3

0 0.5 0.25 0.125
0 0 0.5 0.5
0 0 0 0.25

y y
y y QTL
y y

ε
ε
ε

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎡ ⎤
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥= − + +⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎝ ⎠ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦
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1.6 0 0
0 1.8 0
0 0 2.5

⎛ ⎞
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⎜ ⎟
⎝ ⎠

Ψ                     (4) 

    Prior to the analysis, a test of multivariate normality was performed for all observed variables. 
The results show that the Mardia and Henze-Zirkler multivariate tests reject the multivariate 
normality but the multivariate plot indicate approximate normality, suggesting a minor violation 
of multivariate normality. The parameter estimates from multi-trait SEM are obtained by 
minimizing the ML fitting function in this study. 
    A single QTL was tested sequentially at each 1-cM point along the chromosome. Since 
markers are evenly distributed and widely separated, all markers except flanking markers are 
fitted in the model to control the genetic background (Jiang & Zeng 1995). Multi-trait SEM, 
multi-trait LS, and single-trait LS were applied at 1cM segments of the chromosome. Means and 
standard deviations of all parameter estimates were calculated from 100 replications (Table 3). 
The statistical power was determined by the proportion of the number of runs over 100 replicates 
with test statistic values greater than a critical value.  We used χ2

0.005/4=14.86 (approximated by 
the Bonferroni correction (Jiang & Zeng 1995)) as the critical value for the multi-trait SEM and 
the multi-trait LS, and χ2

0.005/2=10.60 for the single-trait LS. The overall power was calculated as 
the proportion of times the QTL was detected for at least one of the three traits. 

 
 

4. Results 
        Table 2 shows the observed power of detection of the QTL over 100 replicates by three 
different mapping methods. The power of multi-trait SEM is very close to that of the multi-trait 
LS, because both methods use a multivariate approach with the same observed covariance 
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matrix. The QTL detection power for the two multi-trait analysis methods was much higher than 
that of single-trait analysis. This likely resulted because the pleiotropic QTL has a larger positive 
direct effect on Y2 but a negative indirect effect, which in turn reduces the total QTL effect on 
Y2. The relatively small QTL effects associated with Y1, Y2 and Y3 may not be detected using 
single trait LS. Multi-trait SEM QTL analysis would be most effective when the direct and 
indirect effects of a QTL are in opposite directions. If the direct and indirect QTL effects are in 
the same direction, the power of the SEM multi-trait analysis may be less than the overall power 
of single-trait analysis since the single-trait method tests the total QTL effect. In such a situation, 
the total QTL effect should be larger than either of the direct or indirect effects tested with the 
multi-trait SEM approach. Based on our QTL detection power analysis, both multi-trait methods, 
multi-trait SEM and multi-trait LS, perform substantially better than single-trait LS analysis. 
    Table 3 shows the estimates (and standard deviations) of QTL effects and positions resulting 
from the three different mapping methods. All estimates are relatively unbiased with high 
precision except the QTL position estimates from the single-trait LS method, which display 
markedly higher standard deviation. In general, the precision and accuracy of estimating QTL 
positions and effects by multi-trait SEM and multi-trait LS are much greater than single-trait LS. 
However, the multi-trait SEM is favored over the multi-trait LS and single-trait LS analyses 
because direct and indirect QTL effects can be detected.  
    The likelihood ratio test statistic profiles were plotted against the chromosome position 
(Figure 2) to compare the three methods of QTL detection. The QTL profiles of the two multi-
trait methods (multi-trait SEM and multi-trait LS) were nearly identical with clear peaks at 42 
cM. The QTL profiles of the single-trait LS method identified peaks at the same chromosome 
position but did not display LR values as high as either multi-trait method.  This indicates the 
single-trait LS method has a lower chance of detecting the QTL effects in this example when the 
total QTL effect is reduced due to compensating effects among traits.  
 

5. Discussion and Conclusion 
    We have presented a multi-trait SEM method for QTL mapping, taking into account the causal 
relationships among multiple traits, extending the work of Knott and Haley (2000). The 
performance of the method was illustrated using simulated data. The advantages of the multi-trait 
SEM over the multi-trait LS and the single-trait LS are: it provides important insight into how 
QTLs regulate traits by allowing investigation of the direct, indirect, and total QTL effects, 
which is impossible with other methods. Knowledge of these effects can be very important for 
plant breeders who would like to (1) break the unfavorable indirect QTL effects; (2) obtain more 
precise and efficient estimates and tests in QTL mapping than possible in the single trait 
analysis; (3) and who would value statistical methods that can be simply performed using 
commonly available statistical software such as SAS, or Mplus.  
    A prerequisite of the proposed method is prior knowledge of the causal relationships among 
the multiple traits, since SEM is generally as a confirmatory rather than exploratory procedure. 
Theoretical insight and judgment by the researcher is very important in building a model. In 
practice, one can obtain some basic background about the key structure of the model either from 
knowledge of the related field or from preliminary data analysis. Other applications likely may 
require more model development based on procedures described elsewhere (eg see Bollen, 
1989).     
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    The model considered in this paper was illustrated using a RIL population to provide a general 
idea of the nature of QTLs affecting the traits, and did not include epistatic effect of the markers 
or QTL. However, the general formulas can be easily applied to obtaining the MLEs and 
evaluating the likelihoods for different population structures (such as F2, backcross), and genetic 
models by setting up the corresponding conditional QTL genotype probability and genetic x 
matrix. In addition, it is also possible to test pleiotropic effects against close linkage and gene by 
environment interactions at a given genome position where the presence of a QTL is indicated by 
joint mapping. Although the proposed multi-trait SEM approach may not always be appropriate 
for every QTL mapping application, it does provide an attractive complementary method to 
understand complicated biological pathways and systems using available marker and phenotypic 
trait data. 
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QQ qq
AABB 1 0 u  + a
AAbb R B /R R A /R u + a (R B -R A )/R
aaBB R A /R R B /R u  + a (R A -R B )/R
aabb 0 1 u  - a

Table 1. Expected genotypic values for all possible flanking marker genotypes in a RIL population 
assuming no double crossover

Marker 
Genotype

Probability of QTL genotype Expected genotypic 
value

where R A =2 r A /(1+2r A ); R B =2r B /(1+2r B ); R =r A +r B , where R A  and r A  are the recombination frequency and 
genetic distance (in cM) between marker A  and QTL Q, R B  and r B  are the recombination frequency and genetic 
distance (in cM) between marker B  and QTL Q , R  is the recombination frequency between marker A  and B 
respectively
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Single trait Overall*

Y1 2
Y2 39
Y3 4

*Power QTL was detected for at least one of the three traits

Table 2. QTL detection power of multi-trait SEM, multi-trait LS, and single-trait LS 
methods of QTL analysis

Power (α = 0.05)

Single-trait LS 42

Multi-trait LS 90

multi-trait SEM 91

Methods Trait

 
 
 
 
 

Methods Trait Total Direct Indirect
Y1 0.125 -0.125 0.250
Y2 0.375 0.500 -0.125
Y3 0.250 0.250 0.000

Y1 0.127  (0.147) -0.130  (0.128) 0.258  (0.073)
Y2 0.410  (0.151) 0.525  (0.119) -0.115  (0.076)
Y3 0.234  (0.152) 0.234  (0.151) 0

Y1 0.125  (0.147)
Y2 0.409  (0.150)
Y3 0.234  (0.151)

Y1 50.4  (24.02) 0.126  (0.145)
Y2 43.6  (13.75) 0.407  (0.149)
Y3 45.1  (21.71) 0.232  (0.151)

Table 3. Parameters and estimates of QTL Positions and effects in the Simulation

Multi-trait LS 42.2  (1.84)

Single-trait  LS

Position           
(CM)

Putative QTL Effect

Parameters 42

Multi-trait SEM 42.2  (1.84)

Estimates are means over 100 replicates with standard deviation in parentheses, by the joint mapping on three traits 
(multi-trait SEM and multi-trait LS) and by the separate mapping on each trait (single-trait LS).
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     Figure 1. The path diagram of the simulation model 
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Figure 2. Results of QTL mapping on three traits from an RIL population using three mapping 
methods.  The average Likelihood ratio test statistics over 100 replicates are plotted at every 1 cM 
position of a chromosome. Multi-trait SEM and multi-trait LS are the joint mapping on three trait using 
SEM and least-squares respectively, S_Y1 is the separate mapping on trait Y1, S_Y2 is the separate 
mapping on trait Y2. S_Y3 is the separate mapping on trait Y3.The data were generated with a single 
additive QTL located at 42cM to affect three traits. Eleven markers on a 100 cM chromosome were 
simulated and used in the analyses.   
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