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A TWO-STAGE APPROACH FOR ESTIMATING THE EFFECT OF DNA 
METHYLATION ON DIFFERENTIAL EXPRESSION USING TILING ARRAY 

TECHNOLOGY 
 

Suk-Young Yoo and R.W. Doerge 
Department of Statistics 

Purdue University 
150 North University Street  

West Lafayette, IN 47907 USA 
 
Abstract 
Epigenetics is the study of heritable alterations in gene function without changing the DNA 
sequence itself. It is known that epigenetic modifications such as DNA methylation and 
histone modifications are highly correlated with the regulation of gene expression. A two-
stage analysis is proposed that employs a hidden Markov model and a linear model to 
evaluate differential expression as related to DNA methylation for the purpose of examining 
the effects of DNA methylation on gene regulation using tiling array technology. In the first 
stage, a hidden Markov model (HMM) is employed to estimate the methylation status per tile 
by utilizing information of neighboring tiles. In the second stage, a linear model is applied to 
the expression data to identify significantly differentially expressed tiles given the changes in 
methylation status. The two-stage analysis is applied to Arabidopsis chromosome 4 tiling 
array data and the results are compared with a traditional ANOVA model which has been 
employed to identify significantly differentially expressed genes using microarray data. 
 
Keywords: epigenetics, epigenomics, methylation, histone modification, tiling array, hidden 
Markov model, ANOVA model 
 
1. Introduction 

Recently, there has been growing interest in investigating epigenetic mechanisms as 
related to regulation of gene expression. Epigenetics is the study of heritable alterations in 
gene function without changes in nucleotide sequence. Epigenomics is the genome-wide 
study of the distribution of epigenetic modifications in the genome. DNA methylation and 
histone modifications are the two main examples of epigenetic modifications and it is known 
that epigenetic modifications are highly correlated with regulation of gene expression, 
genome imprinting and gene silencing (Vaillant and Paszkowski 2007). DNA methylation is 
achieved by attaching a methyl group (CH3) to DNA, typically at cytosine bases (C) (Figure 
1). In plants, DNA heterochromatin, which has been defined as a tightly packed chromosomal 
region (Heitz 1928), is heavily methylated and is associated with gene silencing (Lippman et 
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al. 2004).  It has been demonstrated that cytosine methylation controls gene expression of 
developing seeds, flowering time and floral morphogenesis (Hakabatashi et al. 2005). 
Similarly, histone modifications occur when a different combination of molecules (i.e., 
methyl (Me), acetyl (Ac3), etc.) attach to a histone tail (Figure 1).  Histone modifications 
also play an important role in transcriptional stimulation or repression.  For example, in 
plants, dimethylation of lysine 9 and lysine 27 of histone H3 (i.e., H3mK9, H3mK27) with 
heavy DNA methylation is associated with the transcription repression in heterochromatin. 
On the other hand, dimethylation of lysine 4 of histone H3 (i.e., H3mK4) is connected with 
transcription activation in euchromatin (a lightly packed chromosomal region) (Grewal and 
Jia 2007; Kouzarides 2007; Vaillant et al. 2007). Furthermore, it has been shown that histone 
acetylation and deacetylation correlate with gene activation and repression, respectively 
(Nelissen et al. 2007). In this study, we focus on investigating the correlation between DNA 
methylation and gene expression. 

Microarray technology has been widely used to monitor tens of thousands of genes 
simultaneously. It has also been successfully employed in epigenomic research for evaluating 
epigenomic modifications. To detect methylated regions of the genome a sample is split into 
two subsamples.  One subsample acts as the control (i.e., methylation in its unaltered state) 
and the other subsample is treated.  Typical treatments for establishing methylation status 
are either McrBC (methylation-dependent restriction enzyme) or bisulfite modification. For 
the bisulfite modification treatment, unmethylated cytosines (C) are converted to uracils (U), 
whereas McrBC cleaves DNA containing methylated C’s (Shi et al. 2003; Lippman et al. 
2005). In order to identify which features are methylated, McrBC or bisulfite treated and 
untreated DNA samples are hybridized to microarrays and by comparing treated and 
untreated samples, methylation status can be evaluated.  

Tiling microarray technology (Mockler and Ecker 2004) has become a popular tool 
for studying gene expression, methylation, and histone modifications across a whole genome 
with high-density probes (Emanuelsson et al. 2007; Gendrel et al. 2005; Johnson et al. 2006; 
Li et al. 2008; Lippman et al. 2005; Schumacher et al. 2006; Wu et al., 2006; Zhang et al. 
2006; Zilberman el al. 2007). Tiling arrays are similar to cDNA and oligo microarrays, but 
consist of DNA sequences or probes that are not necessarily genes. Unlike cDNA or oligo 
arrays, tiling arrays are comprised of linearly ordered and sometimes overlapping tiles. 
Because of the underlying linear order, neighboring tiles can be correlated with each other. 
Effectively utilizing information from neighboring tiles is one of the current statistical 
challenges when studying biological processes using tiling array technology.   

Although epigenomic research has added to our understanding of biological 
phenomena, to date little work has been done to establish novel statistical methods that 
exploit the relationship between epigenetic modifications and gene expression.  In this 
research, we concentrate on differential expression (i.e., transcription) and DNA methylation 
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tiling array experiments to introduce an ANOVA model and hypothesis tests for analyzing the 
individual tiling array data that result from each unique investigation (i.e., expression and 
methylation). A novel statistical approach, a two-stage analysis, is proposed to investigate the 
effects of methylation status on gene regulation. Our two-stage analysis employs a hidden 
Markov model and a linear model to combine data and results from both methylation and 
differential expression tiling arrays.   
2. Analysis of tiling array data 
Differential Expression: Analysis of variance (ANOVA) models (Kerr et al., 2000; Kerr and 
Churchill, 2001) have been employed to analyze tiling microarray data.  When dye-labeled, 
an experimental design (e.g., dye-swap) that is popular with cDNA microarray analysis can 
be employed. The ANOVA model using a common variance assumption (i.e., all tiles have 
the same level of variation) is: 

log( )ijkgr i j k g ig jg kg ijkgry A D G T AT DT GTμ ε= + + + + + + + +                        (2.1) 

where 1, , ;  1,2;  1,2;  1, , ,  and 1, , ;  a ug gi n j k g n r n μ= ⋅⋅⋅ = = = ⋅⋅⋅ = ⋅⋅⋅  is the grand mean, and A, 

D, G and T are the array, dye, genotype (or treatment) and tile effects, respectively.  
Moreover, AT, DT and GT are the interactions between array and tile, dye and tile, and 

treatment and tile, respectively. The number of arrays is denoted as an , ugn is the number of 

unique tiles, and gn is number of replicates of each tile.  The error term, ijkgrε , is an 

independent random variable from a normal distribution with mean 0 and variance 2σ . The 
hypotheses tested for identifying differentially expressed (i.e., transcription) tiles are: 

0 1 1 2 2 1 1 1 2 2:  G   vs  :  G  g g g gH GT G GT H GT G GT+ = + + ≠ +                        (2.2) 

where G and GT are treatment effect and interaction between treatment and tile (Black, 2002).  
 
Methylation: To identify significantly methylated tiles, samples treated with McrBC or 
bisulfite are compared with untreated samples (Shi et al., 2003; Lippman et al., 2005; 
Schumacher et al., 2006). To identify significantly methylated tiles, control tiles are often 
used for relative comparisons. Control tiles are selected based on their lack of methylation 
(confirmed by independent laboratory techniques) and the median difference of intensities 
between treated and untreated control tiles serves as a basis for testing methylation. The 
hypotheses for identifying significantly differentially methylated tiles, adjusted using control 
tiles, are: 

0 1 1 2 2 0 1 1 1 2 2 0: ( ) ( )  vs : ( ) ( )g g g gH G GT G GT H G GT G GTμ μ+ − + = + − + >               (2.3) 
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where 0 1 1 2 2median{( ) ( ),  g is a control}g gG GT G GTμ = + − + .                       (2.4) 

A one-tailed t-test is performed to test the hypotheses (2.3) since methylation can be detected 
or not (i.e., one direction). This is in contrast to differential expression tiling array 
experiments where tiles can be down- or up-regulated (i.e., both directions) when two 
genotypes or samples are compared, and thus a two-tailed test is employed.  
 
3. A two-stage analysis 
3.1 First stage: a hidden Markov model 

In the first stage of the proposed two-stage analysis, a hidden Markov model (HMM) 
is employed to estimate the methylation status of each tile. Since tiles span the genome in an 
ordered linear fashion, information from neighboring tiles may add valuable information to 
the evaluation of per tile expression or methylation. In the HMM, the methylation status is 
defined as hidden states and information from adjacent tiles is incorporated by including their 
methylation status in the hidden states. Based on this, hidden states are combinations of 
methylation status of three tiles (i.e., tiles, i-1, i, i+1; Figure 2). The observable output is the 
observed methylation status of tile i. Using defined hidden states, the methylation status of 
the set of adjacent tiles (tiles i-1, i+1), as well as the methylation status of tile i, have an 
effect when methylation status is observed for tile i. Since the methylation status of each tile 
is a binary variable (i.e., 1 for methylated tiles and 0 for unmethylated tiles), there are 8 
possible hidden states. The hidden states employed in this application are illustrated in Figure 
2. Based on the hidden states in Figure 2, the parameters of HMM can be defined (Rabiner 
1989). Let N be the number of hidden states (N = 8). Let M denote the number of distinct 
observations per state. Since each tile can be 0 if the tile i is not methylated and 1 if tile i is 

methylated, M=2.  Define { }1 8, ,S S S= "  to be the individual hidden states. Specifically,  

{ }1 8, ,S S S= " = { (1,1,1), (1,1,0), (1,0,1), (0,1,1,), (1,0,0), (0,1,0), (0,0,1), (0,0,0)}.  

Let { }1 2,V v v= denote the observed methylation status of tile i and V= {0, 1}. If tq  is the 

state at time t, then the initial state distribution is 

{ }1 ,  1 8.iP q S iπ = = ≤ ≤                     (3.1) 

The state transition probability distribution is 

1 | ,  1 , 8,ij t j t ia P q S q S i j+⎡ ⎤= = = ≤ ≤⎣ ⎦   and                                 (3.2) 

the observation probability distribution in state j is 
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 at | ,  1 8 , 0,1.j k t jb P v t q S j k⎡ ⎤= = ≤ ≤ =⎣ ⎦                                     (3.3) 

Using the Viterbi algorithm, the methylation status is estimated for the given observed 
methylation status of tiles (Viterbi 1967). 
 
3.2 Second stage: an ANOVA model 

The second stage of the proposed approach incorporates the estimated methylation 
status for each tile (as was determined in the first stage) into an ANOVA model for the 
purpose of testing each tile for differential expression given the changes in methylation status. 
The ANOVA model for the second stage is: 

log( )ijkl i j k ij ik jk ijkly X M T XM XT MTμ ε= + + + + + + +                            (3.4) 

where 0,1;  j 0,1;  1, , ,  and 1, , ;  i k n l a μ= = = =… …  is the grand mean, and X, M, and T are 
the genotype, methylation, and tile effects, respectively. Additionally, XM, XT and MT are 
the interactions between treatment and methylation, treatment and tile, and methylation and 
tile, respectively. The number of unique tiles is denoted by n and a is the number of replicates 

per tile. ijklε is the error term which is an independent random variable from a normal 

distribution with mean 0 and variance 2σ . The hypotheses for identifying significantly 
differentially expressed tiles given the changes in methylation status are 

0 0 1 1 1 1 0 0 1 1:    vs :  .k k k kH M MT M MT H M MT M MT+ = + + ≠ +                      (3.5) 
To accommodate the multiple testing issues, the false discovery rate (FDR) and Holm 
procedures are used to control the significance level, alpha = 0.05 (Holm 1979; Benjamini 
and Hochberg 1995). 
 
3.3 Application to Arabidopsis chromosome 4 tiling array data  
 The proposed two-stage analysis was implemented in the software package R and 
applied to the Arabidopsis chromosome 4 tiling array data from Lippman et al. (2004). In this 
study, tiling array experiments were conducted to test for differential expression between wild 
type and ddm1 (decreased in DNA methylation 1) mutant, as well as test for methylation 
within both wild type and ddm1.  The same tiling array design was employed for all three 
studies (i.e., differential expression, methylation status for wild type, and methylation status 
for ddm1).  In other words, the same tiles were employed to study both differential 
expression and DNA methylation. There were 1724 unique tiles which spanned chromosome 
4 in an ordered, overlapping linear manner.  For each experiment, tiles were replicated two 
to six times so that the total number of tiles in each experiment is 3822 or 5724. For 
differential expression, 6 arrays were employed (one and two dye swaps using two biological 
replicates), while 4 arrays were used in the methylation tiling array experiments (two dye 
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swaps using one biological sample). First, an ANOVA model (2.1) was performed for the 
individual analyses of differential expression and methylation. After FDR adjustment, 785 
tiles were identified as significantly differentially expressed between wild type and ddm1. For 
DNA methylation, McrBC treated and untreated DNA samples were compared for both wild 
type and ddm1 independently (i.e., two separate experiment). 800 tiles in the euchromatin 
were employed as control tiles, and the median difference of intensity (as defined in equation 
(2.4)) between McrBC treated and untreated control tiles was calculated for the hypothesis 
tests (2.3). In wild type 743 tiles were significantly methylated by adjusting FDR, whereas 
only 152 tiles were found methylated in ddm1, which are predictable results since DNA 
methylation is depleted in ddm1.  
 In order to understand the value of the proposed two-stage analysis it was employed 
to test differential expression given the methylation status of wild type and ddm1. 
Methylation status was estimated using a HMM (parameters of HMM are shown in Table 1). 
The methylation results from the first stage were include in the ANOVA model (3.4) to 
identify statistically significantly differentially expressed tiles as related to methylation status. 
Using an FDR adjustment 286 tiles were found statistically significantly differentially 
expressed given their methylation status. The results from the proposed two-stage analysis 
are compared with the results from a traditional ANOVA analysis (2.1) for differential 
expression (Table 2 and Figure 3). It is known that the region identified between tile IDs 401 
and 1000 on chromosome 4 is a heterochromatic region. The statistically significant 
differentially expressed tiles (273 using Holm and 785 using FDR) from an ANOVA (2.1) are 
distributed across the whole chromosome 4 (Figure 3a). In contrast, the majority of the 
statistically significant tiles (241 out of 286 using FDR) identified from the two-stage 
analyses are located in the heterochromatin region (Figure 3b). Specifically in wild type, tiles 
are heavily methylated in the heterochromatic region, but in ddm1 methylation is 
significantly depleted for many tiles. Thus, changes in methylation status were detected for 
many tiles found in the heterochromatin. These results provide evidence that the presence of 
DNA methylation is highly correlated with repression of transcription.  
 
4. Summary 
 A novel statistical method was developed to integrate the results from methylation 
with differential expression data using tiling array technology. Traditionally, when 
investigating the relationship between differential expression and epigenetic modifications 
(i.e., DNA methylation and histone modifications), individual analyses are conducted and 
results combined graphically to provide visual summaries (Lippman et al. 2004; Zhang et al. 
2006; Li et al. 2008). Through this research a novel two-stage analysis combined results from 
DNA methylation with data from differential expression tiling array experiment using a linear 
statistical model (ANOVA) to test the effect of DNA methylation on regulation of gene 
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expression. By employing a traditional ANOVA model (2.1) significantly differentially 
expressed tiles between two samples (here, genotypes) can be found. On the other hand, by 
applying the proposed two-stage analysis, it is possible to identify tiles that are significantly 
differentially expressed given their methylation status.  Other work that has been completed 
and presented elsewhere, or that is currently underway includes simulations that explore both 
the statistical power of the two-stage analysis, as well as the benefit of incorporating histone 
modifications into the second stage of the proposed approach.  
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Figure 1. Two examples of epigenetic modifications. DNA methylation occurs by adding a 
methyl group (CH3) to a DNA base, typically at base C. Generally, DNA methylation 
represses transcription. Histone modifications occur by attaching various molecules (e.g., 
methyl and acetyl) to histone tails which in turn may influence the activity of the DNA 
wrapped around the histone (Shi et al. 2003). 
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Figure 2. All possible hidden states for a hidden Markov model (HMM). Each state 
represents the methylation status of tiles i-1, i, i+1 in single base pair transitions from left to 
right through the possible methylated DNA base pairs (i.e., the i+1 state in the current state 
becomes the ith state in the transition state). A binary variable represents the methylation 
status of each tile, where 0 is an unmethylated tile and 1 denotes a methylated tile. Arrows 
represent all possible transitions from state to state. 
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Table 1. Parameters used for the HMM in the first stage of the proposed two-stage analysis. 
The initial state distribution, the observation probability distribution, and the transition 
probability distribution used for the HMM in the two-stage analysis of Arabidopsis 
chromosome 4 tiling array data are presented. 
 

Initial state distribution Observation probability distribution 

P((1,1,1))=0.1557 

P((1,1,0))=0.0374 

P((1,0,1))=0.0113 

P((0,1,1))=0.0374 

P((1,0,0))=0.0551 

P((0,1,0))=0.029 

P((0,0,1))=0.0551 

P((0,0,0))=0.6189 

P(0|(1,1,1))=0.1 

P(0|(1,1,0))=0.3 

P(0|(1,0,1))=0.5 

P(0|(0,1,1))=0.3 

P(0|(1,0,0))=0.7 

P(0|(0,1,0))=0.4 

P(0|(0,0,1))=0.7 

P(0|(0,0,0))=0.95 

P(1|(1,1,1))=0.9 

P(1|(1,1,0))=0.7 

P(1|(1,0,1))=0.5 

P(1|(0,1,1))=0.7 

P(1|(1,0,0))=0.3 

P(1|(0,1,0))=0.6 

P(1|(0,0,1))=0.3 

P(1|(0,0,0))=0.05 

Transition probability matrix 
 

0.86 0.14 0 0 0 0 0 0
0 0 0.2 0 0.8 0 0 0
0 0 0 0.64 0 0.36 0 0

0.58 0.42 0 0 0 0 0 0
0 0 0 0 0 0 0.16 0.84
0 0 0.14 0 0.86 0 0 0
0 0 0 0.55 0 0.45 0 0
0 0 0 0 0 0 0.08 0.92

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
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Table 2. Results from a traditional ANOVA model (2.1) and the two-stage analysis (3.4). 
Number of significant tiles identified using Holm and FDR adjustments are presented.  The 
numbers in parentheses are the number of significant tiles located in the heterochromatin. 
 

 ANOVA model (2.1) ANOVA model (3.4) 
Holm 273 (229) 173 (154) 
FDR 785 (329) 286 (241) 
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(a) Results from a traditional ANOVA (2.1)      (b) Results from a two-stage analysis 
 

Figure 3. Results from the traditional ANOVA model (2.1) are shown in (a).  Results from 
the ANOVA model (3.4) are shown in (b). The data are Arabidopsis chromosome 4 tiling 
array data (Lippman et al. 2004). In both plots, the Y axis is an average of log fold changes 
for each tile and the X axis is tile ID. Moreover, red points represent significantly identified 
tiles using both Holm and FDR and blue points represent significantly identified tiles using 
FDR only. Positive values of log fold changes indicate that tiles are more expressed in wild 
type when compared to ddm1. The region between tiles ID between 401 and 1000 is the 
heterochromatin region. (a): Significant tiles identified using an ANOVA model (2.1) are 
distributed across the whole region of chromosome 4. Most significant tiles in the 
heterochromatin region are downregulated. (b): The majority of the significant tiles are 
located in the heterochromatin region, and those tiles are significantly differentially expressed 
given changes in methylation status. 
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