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An Estimator of Treatment Effects
Under Combined Sampling and

Experimental Designs

Christina D. Smith
Kansas State University

Abstract

Sampling design and experimental design have developed relatively independently in recent

statistical history. However, many studies do involve both a sampling design and an ex-

perimental design. For example, a polluted site may be exhaustively partitioned into area

plots, a random sample of plots selected, and the selected plots randomly assigned to three

clean-up regimens. To date there is no commonly used procedure for incorporating both

the sampling design and the experimental design into the estimation of treatment effects.

For this reason we will consider an estimator of treatment effect that does incorporate both

sampling and experimental designs and discuss some of it’s properties.

1 Introduction

In observational studies, much attention is given to the sampling design (e.g., simple random

sampling, stratified sampling, cluster sampling, etc.) so that the realized sample is as rep-

resentative of the population as statistically possible. Then the selected sample is observed

for certain characteristics, that is, response variables. In designed experiments, usually little

or no statistical attention is given to the how units become candidates for the experiment,

but much statistical attention is given to the assignment of treatments to these units (e.g.,

completely randomized, randomized complete block, split plot, etc.). Then certain response

values are observed that are thought to be influenced by the treatments. These two types of

studies have very different objectives, yet many studies involve both a sampling design and
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an experimental design. For example, a polluted site may be exhaustively partitioned into

area plots, a random sample of plots selected, and the selected plots randomly assigned to

three clean-up regimens.

More specifically, the finite sampling approach to a statistical study is based on the idea

that the population of interest is finite and fixed, with N units uniquely labeled i = 1, 2, ..., N .

The observed response values on the units in the population, y = y1, ..., yN , are fixed (non-

stochastic) but unknown. Often sampling is only thought to be associated with surveys,

where interest is only in describing the population. However, when the researcher wishes to

compare treatments but has no control over how treatments are assigned to the members

of the population, proper sampling allows the researcher to make causal conclusions from

the response values. This is referred to as an analytic survey (Smith and Sugden, 1988,

Thompson, 2002).

In designed experiments, the primary objective is to make comparisons between treat-

ments for the purpose of determining causal effects. For this reason experimental researches

give considerable attention to procedures for assigning treatments to experimental units so

that bias is reduced and generalization to the population is reasonable. Typically, experi-

mentalists use a stochastic approach to these statistical studies that treats the population

of units as infinite and the response variables, Y1, Y2, ..., as stochastic with respect to some

probability density function, such as, the normal distribution in classical ANOVA.

In both sampling and experiments, a response can only be observed for one treatment

level for each unit at one time. For example, one cannot observe a response for both treatment

and control on a single unit at the same time (e.g. a unit cannot be exposed to a pollutant

and not exposed simultaneously). So, treatment differences cannot be identified based on

observing one unit. Thus, for the set of responses actually observed, there is a corresponding

set of unobservable responses from treatments that might have been applied (Smith and

Sugden, 1988, Thompson, 2002). Therefore, one may prefer to study the treatment means

for the units in the experiment. This will be discussed further in the next section.

Recently more interest has been generated in studying the unification of sampling and

experimental design approaches to statistical studies. Depending on the type of study, the

researcher may have limited control over the design aspects of the the study or may be able

to completely specify the sampling and experimental designs. For example, when units are
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selected by simple random sampling and treatments are assigned to the resulting sample

of units using a completely randomized design, the researcher has complete control of the

sampling and experimental designs, and every treatment combination has equal probability

of being observed (Thompson, 2002). When only a survey is conducted, such as in an

observational study, the researcher has control over the sampling design, but may not have

control over the treatment assignments. Often when designed experiments are conducted,

the researcher controls the treatment assignments to units, but may not be able account for

how the units were selected for inclusion into the experiment, for example when a sample of

convenience is used. Table 1 is a reproduction from Smith and Sugden (1988) illustrating

this relationship between sampling and experiments.

The current discussion will address the issue of estimating treatment effect when units

have been sampled from the population via a sampling design and treatments have been

applied to those units via some experimental design. First, the basics of sampling designs and

experimental design will be reviewed. Then an estimator for treatment effect under combined

sampling and experimental design, proposed by Thompson (2002), will be developed. Finally,

we will present some properties of Thompson’s estimator.

2 The Basics

In this section we will review some basics that will be a foundations for the development

of Thompson’s estimator in the next section. First, a concise review of finite population

sampling is given. Then the Horvitz-Thompson estimator, which gives a basis for the form

of Thompson’s estimator, will be reviewed and discussed. Finally, we will give a brief review

of experimental design.

2.1 Review of Finite Population Sampling

A finite population, U = {u1, u2, ..., uN}, is a set of units, ui, of fixed size N , where N may

or may not be known, and where each unit in U is assigned a unique label, i = 1, 2, ..., N .

Sometimes U is simply written as U = {1, 2, ..., N}. A sample, s, of size n(s) is selected

from the population, where n(s) may be random or fixed, n(s) = n. Denote the observable

response measured on unit i as yi and form the response vector Y = {y1, y2, ..., yN}. The
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yi’s are fixed for each unit and are only observed for the units in the sample.

For N known, each sample, s, of size n(s), has a known, specified probability, p(s), of

being selected, based on the set of samples under consideration. The function p(·), which

gives the probability of selecting s under a given selection procedure, is called the sampling

design (Särndal, Swensson and Wretmen, 1992). The sampling design and the parameter

of interest will, usually, indicate an appropriate estimator to be used. The combination of

the sampling design and an estimator is called a sampling strategy (Särndal, Swensson and

Wretmen, 1992).

The simplest way to visualize the selection of a sample is based on a draw-sequential

sampling scheme. In a draw-sequential sampling scheme each unit is drawn based on a ran-

domized experiment (Särndal, Swensson and Wretmen, 1992). The randomized experiment

is applied for n(s) draws. For example, consider simple random sampling without replace-

ment for fixed sample size, n, using a draw-sequential scheme. Each unit is selected with

equal probability from the units remaining in the population after the previous selection.

That is,

P (ui1 ∈ s) =
1

N

P (ui2 ∈ s) =
1

N − 1
...

P (uin ∈ s) =
1

N − (n− 1)

So, the sampling design under simple random sampling without replacement with fixed

sample size is given by

p(s) = n!
n−1∏

j=1

1

N − j
=

1(
N
n

) . (1)

Typically, when each possible sample has a known probability of being selected, each

unit in the population has a known probability of appearing in the selected samples (Lohr,

1999). The probability that unit ui is in s is given by its inclusion probability,

P (ui ∈ s) =
∑

s3i

p(s) = πi .
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The notation here implies that the sum should be taken over all samples containing unit

i. When πi > 0 for all i = 1, 2, .., N , the sample is referred to as a probability sample.

Probability sampling guarantees that each unit in the population has a positive chance of

appearing in at least one sample and reduces the potential selection bias (Lohr, 1999).

For example, consider again the case of simple random sampling without replacement.

Consider the selection of unit i into the sample. Then there are N − 1 remaining units

from which to select in order to fill the n− 1 available spaces left in the sample. Thus, the

probability for unit i being in sample s is given by

πi = P (ui ∈ s) =
∑

s3i

p(s) =
∑

s3i

1(
N
n

) =

(
N − 1
n− 1

)

(
N
n

) =
n

N
, (2)

which is the inclusion probability for unit i. Similarly, if unit i and unit j, i 6= j, are selected

to be in the sample there are N − 2 remaining units from which to select in order to fill the

n−2 available spaces left in the sample. Thus, the joint inclusion probability for units i and

j, i 6= j, is given by

πij =
∑

s3i,j

p(s) =

(
N − 2
n− 2

)

(
N
n

) =
n(n− 1)

N(N − 1)
. (3)

One way to obtain more accurate (i.e. unbiased) estimates is to utilize the inclusion prob-

ability for each unit based on the given sampling design (Särndal, Swensson and Wretmen,

1992). One family of estimators that incorporates the inclusion probabilities of units was

developed by Horvitz and Thompson (1952). These estimators are based on the inverse of

the inclusion probabilities so that a unit with a large inclusion probability is down weighted,

whereas, a unit with a small inclusion probability is up weighted. These estimators are

unbiased for all sampling designs (Hedayat and Sinha, 1991).

2.2 Review of Horvitz-Thompson Estimator

The original Horvitz-Thompson estimator (HTE) was developed for the finite population

total T (Y) =
∑N

i=1 yi (Horvitz and Thompson, 1952). The general form of the HTE for
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T (Y), using the notation of Hedayat and Sinha (1991), is given by

HTE(s,Y) =
∑

i∈s

yi/πi =
N∑

i=1

Ziyi/πi (4)

where Zi is an indicator variable that is one if unit i is in the sample and zero otherwise,

that is, Zi ∼ Bernoulli(πi). Note that πi is known from the sampling design and that Zi is

a random variable whose value depends on the given sample, s, for each i.

It can be shown that the HTE is a homogeneous, linear unbiased estimator (Hedayat and

Sinha, 1991). It is homogeneous in the sense that the inclusion probabilities used to weight

the observations are dependent on the sample selected (Hedayat and Sinha, 1991). Also, the

HTE is unbiased for the population total since

E

[
N∑

i=1

Zi
yi

πi

]
=

N∑

i=1

yi

πi

E(Zi) =
N∑

i=1

yi . (5)

Note that in general, the HTE is not a uniform minimum variance unbiased estimator

(umvue) since no such estimator exists for estimators of the form t(s,Y) =
∑

i∈s asiYi, where

asi depends on the sample and the unit drawn (Hedayat and Sinha, 1991). However, the

HTE is the unique best estimator for unicluster sampling designs, where unicluster means

that any two samples taken by the given design are either disjoint or equivalent (Hedayat

and Sinha, 1991).

The variance of the HTE given by Horvitz and Thompson (1952) is, using the notation

of Lohr (1999),

VHT(HTE) =
N∑

i=1

(yi)
2

(
1

πi

− 1
)

+
∑

i 6=j

yiyj

(
πij

πiπj

− 1

)
. (6)

VHT(HTE) is appropriate for samples of fixed or variable size, n or n(s), respectively. An

alternative expression for the variance of HTE is given by

VSYG(HTE) =
N∑

i=1

∑

j>i

(πiπj − πij)

[
yi

πi

− yj

πj

]2

, (7)

which was first supplied by Sen (1953) and by Yates and Grundy (1953) (Hedayat and Sinha,

1991). VSYG(HTE) is only appropriate for fixed-size sampling designs.
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Estimates of both VHT(HTE) and VSYG(HTE) can be derived by introducing the indicator

variable and the appropriate weight to make the estimate unbiased (provided πij > 0 for all

i, j), as follows:

V̂HT(HTE) =
N∑

i=1

(yi)
2

πi

(
1

πi

− 1
)

Zi +
∑

i6=j

yiyj

πij

(
πij − πiπj

πiπj

)
ZiZj , (8)

and

V̂SYG(HTE) =
N∑

i=1

∑

j>i

(
yi

πi

− yj

πj

)2 (
πiπj − πij

πij

)
ZiZj . (9)

These variance estimates can be negative for both forms of the variance. However, V̂SYG(HTE)

does tend to be less negative and give less variable estimates. That is, V̂SYG(HTE) is more sta-

ble than V̂HT(HTE). This is, partly, because πiπj−πij < 0 is less frequent than πij−πiπj < 0.

In some cases a careful choice of the underlying sampling design may ensure nonnegativity.

For example, a fixed-size design, with 0 < πij ≤ πiπj and 1 ≤ i 6= j ≤ N , will always

generate nonnegative estimates for VHT(HTE) and VSYG(HTE) (Hedayat and Sinha, 1991).

2.3 Review of Experimental Design

The objective of a designed experiment is to study the causal effect of some set of treatments.

Consider the simple case of one treatment and a control, as presented by Holland (1986).

The response from unit i after a treatment or control has been applied is Yi(t) or Yi(c),

respectively. Yi(t) and Yi(c) cannot both be observed on the same unit at the same time.

Thus, the treatment effect of t relative to c, Yi(t)− Yi(c), cannot be estimated by observing

a single unit. The statistical solution to this problem is to consider average effect

E(Y (t)− Y (c)) = E(Y (t))− E(Y (c)) ,

which can be estimated. That is, information about the treatment effect, can be gained by

observing different units. Then the exact mechanism, that is, the experimental design, that

selects units for exposure to t or c is very important (Holland, 1986).

In order to evaluate E(Yi(t))−E(Yi(c)) a set of experimental units must be available that

is large enough to apply each treatment more than once (except for situations when non-

replication is unavoidable). An experimental unit is a unit to which one treatment is applied
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independent of treatment application to other units. Ideally, experimental units are obtained

from a population of units by some random mechanism, such as a random sampling design.

However, such a mechanism may be too complex and require too much capital (time and

money) to be practical. Thus, many times experimental units are selected by convenience.

Here, the case where a true random sample is available will be considered.

Designed experiments require two layers of control, use of homogeneous groupings (if pos-

sible) and randomization of treatment assignments. Homogeneous groupings of experimental

units using blocking allows experimentalists to control experimental error, the variability be-

tween units that are treated alike. Statistical analysis from designed experiments is typically

accompanied by an estimate of this variability (Kuehl, 2000).

Also, the randomization of treatment applications to the experimental units is used to

ensure that the probability of any particular allocation of treatments to experimental units

is equal for all possible allocations within a given homogeneous group (Mead, 1988). This

randomization gives the experiment a sense of validity by reducing bias that could arise from

a systematic assignment of treatments to units (Kuehl, 2000), and facilitates generalization

to some larger population. That is, if the experiment were repeated at some future time, it

is expected to give similar results.

Randomization can be achieved either by allocating a treatment to a particular unit, or

by allocating a unit to a particular treatment (Mead, 1988). The evaluation of E(Yi(t)) −
E(Yi(c)) will depend on the allocation mechanism (i.e. the experimental design). The careful

control of the experimental design and the lack of randomly selected experimental units make

it difficult to truly identify the population of inference (Mead, 1988).

3 Thompson’s Estimator

Consider the case suggested by Smith and Sugden (1998) where the researcher has control

over both the sampling design and the experimental design. Thompson (2002) proposed an

unbiased estimator for the difference between two treatment means based on the HTE for

this case. First, it is appropriate to develop the ideas behind his estimator. Then we will

derive Thompson’s estimator and discuss some of it’s properties.
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3.1 Preliminary Ideas

Let πi be the inclusion probability that unit i is in sample s, and αi
k
s be the probability that

treatment k is assigned to unit i, given that ui ∈ s. For example, if the sample size, n(s),

under the sampling design is random, αi
k
s , may be different for unit i depending if n(s) is

‘large’ or ‘small.’ Given a fixed number of units for assignment to treatment k, unit i would

have a greater chance of being assigned to treatment k if n(s) was relatively ‘small.’ If the

assignment of treatment k does not depend on the selected sample, then αi
k
s can be written

as αk
i (this is the case considered here). Note that πi does not have to be the same for all

units in the finite population, and αk
i does not have to be the same for all treatments in the

experiment.

Let yk
i be the fixed response of unit i to treatment k. Let Zi be an indicator variable that

is one if ui ∈ s and zero otherwise. Let W k
i be an indicator variable that is one if treatment

k is assigned to unit i and zero otherwise. That is,

Zi =

{
1 ui ∈ s
0 otherwise

,

and

W k
i =

{
1 treatment k assigned to ui

0 otherwise
.

Then πi = P (ui ∈ s) = P (Zi = 1), and αk
i = P (trt k is assigned to unit i) = P (W k

i = 1),

where i = 1, ..., n and k = 1, ..., T .

Then, under a given sampling design,

Zi ∼ Bernoulli(πi) ,

E(Zi) = P (Zi = 1) = πi,

E(Z2
i ) = (Zi = 0)2P (Zi = 0) + (Zi = 1)2P (Zi = 1) = πi ,

E(ZiZj) = P (Zi = 1, Zj = 1) = πij ,

var(Zi) = E(Z2
i )− [E(Zi)]

2 = πi − π2
i = πi(1− πi) ,

and

cov(Zi, Zj) = E(ZiZj)− E(Zi)E(Zj) = πij − πiπj .
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Likewise, under a given experimental design,

W k
i ∼ Bernoulli(αk

i ),

E(W k
i ) = P (W k

i = 1) = αk
i ,

E[(W k
i )2] = (W k

i = 0)2P (W k
i = 0) + (W k

i = 1)2P (W k
i = 1) = αk

i ,

E(W k
i W k

j ) = P (W k
i = 1, W k

j = 1) = αk
ij ,

var(W k
i ) = E[(W k

i )]2 − [E(W k
i )]2 = αk

i − (αk
i )

2 = αk
i (1− αk

i ) ,

and

cov(W k
i ,W k

j ) = E(W k
i W k

j )− E(W k
i )E(W k

j ) = αk
ij − αk

i α
k
j ,

where αk
ij is the joint inclusion probability of units i and j, i 6= j, in treatment k. For the

current discussion assume that Zi and W k
i are independent.

To cement these ideas consider the sampling design simple random sampling without re-

placement (srswor) to which the experimental design, completely randomized design (CRD),

is imposed on the srswor sample units. Then

πi = P (Zi = 1) =
n

N

and

πij = P (Zi = 1, Zj = 1) =
n(n− 1)

N(N − 1)

as demonstrated in section 2. Similarly,

αk
i = P (W k

i = 1) =
nk

n

and

αk
ij = P (W k

i = 1,W k
j = 1) =

nk(nk − 1)

n(n− 1)
.

3.2 Development of Thompson’s Estimator

Thompson (2002) proposed an estimator of treatment means, µk, where µk = 1
N

∑N
i=1 yk

i is

the population mean under treatment k. The conventional estimator for the average response

from treatment k is

ȳk =
∑

i∈s,ti=k

yk
i

nk

=
1

nk

N∑

i=1

yk
i ZiW

k
i , (10)
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where nk =
∑N

i=1 ZiW
k
i is the number of sample units assigned to treatment k (Thompson,

2002). However, under most sampling designs, this estimator is biased, since under a given

sampling design, a given experimental design, and fixed treatment group size, nk,

E(ȳk) =
N∑

i=1

1

nk

yk
i E(Zi)E(W k

i ) =
N∑

i=1

1

nk

yk
i πiα

k
i 6= µk , (11)

since Zi and W k
i are assumed to be independent. However,

E

[
ȳk

nk

Nπiαk
i

]
=

N∑

i=1

nk

Nπiαk
i

E(ȳk) = µk . (12)

Thus, an unbiased estimator of the mean population treatment effect, µk − µk′ , is µ̂k − µ̂k′ ,

where

µ̂k =
1

N

∑

i∈s,ti=k

yk
i

πiαk
i

=
1

N

N∑

i=1

yk
i

πiαk
i

ZiW
k
i (13)

(Thompson, 2002). Note that Thompson (2002) did not provide variances or variance esti-

mators for the mean estimator or the difference in means estimator.

Going back to the example of simple random sampling without replacement (srswor) with

a completely randomized design (CRD),

µ̂k =
1

N

∑

i ∈ s
ti = k

yk
i

πiαk
i

=
1

N

∑

i ∈ s
ti = k

yk
i

(
N

n

) (
n

nk

)

=
1

nk

∑

i ∈ s
ti = k

yk
i . (14)

3.3 Properties of Thompson’s Estimator

As shown in the previous section µ̂k is unbiased. Similar to the HTE, µ̂k is homogeneous in

the sense that the inclusion probabilities used to weight the observations are dependent on

the sample selected. That is, µ̂k is a linear estimator of the form t(s,Y) =
∑

i∈s asiyi where
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asi does not depend on yi. Thus, µ̂k is a homogeneous, linear unbiased estimator (HULE) of

µk and µ̂k − µ̂k′ is a HULE of the difference in means (Hedayat and Sinha, 1991). Note that

that no UMVUE exists for estimators of this form (Hedayat and Sinha, 1991).

The variance of µ̂k is given by

var(µ̂k) =
1

N2

N∑

i=1

(
yk

i

πiαk
i

)2

var(ZiW
k
i ) +

1

N2

∑

i6=j

(
yk

i

πiαk
i

) (
yk

j

πjαk
j

)
cov(ZiW

k
i , ZjW

k
j )

=
1

N2

N∑

i=1

(
yk

i

πiαk
i

)2

πiα
k
i (1− πiα

k
i ) +

1

N2

∑

i6=j

(
yk

i

πiαk
i

) (
yk

j

πjαk
j

)
(πijα

k
ij − πiπjα

k
i α

k
j )

=
1

N2

N∑

i=1

(yk
i )2πiα

k
i (1− πiα

k
i )

(πiαk
i )

2
+

1

N2

∑

i6=j

(yk
i y

k
j )

πijα
k
ij − πiπjα

k
i α

k
j

πiπjαk
i α

k
j

=
1

N2




N∑

i=1

(yk
i )2 1− πiα

k
i

πiαk
i

+
∑

i 6=j

(yk
i y

k
j )

πijα
k
ij − πiπjα

k
i α

k
j

πiπjαk
j α

k
i


 , (15)

since

var(ZiW
k
i ) = E[(ZiW

k
i )2]− [E(ZiW

k
i )]2

= E[(Zi)
2]E[(W k

i )2]− [E(Zi)]
2[E(W k

i )]2

= πiα
k
i − (πi)

2(αk
i )

2

= πiα
k
i (1− πiα

k
i ) , (16)

and

cov(ZiW
k
i , ZjW

k
j ) = E(ZiZjW

k
i W k

j )− E(ZiW
k
i )E(ZiW

k
j )

= E(ZiZj)E(W k
i W k

j )− E(Zi)E(Zj)E(W k
i )E(W k

j )

= πijα
k
ij − πiπjαiαj . (17)

As with the HTE, var(µ̂k) can be rewritten in the Sen, Yates and Grundy form, for fixed

sample and treatment sizes, as follows

varalt(µ̂k) =
N∑

i=1

∑

j>i

(πiπjα
k
i α

k
j − πijα

k
ij)

[
yi

πiαi

− yj

πjαj

]2

. (18)

Conference On Applied Statistics In Agriculture 93

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2006/proceedings/7



An estimator of var(µ̂k) is given by

v̂ar(µ̂k) =
1

N2

N∑

i=1

(yk
i )2

πiαk
i

(
1− πiα

k
i

πiαk
i

)
ZiW

k
i

+
1

N2

∑

i6=j

(yk
i y

k
j )

πijαk
ij

(
πijα

k
ij − πiπjα

k
i α

k
j

πiπjαk
j α

k
i

)
ZiZjW

k
i W k

j

=
1

N2

∑

i∈s

(yk
i )2

πiαk
i

(
1− πiα

k
i

πiαk
i

)

+
1

N2

∑

i, j ∈ s
i 6= j

(yk
i y

k
j )

πijαk
ij

(
πijα

k
ij − πiπjα

k
i α

k
j

πiπjαk
j α

k
i

)
, (19)

which is unbiased, since

E [v̂ar(µ̂k)] =
1

N2

N∑

i=1

(yk
i )2

πiαk
i

(
1− πiα

k
i

πiαk
i

)
E(Zi)E(W k

i )

+
1

N2

∑

i6=j

(yk
i y

k
j )

πijαk
ij

(
πijα

k
ij − πiπjα

k
i α

k
j

πiπjαk
j α

k
i

)
E(ZiZj)E(W k

i W k
j )

=
1

N2

N∑

i=1

(yk
i )2

πiαk
i

(
1− πiα

k
i

πiαk
i

)
πiα

k
i

+
1

N2

∑

i6=j

(yk
i y

k
j )

πijαk
ij

(
πijα

k
ij − πiπjα

k
i α

k
j

πiπjαk
j α

k
i

)
πijα

k
ij

=
1

N2




N∑

i=1

(yk
i )2 1− πiα

k
i

πiαk
i

+
∑

i6=j

(yk
i y

k
j )

πijα
k
ij − πiπjα

k
i α

k
j

πiπjαk
j α

k
i


 . (20)

The estimator v̂ar(µ̂k) is a homogeneous quadratic unbiased estimator (HUQE). That is,

the estimator is of the form t(s,Y) =
∑

i∈s asiy
2
i +

∑
i6=j asijyi where the coefficients, asi

and asij, depend on the sample drawn but do not depend on yi (Hedayat and Sinha, 1991).

Another look at the example of simple random sampling without replacement (srswor) with

a completely randomized design (CRD), gives

var(µ̂k) =
1

N2

N∑

i=1

(yk
i )2N − nk

nk

+
1

N2

∑

i6=j

(yk
i y

k
j )

nk −N

nk(N − 1)
, (21)

and

v̂ar(µ̂k) =
1

N

N∑

i=1

(yk
i )2N − nk

(nk)2
ZiW

k
i +

1

N

∑

i6=j

(yk
i y

k
j )

nk −N

(nk)2(nk − 1)
ZiZjW

k
i W k

j . (22)
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As mentioned in section 2.2 estimates of the variance of the HTE can be negative. The

same problem exists for v̂ar(µ̂k). That is, v̂ar(µ̂k) can be negative, in particular, when

πijα
k
ij − πiπjα

k
i α

k
j < 0. As in the case of the HTE, the alternative form of the variance

estimate is less likely to be negative if πiπjα
k
i α

k
j − πijα

k
ij > 0. For the current example of

simple random sampling without replacement (srswor) with a completely randomized design

(CRD)

πiπjα
k
i α

k
j − πijα

k
ij =

nk

N

(
N − nk

N(N − 1)

)
> 0 ,

since N > nk.

4 Summary

This manuscript is an introduction to estimation of treatment effect under combined sam-

pling and experimental design. Thompson’s estimator is one estimator that accomplishes

this objective. There is considerably more work that needs to be done to develop these

ideas and in particular Thompson’s estimator. Here we have derived variance estimation

for Thompson’s estimator but these variance estimates can be negative under some designs.

Work still needs to be done for estimation of treatment difference, interval estimation and

hypothesis testing methodology. Also, inclusion probabilities for more complicated sampling

designs (cluster, multistage, adaptive) and assignment probabilities for more complicated

experimental designs (Latin square, split-plot) still need to be pursued. If this methodology

is ever going to be implemented software for calculating Thompson’s estimator needs to be

developed. Thus, this discussion has just begun but hopefully much more discussion will

ensue.
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Table 1: Classification of Studies with Treatments

Treatment Assignment
Control No Control

Control Experiment within Analytic survey
a survey, or survey

Sample within an experiment
Selection

No Control Experiment Uncontrolled
observational study
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