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EVALUATING NONLINEAR CROSSED RANDOM EFFECTS MODELS FOR 
COMPARING TEMPERATURE OF FEEDING PIGS UNDER DIFFERENT 

THERMAL ENVIRONMENTS     
 

M. Zhou1, A.M. Parkhurst1, R.A. Eigenberg2, J.A. Nienaber2, G.L. Hahn2 
 
1. Department of Statistics, University of Nebraska at Lincoln 
2. U.S. Meat Animal Research Center 
 

ABSTRACT 
 
The thermal environment plays a large role in an animal’s ability to convert feed into 
weight gain. A better understanding of a pig’s metabolism will help swine producers 
select environmental specifications for optimizing feed conversion.  The objectives of 
this study are to 1) characterize the thermoregulatory responses of pigs during a feeding 
event 2) compare those responses for three thermal environmental treatments applied in a 
Latin Square design 3) investigate different procedures for fitting nonlinear mixed-effect 
models with crossed random effects (NLME function in R, %NLINMIX macro in SAS, 
random effects modeling in AD Model Builder: ADMB-RE).  We found that the three-
parameter first-order compartment model provides a reasonable representation of the 
tympanic temperatures of feeding pigs during feeding events.  The thermal environmental 
treatments (28ºC + High air speed) and  (18ºC + Low air speed) are significantly different 
from the reference treatment (28ºC + Low air speed), at the 5% level.  Both NLME and 
ADMB-RE successfully fit the nonlinear mixed-effects model and produce similar results.  
The %NLINMIX macro did not converge unless restrictions were placed on the model.  
The estimates of fixed and random effects from the restricted model using %NLINMIX 
macro were generally different from those from NLME and ADMB-RE. 
 
 

1. INTRODUCTION 
 
The well-being of a meat producing animal is considered to be linked to its ability to 
convert feed to weight gain.  The thermal environment of the animal is of interest to 
animal producers and to researchers because it plays a large role in the animal’s feeding 
efficiency.  Previous work by Hahn et al. (1990) suggests tympanic temperature provides 
valuable insight into an animal’s response to the thermal environment.  By using 
tympanic temperature time series data we can estimate an animal’s dynamic overall heat 
transfer coefficients, such as the temperature growth rate constant and the temperature 
decay rate constant, and help producers define an optimum range for the thermal 
environment so that they can adjust their production facilities to the environment best 
suited to enhance an animal’s well being and feed efficiency.  
 
There are three objectives for this study.  First, we fit a three-parameter first-order 
compartment model to characterize the thermoregulatory responses such as the initial 
tympanic temperature, the temperature growth rate constant, and the temperature decay 
rate constant of pigs during an feeding event.  Second, we compare those responses for 
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three thermal environmental treatments (28°C air temperature and low air speed, 28°C air 
temperature and high air speed, and 18°C air temperature and low air speed) applied in a 
Latin Square design.  Finally, we investigate three procedures for fitting nonlinear mixed-
effect models with crossed random effects.  They are: NLME function in R, %NLINMIX 
macro in SAS, and random effects modeling in AD Model Builder (ADMB-RE).  
Currently, fitting nonlinear mixed-effects models with crossed random effects is still a 
difficult statistical problem.  Although a number of software packages have been 
developed to fit nonlinear mixed models and generalized linear mixed models, most of 
them such as the SAS NLMIXED procedure (SAS, 1999), NONMEM (Beal and Sheiner, 
1992) and the MIXOR family programs (Hedeker and Gibbons, 1996) allow ONLY 
ONE random statement, which limits them to single-level nonlinear mixed models and/or 
generalized linear mixed models without nested and crossed random effects.  There are 
drawbacks to the existing statistical software packages which can handle multilevel 
nonlinear mixed models.  We consider the above three procedures for different reasons: 1) 
Both R and SAS are widely used statistical software packages.  The NLME function in R 
and %NLINMIX macro in SAS use the first-order Taylor series expansion to solve 
nonlinear mixed-effects models, 2) ADMB-RE is a newer, less widely used statistical 
package based on the second-order Taylor series expansion.  Therefore, it is expected to 
produce more accurate estimates. This paper will provide ways to use these procedures to 
fit nonlinear mixed-effects models with crossed random effects and discuss the 
advantages and disadvantages of each procedure. 
 
 

2. MATERIALS AND METHODS 
 
2.a Data 
Eigenberg (1994) conducted an experiment to study the tympanic temperature of feeding 
pigs in response to three predefined thermal conditions.  The experiment was designed as 
a Latin Square with three treatments, three pigs, and three treatment periods that are 
about three days in length.  The treatments consisted of three combinations of 
temperature and air speed.  For the reference environment, treatment 1, the ambient 
temperature was set to 28 C and air speed was set to low (20 cm/s).  Pigs housed in this 
environment are expected to be at rest for much of the time, and thus, generate a 
relatively stable temperature record.  For treatment 2, the air temperature was set to 28 C 
and air speed was set to high (90 cm/s).  Treatment 3 completes the treatment group with 
air temperature set to 18 C and air speed set to low (20 cm/s).  Both treatments 2 and 3 
would be expected to produce higher thermal loads on the pig than treatment 1.  
Treatment 2 has higher convective loss and treatment 3 has higher loss due to lower 
temperature.  Six pigs were randomly selected from eleven litters and they were split into 
two weight ranges: three heavy animals (29.5±1.8 kg) and three light animals (22.5±1.0 
kg).  The heavier animals were exposed to the treatments first, then the lighter animals.  
Each weight group was repeated once producing a total of four Latin Squares (two with 
heavy animals and two with light animals).  During the experiment, each pig had the 
opportunity to eat approximately three meals every day for three days and each of the 
meals had the potential to produce one set of thermal index values such as the initial 
tympanic temperature, the temperature growth rate constant, and the temperature decay 
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rate constant.  The access to feed was controlled by solenoid latches on the feeding 
system.  The pigs had access to feed only three times per day for a one-hour period.  The 
meal times were: 3:00 AM, 8:30 AM and 3:00 PM.  The tympanic temperature and feed 
intake of each pig were recorded every 48 seconds.  An example showing changes in 
tympanic temperature and feed intake is presented in Figure 1.  In this example, pig #27 
(a member of the heavy group) was observed during the first experimental period.  The 
treatment was #2: 28ºC + High air speed.  During this period, there were six feeding 
events and each feeding event produced a tympanic temperature spike. 
 
This study will focus on tympanic temperature data for one Latin Square: first run of 
heavy group (Table 1).  Only first feeding events of the largest meal on the second and 
third days of each period were included in the study.  For each feeding event, the 
temperature record is analyzed for a record length of 2 hours.  In total, there are 18 
feeding events in the study (Figure 2).  Two events for each combination of pig and 
period: one for the second day and one for the third day of each period. 
 
2.b Statistical Model 
Compartment models are nonlinear models in which the response is described by a linear 
system of ordinary differential equations.  Compartment models have been widely used 
in the literature.  For examples see: Bates and Watts (1988, Ch. 5), Davidian and Giltinan 
(1995, Ch. 9), Lindsey (1999, Ch. 6) and Pinheiro and Bates (2000, Ch. 6 and Ch. 8).  We 
used a three-parameter first-order compartment model to fit the temperature of pigs 
during feeding events.  The model is given by   
 

),σiidN(0,~ε    ε,)e(e
KDKG

KGY0Y 2XKGXKD +−
−

+= ⋅−⋅−                         Eq. 1 

 
where the response variable, Y, is the tympanic (inner ear) temperature (ºC), and the 
independent variable, X, is the time (fraction of day).  There are three parameters in the 
model: Y0 is the initial tympanic temperature (ºC), KG is the temperature growth rate 
constant (day-1), and KD is the temperature decay rate constant (day-1).  The temperature 
growth rate constant KG is a measure of the rate of increase in the body temperature 
proportional to the temperature produced by the feeding event; while the temperature 
decay rate constant KD is the rate of decrease in the body temperature proportional to the 
body temperature.  The larger KG, the faster the body temperature approaches its 
maximum; the larger KD, the faster the body temperature goes back to its initial value. 
 
For the nonlinear mixed-effects model with crossed random effects, three treatment levels 
and three random effects were incorporated in the three-parameter first-order 
compartment model (Eq. 1) for each of the three parameters: 
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   Eq. 2 

 
where C1 and C2 are two dummy variables defined to incorporate the treatment effects. 
For the first treatment, the reference level, we let both C1 and C2 be zero. To assess the 
difference between treatments 2 and 3 and the reference level, we let C1 be 1 and C2 be 0 , 
for the second treatment; and for the third treatment, we let C1 be 0 and C2 be 1.  Under 
this setting, the meaning of those fixed-effect coefficients is as follows:  β11, β21, and β31 
are the means of the first treatment for Y0, KG, and KD respectively; β12, β22, and β32 are 
the differences of the means between the second treatment and first treatment for Y0, KG, 
and KD respectively; and β13, β23, and β33 are the differences of the means between the 
third and first treatments for Y0, KG, and KD respectively.  The random effects bPIGi1, 
bPIGi2, and bPIGi3 represent the deviation from the population mean associated with the ith 
pig.  The random effects bPERj1, bPERj2, and bPERj3 represent the deviations associated with 
the jth period.  The random effects bEVTk1, bEVTk2, and bEVTk3 represent the deviations 
associated with the kth feeding event.  DPIG, DPER, and DEVT are the variance-covariance 
matrices for the random effects.  We assume DPIG and DPER are diagonal matrices.  Since 
we only have three pigs and three periods, we do not have enough information to estimate 
all the elements in the two matrices.  We can assume DEVT is an unstructured matrix since 
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we have 18 feeding events.  We further assume that bPIGi, bPERj, bEVTk, and ε are 
independent of each other.  The diagonal matrix G is the variance-covariance matrices for 
all the random effects associated with the pig, the period, and the feeding event. 
 
2.c Crossed Random Effects 
In our study, there are three pigs, three periods, and eighteen feeding events with two 
feeding events in each pig-period combination (Table 2).  First, let us look at the row for 
a specific pig, say pig 85.  It contains six feeding events: Event 1, Event 2, Event 3, Event 
4, Event 5, and Event 6.  These six feeding events are from all three periods.  Now let us 
look at different feeding events from any column, say the column for Period 1: Event 1, 
Event 2, Event 7, Event 8, Event 13, and Event 14.  These six feeding events are from all 
three pigs.  Thus, Pig and Period are crossed with each other and Feeding Event is nested 
within the combination of Pig and Period.  The random effects associated with Pig and 
Period are called crossed random effects.  
 
2.d Procedures for Fitting Nonlinear Mixed Models with Crossed Random Effects 
We consider three procedures for fitting a nonlinear mixed-effect model with crossed 
random effects in the study.  They are: the NLME function in R, %NLINMIX macro in 
SAS, and random effects modeling in AD Model Builder (ADMB-RE). 
 
2.d.i Random Effects Modeling in R: NLME 
R was initially written by Robert Gentleman and Ross Ihaka of the Statistics Department 
of the University of Auckland.  It provides a suite of software facilities using 
programming principles of S, a language for manipulating objects, and a platform for 
new algorithms which can call functions written in R, C, C++ and Fortran.  The NLME 
package fits nonlinear mixed-effects models for Gaussian outcome variables using first-
order Taylor series expansion approximation.  It alternates between two steps: 1) 
penalized nonlinear least square and 2) linear-mixed-effects, until the process converges.  
To use the package, users need to know the basic syntax structure of NLME.  It helps to 
study examples from documentation on the Web or textbooks such as the one written by 
Pinheiro and Bates (2000).  NLME in R is very powerful for fitting nonlinear mixed-
effects models with NESTED random effects, but it does not fit nonlinear mixed-effects 
models with CROSSED random effects.  Goldstein (1999) shows how to fit a Linear 
Mixed Model with crossed random effects as a purely hierarchical formulation of nested 
random effects.  We developed a method to enable NLME in R to fit a Nonlinear Mixed-
Effects Model with crossed random effects based on Goldstein’s idea for linear mixed-
effects model (Goldstein, 1999). 
 
Goldstein’s Method 
For illustration, we assume a linear mixed-effects model with two crossed grouping 
factors: A and B, where A has five levels and B has three levels.  For efficiency we 
choose one grouping factor, A, the one with the most levels, as a standard hierarchical 
level 1 grouping factor.  For the other grouping factor, B, we declare a hierarchical level 
2 grouping factor with one level that spans the entire data set.  Then, we define a dummy 
(0, 1) variable for each level of B, which is one if the observation belongs to that level of 
B and zero if not.  Finally, we specify that each of these dummy variables has a random 

184 Kansas State University

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2006/proceedings/11



coefficient at hierarchical level 2 and constrain the resulting set of hierarchical level 2 
variances to be equal.  Then level 1 and level 2 are variances for A and B, respectively.  
If we have a third grouping factor at level 1, that is, A, B, and C crossed at level 1, we 
can obtain the third variance by defining a similar set of dummy variables with 
coefficients varying at level 3 and variances constrained to be equal.  This method can be 
generalized to linear mixed-effects models with arbitrary p-way crossed random effects. 
 
To apply Goldstein’s method for fitting nonlinear mixed-effects models with crossed 
random effects, we need to modify the method to make it suitable for the NLME function.  
First, no matter how many crossed grouping factors are in the model, only one extra 
hierarchical grouping factor needs to be declared.  Second, the grouping factor is always 
defined as the highest hierarchical level with one level that spans the entire data set.  
Third, it is not necessary to define dummy variables for any levels of crossed grouping 
factors.  However, only one correlation for the crossed random effects can be estimated. 
 
The NLME code for fitting the nonlinear mixed-effects model is as follows: 
 
 
 
 
 
 
  
 
 
 
 
 
 

# Feeding Event is specified as the lowest hierarchical level grouping factor 
   # (hierarchical level 1 grouping factor) 
 
# Specify Pig as a standard hierarchical level 2 grouping factor 
 
# Create a new grouping factor as the highest hierarchical level 
   # (hierarchical level 3 grouping factor) with one level spanning the entire data set 
newGF <-  factor(rep(1,length(heat$Y))) 
 
# Specify that each level of Period has a coefficient random at newGF 
# “ -1” indicates that the specific term factor(Period ) does not have an intercept 
# Cannot estimate the correlation associated with Period 
 
full.nlme <-  
    nlme(model=Y~Y0+KG*(exp(-KD*X)-exp(-KG*X))/(KG-KD), 
        fixed=Y0+KG+KD~factor(Trt),  
        random=list(newGF=pdIdent(Y0~factor(Period)-1), 
                      newGF=pdIdent(KG~factor(Period)-1), 
                      newGF=pdIdent(KD~factor(Period)-1), 
                      Pig=pdDiag(Y0+KG+KD~1), 
                      Event=(Y0+KG+KD~1)), 
        start=c(39,0,0,60,0,0,20,0,0), data=heat) 
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2.d.ii %NLINMIX Macro in SAS 
The %NLINMIX macro was written by Russell D. Wolfinger (1993) and it fits nonlinear 
mixed-effects models with both nested and crossed random effects using PROC NLIN 
and PROC MIXED (SAS, 1999).  It is based on linearization methods of estimation.  The 
basic idea behind the linearization method is: 1) Take a first-order Taylor series of the 
model around some values of fixed effects and random effects; 2) This yields an 
approximate model that is of the linear mixed model form; 3) Fit this model with a linear 
mixed model package; 4) Update the expansion loci and repeat the process until a 
convergence criterion is met. 
 
The %NLINMIX macro fails to converge for the nonlinear mixed-effects model when the 
variance-covariance matrix for feeding events (DEVT) in Eq. 2 is assumed to be 
unstructured but converges when we further assume that DEVT is diagonal and change the 
default expansion locus of the random effect of the macro from its current empirical best 
linear unbiased predictor (EBLUP) to zero (the expected value of the random effect).. 
 
The %NLINMIX macro code for fitting the nonlinear mixed-effects model with diagonal 
DEVT in Eq. 2 is shown below: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

%nlinmix(data=a, 
   procopt=convg=1e-7, 
   model=%str( 
      Y0  = beta11 + beta12*C1 + beta13*C2 + b11 + b12 + b13; 
      KG = beta21 + beta22*C1 + beta23*C2 + b21 + b22 + b23; 
      KD = beta31 + beta32*C1 + beta33*C2 + b31 + b32 + b33; 
      predv = (Y0) + (KG)*(exp(-(KD)*x)-exp(-(KG)*x))/((KG)-(KD));  
   ), 
   parms=%str(beta11=39 beta12=0 beta13=0  beta21=65 beta22=-3 beta23=-11 
                        beta31=18 beta32=18  beta33=25), 
   stmts=%str( 
      class Pig Period Event; 
      model pseudo_y = d_beta11 d_beta12 d_beta13 d_beta21 d_beta22 d_beta23 
                    d_beta31 d_beta32 d_beta33 / noint notest solution cl ddfm=residual; 
      random d_b11 d_b21 d_b31 / type=vc subject=Pig      solution cl; 
      random d_b12 d_b22 d_b32 / type=vc subject=Period solution cl; 
      * Assume diagonal DEVT in Eq. 2 to make the macro converge; 
      random d_b13 d_b23 d_b33 / type=vc subject=Event  solution cl; 
   ), 
   expand=zero, * change the default expansion locus of the random effect 
   converge=1e-6, 
   maxit=30, 
   options=skipnlin 
) 
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2.d.iii Random Effects Modeling in AD Model Builder: ADMB-RE 
ADMB-RE (2005) was developed by Otter Research Ltd., Canada.  It handles nonlinear 
mixed-effects models with both nested and crossed random effects.  It is based on 
Laplace approximation.  The letters AD represent automatic differentiation, which refers 
to a collection of techniques that exploit the chain rule of calculus to automatically 
evaluate derivatives of functions defined in computer programs.  To use ADMB-RE, we 
need to formulate the likelihood function in a template file using a C++ like language and 
then turn the template file into an executable program using a C++ compiler. 
 
Because the ADMB-RE code for fitting the nonlinear mixed-effects model is lengthy 
(more than 200 lines), we include it in Appendix A. 

 
 

3. RESULTS AND DISCUSSION 
 
Model Diagnostics 
The standardized residuals, shown on the vertical axis in Figure 3, are the raw residuals, 

),ˆ,ˆ( bfye β−=  divided by the estimated standard deviation, σ̂  of the ε .  The plot of the 
standardized residuals versus the fitted values corresponding to the nonlinear mixed-
effects model (Figure 3), does not indicate departure from the model assumptions.  The 
assumption of normality for the within-group errors appears reasonable although it 
suggests the error distribution has lighter tails than expected from normally distributed 
errors (Figure 4).  A final assessment of the adequacy of the nonlinear mixed-effects 
model is given by the plot of the augmented predictions in Figure 5.  From the plot, we 
can see that the predicted temperatures are close to the observed values.  Therefore, we 
conclude that the nonlinear mixed-effects model provides a reasonable representation of 
the tympanic temperatures during feeding events. 
 
Evaluation of the Three Procedures for Fitting the Nonlinear Crossed Random 
Effects Model 
Both NLME and ADMB-RE successfully fit the nonlinear mixed-effects model.  
However, the %NLINMIX macro fails to converge and always stays on the first PROC 
MIXED call for fitting the nonlinear mixed-effects model.  The possible reasons are: 1) G 
matrix becomes non-positive definite during iterations; and 2) Size of G matrix is large – 
more than 1300*1300.  The %NLINMIX macro converges for fitting the nonlinear 
mixed-effects model when we further assume that DEVT is diagonal.  The results of fitting 
the nonlinear mixed-effects model for both NLME and ADMB-RE, as well as the 
nonlinear mixed-effects model with diagonal DEVT for %NLINMIX macro, are shown in 
Table 3 and Table 4.  Estimates of both fixed and random effects from NLME and 
ADMB-RE are very close to each other.  However, estimates of most fixed and random 
effects from %NLINMIX macro are different from those of NLME and ADMB-RE, 
especially for fixed effects of β21, β22, and β23, and random effect σPIG3.  A possible 
reason is that in linearizing a nonlinear mixed model, we need to choose an expansion 
locus for the fixed effects and the random effects.  For the fixed effects, the estimates 
from the previous iteration are used.  However, there are different ways of choosing the 
expansion locus for the random effects.  The default expansion of the random effect in 
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%NLINMIX macro is about its current empirical best linear unbiased predictor (EBLUP).  
The estimates produced by this expansion are the same as those produced by NLME in R 
although it uses a different algorithm.   The details can be found in Wolfinger (1993).  
However to make our nonlinear mixed model converge in %NLINMIX, we needed to 
change the default.  We directed the macro to do the expansion about the expected value 
of the random effect. (Note: the expected value of any random effect is zero and the 
expansion about zero might produce inaccurate estimates (Littell et al. 1996).) 
 
Both NLME and %NLINMIX Macro are based on the first-order Taylor series expansion 
while ADMB-RE is based on the Laplace approximation (ADMB-RE 2005), which uses 
the second-order Taylor series expansion.  Therefore, the estimation from both NLME 
and %NLINMIX macro is less accurate compared with that from ADMB-RE.   
 
The time to converge of both NLME and %NLINMIX macro is much faster than that of 
ADMB-RE because of the simpler computation (Pinheiro 1995).  For fitting the nonlinear 
mixed-effects model, the time to converge of both NLME and %NLINMIX macro is less 
than 3 minutes while the time to converge of ADMB-RE is about 20 minutes.   
 
Writing code in NLME and %NLINMIX macro is straightforward, while writing code in 
ADMB-RE is very challenging.  We need to deal with details of computation to make 
ADMB-RE code work efficiently.  The length of code in both NLME and %NLINMIX 
macro is much shorter than that in ADMB-RE.  For fitting the nonlinear mixed-effects 
model, the code is about 10 lines in NLME, 20 lines in %NLINMIX macro, and more 
than 200 lines in ADMB-RE. 
 
Comparison of the Three Thermal Environmental Treatments 
We compare the three thermal environmental treatments based on the results from NLME 
in R (Table 3).  We find that both treatment 2 (28ºC + High air speed) and treatment 3 
(18ºC + Low air speed) are significantly different from the reference treatment 1 (28ºC + 
Low air speed).  Treatment 2 is significantly different from treatment 1 for the 
temperature decay rate constant (KD), but not for the initial tympanic temperature (Y0) 
and temperature growth rate constant (KG), while treatment 3 is significantly different 
from treatment 1 for both Y0 and KD, but not for KG.  From the parameter estimates, we 
find that both increasing the air speed and decreasing the environmental temperature can 
help pigs dissipate heat effectively.  In comparison with the reference treatment 1, 
increasing the air speed (treatment 2) increases the temperature decay rate constant by 
18.2 day-1 while decreasing environmental temperature (treatment 3) increases the 
temperature decay rate constant by 25.3 day-1 and also decreases the initial tympanic 
temperature of pigs by 0.2°C. 
 
Future work on Model Building for the Complete Dataset  
In this study we used a subset of the data to address the problem of crossed random 
effects in a nonlinear model.  Future work will be done on the complete set of Latin 
Squares, the inclusion of covariates providing information about the amount of feed 
consumed and duration of feeding event, correlations over time and the possibility of a 
more parsimonious set of parameters.   
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4. SUMMARY 

 
This study provides a nonlinear mixed-effects model to describe the thermoregulatory 
responses of pigs during a feeding event and to compare those responses for three thermal 
environmental treatments applied in a Latin Square design.  It also investigates three 
different procedures for fitting nonlinear mixed-effect models with crossed random 
effects: NLME function in R, %NLINMIX macro in SAS, and random effects modeling 
in AD Model Builder (ADMB-RE).  As expected, based on the estimation methods, the 
ADMB-RE produces more accurate results.  However, it is simpler to fit nonlinear mixed 
effects models with crossed random effects in NLME and %NLINMIX macro, although, 
the %NLINMIX macro did not converge for the nonlinear mixed-effects model when the 
variance-covariance matrix for feeding events was assumed to be unstructured .   
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Table 1.  Latin Square of the First Run for Heavy Group with Three Treatments, 
Three Pigs, and Three Treatment Periods. 

Pig No. Period 1 Period 2 Period 3 
85 Treatment 2 Treatment 1 Treatment 3 
27 Treatment 3 Treatment 2 Treatment 1 
59 Treatment 1 Treatment 3 Treatment 2 

 
Table 2.  Illustration of Crossed Random Effects. 

Pig No. Period 1 Period 2 Period 3 
85 Event 1, Event 2 Event 3, Event 4 Event 5, Event 6 
27 Event 7, Event 8 Event 9, Event 10 Event 11, Event 12 
59 Event 13, Event 14 Event 15, Event 16 Event 17, Event 18 

 
3.  Estimates of Fixed Effects Coefficients for Compartmental Model from the Three 
Procedures. 

NLME %NLINMIX Macro ADMB-RE Fixed 
Effects Estimate Std. Err. P-value Estimate Std. Err. Estimate Std. Err.

β11 39.060 0.050 <0.001 39.142 0.054 39.063 0.117 
β12 -0.040 0.070 .571 -0.108 0.057 -0.042 0.069 Y0 
β13 -0.199 0.070 .005 -0.254 0.057 -0.201 0.069 
β21 65.323 19.700 .001 38.868 22.560 63.929 18.970 
β22 -3.296 9.524 .729 16.222 12.635 -1.252 10.192 KG 
β23 -11.099 9.441 .240 6.789 12.596 -9.489 10.184 
β31 18.862 4.766 <.001 28.865 7.753 19.174 4.721 
β32 18.160 6.623 .006 9.748 7.070 18.121 6.525 KD 
β33 25.262 6.704 <.001 19.659 7.176 25.373 6.626 

 
4.  Estimates of Random Effects (Standard Deviation and Correlation) for 
Compartmental Model from the Three Procedures. 

NLME %NLINMIX Macro ADMB-RE Random Effects Estimate Std. Err. Estimate Std. Err. Estimate Std. Err.
σPIG1 < 0.001 NA 0.061 NA 0.021 0.063 
σPIG2 28.700 NA 32.439 NA 28.365 12.466 PIG 
σPIG3 2.164 NA 9.773 NA 2.163 4.724 
σPER1 < 0.001 NA 0 NA < 0.001 < 0.001 
σPER2 13.672 NA 15.374 NA 10.195 6.788 PERIOD 
σPER3 0.003 NA 3.421 NA 0.025 1.928 
σEVT1 0.118 NA 0.096 NA 0.116 0.023 
σEVT2 14.860 NA 21.569 NA 16.242 3.758 
σEVT3 10.966 NA 11.764 NA 10.903 2.251 

ρEVT1EVT2 -0.472 NA NA NA -0.415 NA 
ρEVT1EVT3 0.379 NA NA NA 0.393 NA 

FEEDING 
EVENT 

ρEVT2EVT3 -0.274 NA NA NA -0.115 NA 
Residual σ 0.061 NA 0.060 NA 0.060 0.001 
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Figure 1.  Example of Changes in Tympanic Temperature (ºC) and Feed Intake (kg) 
of Pigs over Julian calendar time for pig 27 (a member of the heavy group) during 
first experimental period under treatment 2 ( 28ºC and High air speed). 
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Figure 2.  Eighteen Feeding Events of Observed Tympanic Temperature (ºC) versus 
Time (fraction of day) for Three Pigs and Three Periods. 
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Figure 3.  Scatter plot of standardized residuals versus fitted values for the 
nonlinear mixed-effects model fit. 
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Figure 4.  Normal plot of standardized residuals for the nonlinear mixed-effects 
model fit. 
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Figure 5.  Observed ( 0) and predicted (-- ) tympanic temperatures ( C) over time 
(fraction of day) for eighteen pig-period feeding events. 
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Appendix A.  ADMB-RE code for fitting the nonlinear mixed-effects model.  
 
DATA_SECTION 
 
  init_int n                        // Number of data points 
  init_vector y(1,n)        // Response vector 
  init_vector t(1,n)        // Primary covariate 
 // scale the time to be near 1.0 
 // !! t/=max(t); 
  init_vector Z1(1,n)       // Dummy variable #1 
  init_vector Z2(1,n)       // Dummy variable #2 
  init_int M1                       // Number of pigs        
  init_int M2                       // Number of periods         
  init_int M3                       // Number of events      
  init_int m                        // Number of parameters in nonlinear regression model        
 
PARAMETER_SECTION 
 
  init_bounded_vector beta(2,9,-100,100,1)                      // Fixed effects parameters 
  sdreport_number sigma                 // log(residual variance) 
  sdreport_number sigma_u1_1; 
  sdreport_number sigma_u1_2; 
  sdreport_number sigma_u1_3; 
   
  sdreport_number sigma_u2_1; 
  sdreport_number sigma_u2_2; 
  sdreport_number sigma_u2_3; 
   
  sdreport_vector sigma_u3(1,3); 
  sdreport_vector a(1,9); 
 
  init_bounded_number log_sigma_u1_1(-7.0,7.0,2)        // 0.5*log(variance component) 
  init_bounded_number log_sigma_u1_2(-7.0,7.0,2)        // 0.5*log(variance component) 
  init_bounded_number log_sigma_u1_3(-7.0,7.0,2)        // 0.5*log(variance component) 
  init_bounded_number log_sigma_u2_1(-7.0,7.0,3)        // 0.5*log(variance component) 
  init_bounded_number log_sigma_u2_2(-7.0,7.0,3)        // 0.5*log(variance component) 
  init_bounded_number log_sigma_u2_3(-7.0,7.0,3)        // 0.5*log(variance component) 
  init_bounded_vector log_sigma_u3(1,3,-7.0,7.0,4)      // 0.5*log(variance component) 
  init_bounded_number alpha(0.5,1.5) 
  init_bounded_vector u3_corr(1,3,-10.0,10.0,5) 
 
  random_effects_vector u1_1(1,M1,2)            // Unscaled random effects 
  random_effects_vector u1_2(1,M1,2)            // Unscaled random effects 
  random_effects_vector u1_3(1,M1,2)            // Unscaled random effects 
  random_effects_vector u2_1(1,M2,3)            // Unscaled random effects 
  random_effects_vector u2_2(1,M2,3)            // Unscaled random effects 
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  random_effects_vector u2_3(1,M2,3)            // Unscaled random effects 
  random_effects_matrix u3(1,3,1,M3,4)          // Unscaled random effects 
 
  objective_function_value g 
 
PRELIMINARY_CALCS_SECTION 
  cout << setprecision(4); 
  
GLOBALS_SECTION 
 
  #include <df1b2fun.h> 
  //#include <fvar.hpp> 
 
PROCEDURE_SECTION 
 
  const double lstp=0.91893853320467274177; 
  int i,ii,j,k,l; 
 
  dvariable tmp, f; 
 
  //a(1) = 39.0+beta(1);             
  a(2) = 0.0+beta(2); 
  a(3) = 0.0+beta(3); 
  a(4) = 65.0+beta(4);           
  a(5) = -3.0+beta(5); 
  a(6) = -11.0+beta(6);   
  a(7) = 18.0+beta(7);           
  a(8) = 18.0+beta(8); 
  a(9) = 25.0+beta(9);   
   
  g = 0.0; 
 
  ii = 0; 
 
  sigma_u1_1=mfexp(log_sigma_u1_1); 
  sigma_u1_2=mfexp(log_sigma_u1_2); 
  sigma_u1_3=mfexp(log_sigma_u1_3); 
  
  sigma_u2_1=mfexp(log_sigma_u2_1); 
  sigma_u2_2=mfexp(log_sigma_u2_2); 
  sigma_u2_3=mfexp(log_sigma_u2_3); 
  
  sigma_u3=mfexp(log_sigma_u3); 
   
  dvar_vector su1_1=sigma_u1_1*u1_1; 
  dvar_vector su1_2=sigma_u1_2*u1_2; 
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  dvar_vector su1_3=sigma_u1_3*u1_3; 
 
  dvar_vector su2_1=sigma_u2_1*u2_1; 
  dvar_vector su2_2=sigma_u2_2*u2_2; 
  dvar_vector su2_3=sigma_u2_3*u2_3; 
 
  dvar_matrix CHD(1,3,1,3); 
  CHD.initialize(); 
  for (i=1;i<=3;i++) 
  { 
    CHD(i,i)=1; 
  } 
  CHD(2)(1,1)=u3_corr(1); 
  CHD(2)/=norm(CHD(2)); 
 
  CHD(3)(1,2)=u3_corr(2,3).shift(1); 
  CHD(3)/=norm(CHD(3)); 
  for (i=1;i<=3;i++) 
  { 
    CHD(i)*=sigma_u3(i); 
  } 
 
  dvar_matrix su3=CHD*u3; 
 
  dvar_vector su3_1=su3(1); 
  dvar_vector su3_2=su3(2); 
  dvar_vector su3_3=su3(3); 
 
  dvariable r2=0.0; 
 
  dvar_vector pred0(1,n); 
  for(k=1;k<=M3;k++) 
  { 
    for(l=1;l<=(n/M3);l++) 
    { 
      i = (k-1)/6+1; 
      j = (k-1)%3+1;       
      ii++; 
 
      // get rid of a(1) 
      dvariable A=a(2)*Z1(ii)+a(3)*Z2(ii)+su1_1(i)+su2_1(j)+su3_1(k); 
      dvariable B=a(4)+a(5)*Z1(ii)+a(6)*Z2(ii)+su1_2(i)+su2_2(j)+su3_2(k); 
      dvariable C=a(7)+a(8)*Z1(ii)+a(9)*Z2(ii)+su1_3(i)+su2_3(j)+su3_3(k); 
 
      pred0(ii) = A+B*((mfexp(-C*t(ii))-mfexp(-B*t(ii)))/(B-C)); 
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    } 
  } 
  dvariable mp0=mean(pred0); 
  double my=mean(y); 
  // this is the maximum likelihood estimate for a(1) 
  // which can be solved for explicitly like this so it can be removed 
  // from the optimization 
  a(1) = my-mp0;             
  // so the sum square residulas look like 
  // norm2(y-my-pred0+mp0); 
 
  r2=norm2(y-my-pred0+mp0); 
  if (ii != n) 
  { 
    cerr << " bad " << endl; 
    ad_exit(1); 
  } 
  // this is the maximum likelihood estimate for sigma 
  // which can be solved for explicitly like this so it can be removed 
  // from the optimization as well 
  //sigma=sqrt(r2/double(ii)); 
  sigma=sqrt(alpha*r2/double(ii)); 
  // when sigma is equal to its MLE the log-liklihood  
  // becomes 
  g+=double(ii)*log(sigma)+0.5*double(ii)/alpha; 
  g+=double(ii)*lstp; 
 
  // a very small penalty so that components with  
  // estimated 0 variance do not cause the hessian estimate 
  // to become singular 
  double eps=1.e-5; 
 
  g+=eps*square(log_sigma_u1_1); 
  g+=eps*square(log_sigma_u1_2); 
  g+=eps*square(log_sigma_u1_3); 
   
  g+=eps*square(log_sigma_u2_1); 
  g+=eps*square(log_sigma_u2_2); 
  g+=eps*square(log_sigma_u2_3); 
   
  g+=eps*norm2(log_sigma_u3); 
   
  // Random effects contribution from u1 
  g += 0.5*norm2(u1_1); 
  g += 0.5*norm2(u1_2); 
  g += 0.5*norm2(u1_3); 
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  g += 0.5*norm2(u2_1); 
  g += 0.5*norm2(u2_2); 
  g += 0.5*norm2(u2_3); 
 
  g += 0.5*norm2(u3); 
 
  g+=3*(M1+M2+M3)*lstp; 
 
   double wght=0.0; 
   switch(current_phase()) 
   { 
   case 1: 
     wght=10.0; 
     break; 
   case 2: 
     wght=1.0; 
     break; 
   case 3: 
     wght=1.0; 
     break;  
   default: 
     wght=0.0; 
     break; 
   } 
   g+=wght*norm2(beta); 
 
REPORT_SECTION 
 
  //report << beta0+beta << endl; 
  report << sigma << endl; 
  report << exp(log_sigma_u1_1) << endl; 
  report << exp(log_sigma_u1_2) << endl; 
  report << exp(log_sigma_u1_3) << endl; 
  report << exp(log_sigma_u2_1) << endl; 
  report << exp(log_sigma_u2_2) << endl; 
  report << exp(log_sigma_u2_3) << endl; 
  report << exp(log_sigma_u3) << endl; 
   
 
TOP_OF_MAIN_SECTION 
  arrmblsize = 40000000L; 
  gradient_structure::set_GRADSTACK_BUFFER_SIZE(3000000); 
  gradient_structure::set_CMPDIF_BUFFER_SIZE(200000); 
  gradient_structure::set_MAX_NVAR_OFFSET(10000); 
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