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Decision Quality Metrics – A Tool for Managing Quality of Repeated Bioassays 
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Abstract 
 
Bioassays are often used in tiered screening systems to detect potential products, such as crop 
protection products.   Often these assays are not replicated. The ultimate products of these 
bioassays are decisions, with biologically “active” compounds advanced to the next level of 
screening.  Activity is determined by the response of the test organisms (e.g., weeds, insects or 
fungi) to each compound.  The reproducibility of the bioassay is crucial.  There are two types of 
possible errors in screening, false positives and false negatives.   The quality of the decisions 
based upon these bioassays can be monitored through time using controls.  This paper will 
discuss Decision Quality Metrics, quality control metrics customized for bioassays used to select 
the most “active” compound.  These metrics monitor the reproducibility of the screens, 
translating bioassays responses to controls into potential impact on decision making.  
 
Keywords:  Bioassays, high throughput screening, quality management, decision quality 
 
1. Introduction 
Companies discover, develop and sell crop protection products to control agricultural pests (e.g. 
weeds, insects, plant disease).   Companies may test tens of thousands of compounds each year 
looking for new products.  Compounds may be selected for testing based on chemical and 
physical properties that are believed to predispose a compound for biological activity on 
agricultural pests.  These compounds are often sent through a tiered screening system, which 
uses bioassays as detectors of biological activity.   
 
New crop protection products are difficult to find.  A successful product candidate must control a 
spectrum of agricultural pests, be safe to the crop, safe to agricultural workers and have safe 
levels of residue on food crops.  It must also be safe to beneficial insects, nontarget plants and 
other nontarget organisms.  It must be safe to the ground water, surface water and living 
organisms in these environments (e.g. aquatic invertebrates, fish).  One implication of these 
challenges is the use of high throughput product screening by crop protection companies testing 
large numbers of compounds.   
 
High throughput screens that require only small quantities of each compound are used to assess 
the biological activity of each compound on target pests.   Scientific expertise is used to 
miniaturize the detector bioassays, especially in early screens.   Increased automation makes 
screening large number of compounds feasible.  One drawback of this approach is the 
availability of little or no replication for experimentals.  Some screens may use 96 well microtitre 
plates, where each well is a test unit for an experimental compound.  An advantage of 

200 Kansas State University

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2006/proceedings/12



automation is that it facilitates the introduction of increased replication for positive and negative 
controls which are the basis for the generation of Decision Quality Metrics. 
 
Bioassays are designed to detect herbicidal, fungicidal or insecticidal activity.   A bioassay 
consists of a target pest organism (e.g., insect, weed or plant disease pathogen), growth media 
(e.g., soil or agar) and often a host plant, all in a test unit.   The experimental compound is 
applied to a test unit, which is incubated under prescribed conditions and, after a specified 
duration, the response of the test organism to each compound is measured.    The bioassays have 
been designed by scientists to optimize sensitivity, response detection, reproducibility, 
robustness and low compound consumption. 
 
A screen may be made up of multiple bioassays, each for a different target pest organism.   
Figure 1 is a graphical representation of the way experimental compounds might move through a 
tiered screening system.  A compound advances to the next level of screening after it 
demonstrates biological activity over a specified threshold.   
 
The goal of a tiered screening system is to eliminate inactive compounds from further 
consideration and to detect active compounds.   The end products of each screen are decisions, to 
advance or not to advance to the next tier, for each experimental compound.  The high 
throughput screening model has made screening, especially the early level screening, much like a 
production line process.  The disciplined processes of quality management (e.g., procedural 
control, change management, audits and metrics) may be implemented to assure that every 
experimental compound is treated in the same manner.  Customized quality management control 
charts may be used to monitor repeated bioassays.   Customized metrics, called Decision Quality 
Metrics, will be discussed in this context, but the methods apply to any repeated bioassays. 
 
2. Quality Management for Repeated Bioassays  
The components of quality management (QM) that can be applied to a screening process are (1) 
Standard Operating Procedures (2) Change Management (3) Audits, and (4) Metrics.  The 
application of quality management techniques to repeated bioassays has the goal of every 
compound experiencing the same experimental conditions.   
 
There are many opportunities for unwanted variation (i.e., experimental error or noise) to enter 
the bioassay-based screening process.  With each run, target pest organisms are prepared (e.g., 
solutions of plant pathogens) or selected (e.g. plants) for use in screening. Compound samples 
are physically weighed, put into solution, and applied by pipette or sprayer to the test units.  
Then each test unit is incubated in prescribed conditions for a specified duration.  After 
incubation, each compound is evaluated for efficacy of pest control.  Each compound is in a test 
unit.  The unit may be a pot with multiple weeds or a single well of a 96 well plate containing a 
target pest organism.   Ideally all these procedures are carried out uniformly, so that each test 
compound experiences the same handling, growth conditions and evaluation process.  The 
discipline of quality management can help reduce experimental error.  
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Promoting the uniformity and discipline of quality management to research and development 
researchers poses some challenges.   Generally, researchers are trained to make discoveries using 
the scientific method, where each run of an experiment is fine tuned, based on the learnings from 
the prior experiment. The change management component of QM is useful in reconciling the 
iterative tweaking of the scientific method and the uniformity of execution valued by quality 
management.    
    
Standard operating procedures (SOPs) can be put in place to insure that bioassays are conducted 
as designed.  Change management is a disciplined method of introducing improvements into a 
process.  Improvements are optimized outside the routine screening system and then introduced 
into the screening system only after procedural controls are put in place.  Using change 
management, researchers employ their creativity to improve assays outside of the routine 
screening process.  Once an assay format is in finalized, it is run as reproducibly as possible. 
Routine audits assess the effectiveness of the quality management program.  
 
One metric used for a screening process is the percent of compounds tested that show biological 
activity.   This metric, dependent on the chemistry selected for testing, is a good measure for the 
effectiveness of the compound selection process, but not a good measure for the consistency of 
the bioassay process.  The percent of compounds that are active is valuable feedback to those 
who select which compounds should be tested.  The physical and chemical properties of the 
‘active compounds’ can then be contrasted with properties of ‘inactive compounds’ and provide 
guidance on future compound selection criteria.   A useful metric for assessing the consistency of 
the bioassay process should track and quantify experimental error.  
 
Conventional run charts for the negative controls (i.e., test units without any compound applied) 
are used to monitor the stability of the detector system (Farnum, 1994).  For example, p charts 
can be used to track the percent mortality of untreated test units in an insect screen.  Selected 
rates of commercial crop protection products are used as positive controls.  Proposed in this 
paper is a metric, based on positive controls, that translates variability in the bioassay process 
into its potential impact on decision making.   
 
3. A Possible Metric - Z-Factor  
One statistical parameter proposed by Zhang, Chung and Oldenburg (1999) for use in evaluation 
of high throughput screening assays is called the z-factor.  The z-factor uses the signal window, 
or separation band between positive and negative controls to evaluate assay quality.  The z-factor 
expresses the separation band as a percentage of the dynamic range, which is defined as the 
distance between averages of positive controls (C+) and negative controls (C-). 
 

The formula is:  
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Figure 2 is a graphical display of the z-factor calculation.  This metric is based on the signal to 
noise ratio of the difference between the minimum and maximum signals, assuming normality 
for both the positive and negative controls. The authors describe an assay with a z factor value 
between 0.5 and 1 (i.e., more than half of the dynamic range is a separation band) as an excellent 
assay.    The z factor has the advantage of being a dimensionless simple statistic.   This metric 
addresses the signal to noise ratio, but does not take into account the mean to variance 
relationship in bioassays.  Bioassays have a distinctive mean to variance relationship, where the 
variability is greater around 50% control responses and much less near both the 0% and 100% 
control responses.  See Figure 5 for graphical representation.   An alternative approach is the 
operating characteristic curve, which works directly with probabilities of a compound being 
passed as active, given the mean activity of that compound.   
 
4.  Operating Characteristic Curves and Error Rates   
In bioassays used to detect compounds with biological activity, each compound is assessed as 
active or inactive based on the observed level of biological activity.  There are two possible 
correct decisions, correctly identifying an active (i.e., sensitivity) and correctly identifying an 
inactive (i.e., specificity).  There are two possible incorrect decisions.  A false positive occurs 
when an intrinsically inactive compound is identified as active.  A false negative occurs when an 
intrinsically active compound is identified as inactive.  These two errors have different 
ramifications.  The cost of a false positive is the time and resources used in the next tier of 
screening to bioassay the compound.   The cost of a false negative is difficult to quantify.   What 
if you missed the next blockbuster product?   
 
An operating characteristics curve describes the reliability of detecting the true, but unknown, 
level of activity. (Farnum, 1994)  Figure 3 shows an ideal operating characteristic curve for a 
screen with a goal of advancing every compound with activity of 80% control or greater.  The 
true, but unknown, activity is estimated by the mean response across replicates and time.  The 
mean activity is shown on the x axis and the probability of advancing this compound to the next 
tier is on the y axis.   Figure 4 shows a more realistic operating characteristic curve.   The area 
under the operating characteristic curve, to the left of the x value of 80%, represents the false 
positive rate.  The area above the operating characteristic curve, to the right of the x value of 
80% represents the false negative rate.  This equating of area with error rate is true only under 
the assumption that compounds are randomly selected from a group of compounds whose level 
of activity follows a uniform distribution.  

 
Distinct patterns of variability exist in bioassays and depend on the level of stimulus, background 
response and sensitivity changes in the target pest organism.   Figure 5 shows a hypothetical 
graphic demonstrating the impact of biological variability on error rates.  In this graph, the rate 
tested is on the x axis and the percent control is on the y axis.  Bioassays of compounds 
demonstrating intrinsic activity show a distribution of responses that follow a dose response 
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curve.  The dose response curve goes through the mean response for each rate tested.   
Replication, both within and across runs, at each rate tested would yield a distribution of 
responses.   False positives are that part of a distribution of possible responses for a rate of a truly 
inactive compound that are observed with activity greater than the promotion criteria.  False 
negatives are those realizations of a rate of a truly active compound that are under the promotion 
criteria.    
  
If there is only a small quantity of each experimental compound available for testing, it may be 
difficult to confidently assess its ‘true’ or intrinsic activity.   The next section will describe how 
positive controls, commercial crop protection products, can be used to generate an operating 
characteristic curve and metrics. 
 
5. Use of Standards for Metrics  
To best monitor the consistency of a repeated bioassay, a stimulus is needed that can be applied 
and replicated run after run to the bioassay.   Selected rates of commercial crop protection 
products, which will be referred to as standards, can be used to supply these reproducible, 
repeated stimuli.   
 
Rates of each standard should be selected to elicit a dose response (i.e., 20% control to 80% 
control of the target pest organism).   Rates of standards can be used to mimic experimental 
compounds of various activity levels.  A reproducible stimulus to a bioassay can be obtained by 
subjecting test systems to a fixed rate of a commercially available ‘standard’ crop protection 
product for the assay pest.  This testing of standards allows the characteristic variance to mean 
relationship to be generated.   A rate of a standard that is much lower than the recommended use 
rate may cause a response in a test organism, similar to that which may be caused by an 
experimental compound with weak activity.   It is assumed that standards will go through the 
same bioassay process as experimental compounds.  The responses generated when the same 
stimulus is repeatedly applied to a bioassay allow for the quantification of variation at each level 
of response and the resulting error rates.   
 
One assumption underlying the use of standards to generate metrics is that the variability in a 
bioassay is more dependent on a bioassay’s response to a level of stimuli than it is on the nature 
of the stimulus itself.  For example, the distribution of responses from a high dose of an 
intrinsically weak compound that gives a mean response of 50% control is the same as the 
distribution of responses of a low dose of a very potent compound that gives a mean response of 
50% control.   Our experience, having examined thousands of dose response curves, supports 
this assumption. The Decision Quality Metrics translate this variability into potential impact on 
decision quality, by calculating estimated false positive and false negative rates.   
 
In the calculations of these estimated error rates, the promotion criteria used for experimental 
compounds is applied to the observed responses of the standards, thus treating the standards 
results as if they were experimental compounds.  Each screen has promotion criteria that must be 
met for an experimental compound to go to the next level of screening (e.g., if observed mean 
response is greater than 80% control of pest).   Standard test units showing biological activity 
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over the promotion criteria are counted as actives and units showing activity under the threshold 
are counted as inactives.  These hypothetical “advancement decisions” are then compared to the 
intrinsic activity for the standards, which can be estimated by the mean response across runs.  
   
6.  Assay and Screen Level Metrics  
Screens are made up of multiple assays, targeting different pest organisms within the discipline.  
Promotion decisions are made for each experimental compound.  It is possible that activity of an 
experimental compound on multiple assays is required for promotion.  We calculate both assay 
level and screen level metrics.  Assay level metrics are informative to screen operators, 
monitoring reproducibility at the assay level.  The assay level metrics are sensitive to assay 
specific fluctuations. Screen level metrics can be used to assess reproducibility at a screen level, 
being based on the spectrum of activity across assays.  In this application of monitoring, screen 
level metrics are calculated giving the most weight to decisions on very low actives and very 
high actives.  Decisions on very low actives are important due the high volume of experimental 
compounds being tested with no or very low biological activity, and thus, low business value.  
The decisions on very high actives are important due to the potential value in earnings for very 
active compounds.  The screen level metrics are informative to managers.   
 
7.  Assay Level Decision Quality Metrics Calculations  
The underlying philosophy of these metrics is simple. Assess the intrinsic activity of each 
standard item (i.e., unique assay/standard/rate combination) tested, based on multiple replicated 
runs.  In this application of monitoring, the median percent control response is used as the 
measure of intrinsic or baseline activity.   The baseline activity for each standard item is used to 
bin each item as active or inactive based on the assay promotion criteria.  For example, a rate of 
a standard that gives an average response of 60% control would be binned as inactive, if the 
assay promotion criterion requires an average response greater than 80% control.   Also, a subset 
of both the active and inactive bins with standard items whose baseline activity is either very low 
or very high can be created, thus identifying standard items that on average give either a very 
high or very low response.  Initially, at least 12 runs of screening results for standard items are 
used to assess the baseline activity and ‘bin’ the standard items.   Thereafter, periodically, (e.g., 
every year) this baseline assessment can be redone.  However if a planned change in the 
screening process occurs, the baseline assessment must be recalibrated based on data from 
standard items that have be tested in the revised screening process.   
 
A hypothetical example of setting the baseline for the assay level metrics is shown in Figure 6.  
The baseline activity for each standard item may be recalibrated periodically or when a bioassay 
procedure is changed.   
 
An example of setting the baseline for an assay is shown in Figure 7.   In this example, an assay 
tests four replicates of eight rates of five standards, a total of 160 test units, with each run.  In 
automated early screening levels adding multiple standard items to the screening process may 
not create much additional work and can give much information about the reproducibility of the 
bioassay.  Instead of attempting to assess the quality of an assay using the reproducibility of 
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several replicates for each experimental compound, one can use the reproducibility of replicated 
standard items, tested run after run.   
 
To calculate the metrics, on a run by run basis, the same promotion criteria is applied to each test 
unit of a standard item, just as if it were an experimental compound, assessing it as active or 
inactive.  This assessment is compared to the designated intrinsic activity status, active or 
inactive, for that item.  Correct and incorrect decisions for standard items in the active, inactive, 
very low active and very high active bins can be counted. Estimated error rates, based on these 
‘surrogate’ experimental compounds are displayed as run charts, plotting either the percent 
correct decisions or percent incorrect decisions across time. Run charts are useful for identifying 
trends before they become problems.  
 
Figure 8 displays the calculation of the estimated false positive (FP) rate for a run of the example 
assay shown in Figure 7.  The FP estimate for a run is based on standard items whose baseline 
activity is less than the promotion criteria for that assay.  For these ‘inactive’ standard items, the 
FP estimate for a run is the percent of ‘inactive standard items’ which gave an observed response 
over the promotion criteria.   Figure 9 shows the calculation of the estimated false negative (FN) 
rate, based on response of standard items whose baseline activity is above the promotion criteria.   
In both Figure 8 and Figure 9, the numerators used in the calculations for FP and FN estimates 
are counts of observed data for that run that gave an unusual response for their ‘bin’ (i.e., FP or 
FN).  The denominators are the count of standard items in each bin.  Figure 10 displays run 
charts showing estimated percent correct decisions for both actives and inactives, based on assay 
level metrics.  The number of standard items tested weekly in each category is also included in 
the legend.  It is expected that observed responses for standard items with baseline activity near 
the promotion threshold will vary more than those standard items with very low activity or very 
high activity. 
 
8. Use of Decision Quality Metrics 
Decision Quality Metrics are useful to both the screen operators and management.  Presentation 
of the Decision Quality Metrics in run charts provides a long-term process view allowing the 
early detection of trends and translating that variability into potential impact on error rates.      
 
For example, if in one run many more compounds than usual are identified as active, a quick 
check on the Decision Quality Metrics for that screen will provide useful information about the 
accuracy of those identifications.  If the Decision Quality Metrics show no shift for that run, one 
has more confidence that all the active assessments are correct.  However, if that same run, there 
was an increase in the estimated false positive rate, with standard items that have very low 
activity showing increased activity, then perhaps some of those seemingly active compounds are 
really false positives. Further investigation into this shift in the sensitivity in the screen would be 
warranted in this case.   While metrics monitor the health of assays, it is the quality management 
disciplines of procedural controls, change management and audits that continually improve the 
stability of repeated bioassays.    
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9. Summary 
The Decision Quality Metrics translate observed variability of controls into potential impact on 
decision making.   These metrics provide a more unbiased view of the health of a screening 
process than the percent active compounds, which is dependent on the selection of chemical 
compounds for testing.  Based on the operating characteristic curves approach, these metrics 
work with the probability of a compound being passed as active, given the “intrinsic” level of 
activity of that compound.  Various rates of commercial crop protection products are used as 
surrogates for experimental test compounds of varying activity levels.  The information gained 
from the response of bioassays to these repeated stimuli is translated into estimated false positive 
and false negative rates.  Run charts based on these metrics show decision reliability through 
time.  This approach could be refined by updating the probabilities associated with each 
standard/rate combination using a moving or time series approach. 
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Figures and Tables 
 
 

 
 

Figure 1.  A graphical representation of the way experimental compounds may move through a 
tiered screening system. (Adapted from earlier version by J. Wetherington and S. Foor.)   
 

 
 
Figure 2.  The Z-factor metric is based in the signal to noise ratio of the difference between the 
minimum and maximum signals. 
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Figure 3.  An ideal operating characteristic curve.   
 
 

 
 

Figure 4.  An operating characteristic curve, with 80% control as target activity.  False positives 
are intrinsically inactive compounds identified by an assay as active.  False negatives are 
intrinsically active compounds not identified as active by an assay.  When a randomly selected 
compound has a uniform distribution of having any level of activity, the area under the operating 
characteristic curve, to the left of the x value of 80%, represents the false positive rate.  The area 
above the operating characteristic curve, to the right of the x value of 80% represents the false 
negative rate. 
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Figure 5.  A hypothetical graphic demonstrating the impact of biological variability on error 
rates.  Bioassays of compounds demonstrating intrinsic activity show a distribution of responses 
that follow a dose response curve.  The dose response curve goes through the mean response for 
each rate tested.   Replication, both within and across runs, at each rate tested would yield a 
distribution of responses.   False positives are that part of a distribution of possible responses for 
a rate of a truly inactive compound that are observed with activity greater than the promotion 
criteria.  False negatives are those realizations of a rate of a truly active compound that are under 
the promotion criteria.   
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Figure 6. A hypothetical example of setting the baseline for assay level metrics. 
 
 
 
 

 
 

Figure 7.  An example of setting the baseline for the assay level metrics.   
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Figure 8.  False positive (FP) estimate is based on the response of standard items whose baseline 
activity is less than promotion criteria.   To calculate FP estimate, for each run, calculate % 
standard items with baseline activity below promotion criteria which gave an observed response 
over the promotion criteria. 

 
Figure 9.  False negative (FN) estimate is based on the response of standard items whose 
baseline activity is greater than promotion criteria.  To calculate FN estimate, for each run, 
calculate % standard items with baseline activity above promotion criteria which gave an 
observed response under the promotion criteria. 
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Figure 10.  Example run charts showing estimated percent correct decisions on actives and 
inactives for the assay level metrics.   
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