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A COMPARISON OF MODELS AND DESIGNS FOR EXPERIMENTS WITH 
NONLINEAR DOSE-RESPONSE RELATIONSHIPS 

 
Shengjie Guo, Department of Mathematics, University of Nebraska, Lincoln  
W.W.  Stroup, Department of Statistics, University of Nebraska, Lincoln 
E.T. Paparozzi, Department of Agronomy and Horticulture, University of Nebraska, 

Lincoln 
M.E. Conley, Department of Agronomy and Horticulture, University of Nebraska, Lincoln 
 
ABSTRACT: Research investigating dose-response relationship is common in agricultural 

science. Animal response to drug dose and plant response to amount of irrigation, pesticide, 
or fertilizer are familiar examples. This paper is motivated by plant nutrition research in 
horticulture. Plant response to level of nutrient applied is typically sigmoidal, i.e. no response 
at very low levels, observable response at mid-levels, point-of-diminishing returns and 
plateau at high levels. Plant scientists need accurate estimates of these response relationships 
1) to determine lower threshold below which plants show deficiency symptoms and 2) to 
determine upper point-of-diminishing returns, above which excessive doses are economically 
and environmentally costly. Landes, at al. (1999 and Olson et al. (2001) did initial work 
identifying potentially useful models. Paparozzi, et al. (2005) investigated dose (micro- and 
macro-nutrient) response (elemental leaf and stem concentration) relationships in Poinsettia. 
They found that 1) nutrients must be considered as a system, hence multifactor experiments 
are essential, 2) resources are limited, meaning that experiments must use response-surface 
principles, and 3) nutrient-response relationships are rarely modeled adequately by 2nd order 
polynomial regression models, so standard response surface methods are inadequate. This 
paper presents models and designs that address these requirements and a simulation study to 
assess and compare the small-sample behavior of these models and designs.  

 
KEY WORDS: response surface, nonlinear regression, linear plateau, central composite design, 

face centered cube design, D-optimality, Hoerl model, Gompertz model, Mitscherlich model  
 
1. Introduction 
 

Agricultural researchers frequently want to characterize the effect of two or more quantitative 
factors. Familiar examples include the effect of nutrient levels on animal growth, the effect of 
pesticides on weed or insect control, the effect of irrigation and fertilization level on crop yield, 
the effect of drug dosage on animal health or performance, and so forth. In the vast majority of 
cases, quantitative factors act as systems; interaction among the factors is the rule, not the 
exception, so these studies usually must be conducted using factorial designs. In agriculture, 
these experiments face additional constraints imposed primarily by two realities: first, the 
experiments must be conducted over a fixed period (e.g. a plant’s growing season or the time it 
takes an animal to grow to maturity); and second, the amount of experimental material (e.g. 
plants or animals) is limited, often severely so.  

A typical case, which will be used as a working example in this paper, occurs in plant 
nutrition, illustrated by Figure 1. An ornamental horticulturist wants to understand the effects on 
Poinsettia of varying the levels at which several elemental nutrients (in this case, N, S, Fe, and 
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Mn) are applied. The plants in Figure 1 are arranged by increasing level of  N along one axis and 
increasing level of S along the other axis (within each 3x3 square are the levels of Fe and Mn, 
although their effects are more subtle). One can see that at low application levels of either N or 
S, the plants do not perform well (they are pale), but as the level of N and S increases, the plants 
performance improves (they appear darker). One can also see that there is a point of diminishing 
returns, above which increasing N or S levels do not improve plant performance. The 
researcher’s goal is to determine the optimum combination of nutrients to apply, where optimum 
is defined as the lowest level of nutrient that can be applied and still achieve the desired plant 
performance. If the nutrient levels applied are too low, deficiency symptoms (whose visual 
evidence is the pale plants) will occur. On the other hand, excessive nutrient application may 
result in environmental damage or economic losses to the grower. Variations on this theme occur 
throughout agricultural research. It is basically a dose-response problem.  

Clearly, this type of problem calls for some form of response surface approach, both in terms 
of modeling the dose-response relationship and in terms of designing an efficient experiment. At 
first blush, one might think that response surface methodology, as covered in any number of 
excellent texts (Box, Hunter and Hunter, 1978; Cornell and Khuri, 1996; Myers and 
Montgomery, 2002), would effectively address the problem. However, there are a number of 
reasons why standard response surface methodology is inadequate for such problems. From a 
response surface viewpoint, Figure 1 can be characterized by the two-dimensional plot shown in 
Figure 2. 

Figure 2 shows a typical agricultural dose-response situation. Both N and S are limiting, i.e. 
low doses of either yield poor performance regardless of the dose of the other factor. Also, at 
non-limiting levels of one factor, the response to the other factor increases with dose to a point of 
diminishing returns, above which further increases in dose produce no additional response. 
Standard response surface methodology assumes that 2nd order polynomial regression can 
adequately characterize the response surface. In general, the 2nd order polynomial regression 
model can be written as 

 
2

0( ) i i ii i ij i j
i i i j

E y X Xβ β β β
<

= + + +∑ ∑ ∑ X X , where          (1) 

( )E y  denotes the expected value of the response, 

0β  denotes the intercept, 

iX  denotes the level of the ith quantitative factor (e.g. N or S), 

iβ  denotes the linear regression coefficient for the ith quantitative factor, 

iiβ  denotes the quadratic regression coefficient for the ith quantitative factor, 

ijβ  denotes the linear ×  linear regression coefficient for the interaction between the  ith and jth 
quantitative factors 

For response profiles such as Figure 2, there are two main problems. First, the interactions 
among factors are more complex. For example, a linear ×  linear term cannot adequately 
characterize the interaction resulting from the fact the both N and S are limiting. Second, 2nd 
order polynomial model assumes that a quadratic regression is adequate to characterize the 
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response over any given factor. With Figure 2, the quadratic assumption fails, as shown in Figure 
3.  

In Figure 3, the “true ‘optimal’ dose” occurs at the point on the X-axis where the actual 
response, shown by the boldface dashed line, ceases to increase and forms a plateau for all 
greater doses. In contrast, the quadratic model estimates the maximum response to occur at a 
much higher dose level. Note also that the quadratic model overestimates the maximum 
response. From a practical viewpoint, this means that the quadratic model would mislead a 
grower into using more nutrient that necessary. Excessive nutrient application could have serious 
economic or environmental consequences. This is, in part, why Mead and Pike (1975), in a 
survey of the use of response surface methods in agriculture, found that non-use of such methods 
was widespread.    

What models are capable of adequately characterizing Figure 2? Anderson and Nelson 
(1975) described “linear plateau” models, essentially spline or segmented regressions similar to 
the “true” response pictured in Figure 3. This approach works well with one nutrient at a time 
experiments, but is harder to work with in multi-factor experiments. More importantly, the linear 
plateau approach is not conducive to efficient design selection, an important aspect of the 
Poinsettia example discussed below. Nonlinear models offer an alternative. In previous Applied 
Statistics in Agriculture conferences, Landes, et al. (1999) and Olson, et al. (2001) presented the 
foundations of this paper’s approach.  Landes, et al. (1999) presented adaptations of Gompertz 
and Mitscherlich nonlinear models to fit plant nutrition data from Macz et al. (1997). For the 
purposes of multifactor data, the Gompertz and Mitscherlich models, respectively, 

( ) exp exp ...i i ij i j ijk i j k
i i j i j k

E y X X X X X Xα β γ γ γ
< < <

⎡ ⎤⎛ ⎞
= × × − − − −⎢ ⎥⎜ ⎟

⎢ ⎥⎝ ⎠⎣ ⎦
∑ ∑ ∑  , where   (2) 

( ) and iE y X  are defined as above, 
α  denotes the asymptote, 
β  denotes the log of proportion of the asymptote that ( )E y increases from Xi=0 to the values 

of Xi at which ( )E y is effectively at asymptote, and 
, , ,..i ij ijk .γ γ γ  denote the rates of increase associated with the ith main effects, ijth two-way 

interactions, ijkth three-way interactions, etc. While not shown explicitly in the model 
equation, up to n-way interactions can be included for n-factor factorial experiments. 

The Mitscherlich is 

            (3) ( ) ...i j i j ki X X X X XX
i ij ijk

i i j i j k

E y α β γ γ γ
< < <

⎛ ⎞
= − ⎜

⎝ ⎠
∏ ∏ ∏ ⎟

where all the terms in the model have meanings analogous to the Gompertz.  
For a single factor, the Gompertz and Mitscherlich have similar plots, shown in Figure 4. 

One can easily see that the accuracy of the model fit is vastly improved.  
Olson, et al. (2001) suggested an alternative nonlinear model, the Hoerl model. The basic 

form of the Hoerl model is ( ) 2
0 1( ) expE y X X ββ β ⎡ ⎤= + ⎣ ⎦ , which can be expressed in linearized 

form as [ ] 0 1 2ln ( ) ln( )E y X Xβ β β= + + . For multifactor experiments, the linearized Hoerl is  
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[ ] [ ]0 1 2 1 2

1 2

ln ( ) ln( ) ln( ) ln( )

ln( ) ln( ) ln( ) ...

i i i i ij i j ij i j
i i j

ijk i j k ijk i j k
i j k

E y X X X X X X

X X X X X X

β β β β β

β β
<

< <

⎡ ⎤= + + + +⎣ ⎦

⎡ ⎤+ + +⎣ ⎦

∑ ∑

∑
, where  (4) 

0β  denotes the intercept, 

1 1 1, , ,....i ij ijkβ β β denote main effect, 2-way interaction, 3-way interaction, etc. coefficients 
associated with the literal levels, Xi, of the ith factor, and  

2 2 2, , ,...i ij ijk .β β β  denote main effect, 2-way interaction, 3-way interaction, etc. coefficients 
associated with the log levels, ln(Xi), of the ith factor. 

Figure 5 shows the single-factor fit of the Hoerl model relative to our working example. The fit 
is somewhat less exact than the Gompertz or Mitscherlich. However, the advantage of the Hoerl 
model is that, in its linearized form, it can be fit with linear model software and, as will be shown 
below, efficient, robust designs can be generated by optimizing them for the Hoerl. Thus, the 
Hoerl model is a good compromise between accurate fit and versatility. 

 Paparozzi, et al. (2005) evaluated the fit of alternative models over 20 plant responses, 
mostly elemental concentration, in a 4-factor (N, S, Fe, and Mn) poinsettia nutrition experiment. 
In most cases, the 2nd order polynomial regression model showed strong evidence of lack of fit, 
whereas the Hoerl model fit adequately in most cases. The main reasons for inadequate 2nd order 
polynomial fit were the inadequacy of the quadratic (as in Figure 3) or the existence of 
interactions of higher than 2nd order. The Gompertz and Mitscherlich models fit well when the 
response was of the diminishing returns form as shown in Figure 2.  

Failure of the 2nd order polynomial is not unique to agriculture. Standard response surface 
methods deal with this problem by restricting the range of the Xi values to small subsets of the 
total experimental region so that the 2nd order approximation is acceptable within the subset. 
Researchers use a succession of such experiments to search the experimental region for the 
optimal treatment combination. While this approach works well in engineering and other 
applications that permit running a number of experiments in quick succession, it is not well-
suited to agriculture, where the experiment must conform to the length of the growing season, 
the time it takes an animal to grow to maturity, or whatever time scale is relevant. Agricultural 
researchers need response surface methods that can produce usable information from a single 
experiment (especially when the research is for a graduate student thesis or an untenured 
assistant professor).  

The final reality that agricultural researchers face is an upper limit on the number of 
experimental units that can be handled in a single experiment. For example, with resources likely 
to be available, the effective upper limit on the size of Poinsettia experiments such as the one 
illustrated in Figure 1 is roughly 100-125 plants. This upper limit is typical of agricultural 
research.  

In summary, the agricultural response surface problem is characterized by four basic, 
mutually contradictory needs: 

1. Factorial treatment designs are essential.  Agricultural treatment factors can rarely be 
studied out of context of the treatment systems within which they are used. 
Interactions are the rule, not the exception. 

2. Models more complex than 2nd order polynomial regression are often essential to 
adequately describe the dose-response relationship. 
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3. The number of experimental units available in a single experiment is often severely 
constrained. 

4. Running a succession of small experiments to search the experimental region is 
usually not an option. 

Olson, et al. (2001) proposed a design approach for such experiments. The basic idea is that 
standard response surface designs – e.g. Central Composite designs, Box-Behnken designs, 
fractions of 3N factorial designs – are inadequate but they can be augmented to more realistically 
address the four needs listed above. As an example for a three-factor experiment, Olson 
presented a possible design based on the “Face Centered Cube” essentially a Central Composite 
design with “face” points instead of axial points. Figure 6 shows the design. Olson named this 
design as the “CELEPSO” design – we will henceforth refer to it as an “augmented face centered 
cube.” 

The augmented face centered cube design assumes five levels of each of three factors 
(labeled 0, 1, 2, 3, and 4). Olson, et al. used five levels to guarantee that one would be able to 
estimate a nonlinear response surface model such as the Gompertz or Mitscherlich.  The “face 
centered cube” uses levels 0, 2, and 4: a 23 factorial using levels 0 and 4 plus six “face points 
(level 2 of any two factors in conjunction with either level 0 or 4 of the third factor) and a center 
point (level 2 of all three factors). Embedded within the face centered cube is a 23 factorial using 
levels 1 and 3. This design thus requires a total of 23 treatment combinations (out of 53 = 125 
possible factorial combinations) but would permit estimation of the Hoerl, Gompertz, or 
Mitscherlich models.  

Although the augmented face-centered cube appears to be a usable design and the Hoerl, 
Gompertz, or Mitscherlich models appear to be capable of accurately characterizing typical 
agricultural multi-factor dose-response relationships, several questions remain. The two 
questions of specific interest in this paper are 

1. How does the augmented face centered cube design perform in practice and are there 
alternative designs that might be better? 

2. What are the various models’ small-sample behaviors? What is their relative accuracy 
and precision? For the Gompertz and Mitscherlich models, is one likely to experience 
difficulty obtaining accurate parameter estimates when the data are from incomplete 
factorial response surface designs such as the augmented face centered cube? 

The primary purpose of this paper is to address these twin objectives. In Section Two, 
alternative designs are developed. Section Three reports on a simulation study exploring the 
small sample behavior of the model-design combinations developed in sections one and two. 

 
2. Response Surface Designs for Nonlinear Dose-Response Models 

In Section One, the quadratic, Hoerl, Gompertz, and Mitscherlich models were compared in 
Figures 3 through 5 for their fit relative to the “diminishing returns” dose-response model over a 
single factor. To compare designs in multi-factor experiments, we need to view these models in a 
multifactor context. In the two-factor case, the Hoerl model has an additional interaction term 
(log ×  log) not present in the 2nd order polynomial. In three- and higher-way models, the Hoerl, 
Gompertz, and Mitscherlich models have three- and higher-way interaction terms as well. 
Obviously, if complex interaction (i.e. any interaction more complex than linear ×  linear two-
way interaction) is present, the Hoerl and nonlinear (Gompertz and Mitscherlich) models should 
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perform better. Figures 7-9 show the fits of 2nd order polynomial, Hoerl, and Gompertz models, 
respectively, for a three-factor extension of the surface shown in Figure 2. Suppose that all three 
factors are limiting, so that at the lowest level of any factor, the surface for the other two factors 
is flat. At higher levels of any factor, the surface for the other two factors looks like Figure 2. 
Figures 7-9 show the fits at the highest level of the third factor, so the ideal against which to 
compare them is Figure 2.  The Mitscherlich is not shown, but for this example is virtually 
indistinguishable from the Gompertz.  

One can see that the Hoerl and Gompertz model provide obviously more accurate fits. 
However, one could reasonably ask if the polynomial model were augmented to contain complex 
interaction terms analogous to those in the multifactor Hoerl, Gompertz, and Mitscherlich 
models as given in Section One, how would the fit compare? An augmented polynomial would 
contain quadratic ×  quadratic terms in place of the log (Xi) ×  log (Xj) terms in the Hoerl model 
as well as linear ×  linear ×  linear and quadratic ×  quadratic ×  quadratic three-way interaction 
terms. The resulting fit is shown in Figure 10.  

One can see that while the fit is certainly better than the 2nd order polynomial, it is still 
inferior to the Hoerl and Gompertz. The polynomial fit could be improved by adding cubic 
terms, but this is counterproductive in several ways. First, unlike the Hoerl and nonlinear models, 
higher-order polynomial terms lack direct practical interpretation. Second, higher-order 
polynomial models are not parsimonious – adding terms to produce a fit that is no better than an 
alternative with fewer parameters makes no sense. Also, more parameters would in turn 
necessitate more treatment combinations in the design, counter to the researcher’s requirements.  

This paragraph sets up the basic attributes of designs required to address our problem. A 
design capable of producing data to allow estimation of the three-factor Hoerl model must allow 

for the intercept plus 14 treatment effect parameters (3 linear terms, 3 log main effects,  

linear ×  linear terms,  log ×  log terms, one linear 

3
2
⎛ ⎞
⎜ ⎟
⎝ ⎠

3
2
⎛ ⎞
⎜ ⎟
⎝ ⎠

×  linear ×  linear term and one log ×  log 

 log term). A four-factor model would require 4 linear main effects, 4 log main effects, 

linear two-way terms, log two-way terms, linear three-way terms, log three-

way terms, one four-way linear and one four-way log term, for a total of 30 treatment effect 
parameters plus the intercept. Table 1 gives design size characteristics for up to six factor 
experiments.  

×
4
2
⎛ ⎞
⎜ ⎟
⎝ ⎠

4
2
⎛ ⎞
⎜ ⎟
⎝ ⎠

⎜
4
3
⎛ ⎞

⎟
⎝ ⎠

4
3
⎛ ⎞
⎜ ⎟
⎝ ⎠

Table 1 shows several important results. First, standard response surface designs such as the 
central composite are inadequate for agricultural response surface experiments with four or more 
factors, and may be marginal even for three-factor experiments. Second, five factors are probably 
the upper practical limit for any single study, assuming an upper limit of 100-125 experimental 
units. Third, experiments of this type have to be regarded as exploratory, as the ability to 
replicate is limited. For five factors, not every treatment combination could even be replicated in 
a single experiment.   

The rest of this paper will focus on the three-factor case. The augmented face-centered cube 
is one design that satisfies the requirements shown in Table 1. What alternative designs could 
one consider? One approach would be to construct optimal designs (e.g. D-optimal) with respect 
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to the models under discussion. Exact D-optimal designs can be constructed with respect to the 
Hoerl and augmented polynomial models. The method of Box and Lucas (1959) can be used to 
constructed approximate optimal designs for the Gompertz and Mitscherlich models. We used 
SAS® PROC OPTEX to obtain these designs. The designs were generated from a candidate set of 
all 125 possible combinations of three factors with five levels each. The augmented face-
centered cube design with 3 replications at the center point was used as an initial design. For the 
Hoerl and augmented polynomial models, D-optimal designs were generated directly from their 
respective linear models. The following SAS code was used. Note that X1, X2, and X3 refer to 
the three factors, each with levels 0, 1, 2, 3, and 4. The variables LOGX1, etc. are the natural 
logs of X1, etc. For the Hoerl model, 0.1 was added to X1, X2 and X3 in order to compute the 
log. The program: 
proc optex data=candidate_set; 
 /* model for Hoerl */  model x1 x2 x3 logx1 logx2 logx3  
   x1*x2 x1*x3 x2*x3 logx1*logx2 logx1*logx3 logx2*logx3  
   x1*x2*x3 logx1*logx2*logx3; 
 /* model for augmented polynomial */  model x1|x1 x2|x2 x3|x3 x1|x2|x3 
   x1*x1*x2*x2 x1*x1*x3*x3 x2*x2*x3*x3 x1*x1*x2*x2*x3*x3; 
 generate method=exchange initdesign=aug_fcc iter=100 crtierion=d n=25; 
 output out=new;  

For the Gompertz and Mitscherlich models, approximate optimal designs were generated by 
obtaining the derivative with respect to each parameter in the model. Each derivative was 
evaluated at the “true” parameter value for the data depicted in Figure 2 (more information about 
these data is given below under the description of the simulation study). To save time and effort, 
one can use the derivative function of PROC NLIN to obtain the derivatives. As an example, for 
the Gompertz, the OPTEX program was  
proc optex data=candidate_set coding=none;  
 model  dga dgb dg1 dg2 dg3 dg12 dg13 dg23 dg123/noint; 
 generate method=exchange initdesign=aug_fbc iter=100 criterion=d n=25; 
 output out=new_g;  

The variables DGA, DGB, DG1, ..., DG123 denote the derivatives with respect to α , β , the 

iγ  (i=1,2,3), the ijγ  (i<j=1,2,3), and 123γ . Note the need for the NOINT option as the procedure 
would otherwise insert an unwanted intercept, 0β , into the model.  For the Gompertz and 
Mitscherlich approximations, the D-optimal criterion in PROC OPTEX produced obviously 
flawed designs (see next paragraph). When the U-optimal criterion (CRITERION=U in the 
GENERATE statement) was used with the Mitscherlich, the resulting design appeared to be 
more reasonable. Computer assisted design algorithms such as PROC OPTEX can be extremely 
helpful, but the designs they generate should be examined carefully before using them. Table 2 
shows the designs generated as optimal for the various models. 

Table 2 reveals some “red flags” for certain designs. For example, the D-optimal design with 
respect to the augmented polynomial model uses only treatment combinations from levels 0, 2, 
and 4 of each factor. While this may optimize estimating the polynomial, it may create problems 
for the nonlinear models if three levels per factor are inadequate for reliable estimation. The 
approximate D-optimal design with respect to the Gompertz has 19 of the 25 observations at the 
zero level of at least one factor. Such a design appears flawed by inspection: with only six 
observations at a non-limiting treatment combination, one wonders if a data set from this design 
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can produce a meaningful picture of the response surface. The D-optimal design with respect to 
the Hoerl only uses four levels per factor, never using level 3, whereas the U-optimal design with 
respect to the Mitscherlich uses all five levels but without any apparent pattern. Whether these 
are problems is unclear. The comparisons in the next section will provide answers.  

 
3. Comparison of Designs 
 

The designs in section 2 can be compared in one of two ways. First, one can compare them 
with respect to various design optimality criteria. Second, one can compare them via simulation.  

For the comparison with respect to optimality criteria, the Hoerl seems a reasonable choice as 
a reference model. The justification is as follows. Typical optimality criteria are based on the X 
matrix implied by the design. Specifically, D-optimal designs maximize the determinate, X X′  

and A-optimal designs minimize the trace of ( ) 1X X −′ , that is the average variance of the 
estimated model parameters. Of the designs under consideration, only the polynomial models 
(2nd order and augmented) and the linearized form of the Hoerl have exact X matrices and of 
these, only the Hoerl provides an accurate fit of the surface shown in Figure 2. Table 3 shows the 
D-optimality (expressed as (log )X X′   and the A-optimality criteria with respect to the Hoerl 
model for each design under consideration. The central composite design is also shown for the 
sake of comparison. 
 One can see from Table 3 that the central composite design, regardless of how replication is 
approached, is dramatically inferior to the other designs with respect to our working response 
surface prototype. One can also see that the designs generated with respect to the Gompertz and 
Mitscherlich models do not compete well with the other designs as far as the Hoerl model is 
concerned. However, the simulation study is needed to fully understand how these designs will 
perform when estimating the Gompertz and Mitscherlich models.  
 
4.  Simulation Study 
 

To study the small sample behavior of the models with data from the designs described in the 
previous section, a simulation study was conducted. An “ideal” population based on the situation 
portrayed in Figure 2 was constructed. This population had three factors, each with levels 0, 1, 2, 
3, and 4, where the 0 level for each factor was defined to be “limiting” and level 4 was defined to 
be the maximum. Figure 11 shows the response characteristic of this “ideal” population. An 
attached file contains the data set of the ideal population.  

For each design, 1500 simulated data sets were generated. For each simulated data set, the 
1 2 3X X X× ×  treatment combinations shown in Table 2 were used. Simulated observations were 

generated by taking the response value in the ideal data set for each given 1 2 3X X X× ×  treatment 
combination and adding a normal deviate from a normal population with a mean of zero and a 
variance of 3. The responses in the ideal population range from 5 for the limiting treatment levels 
to a maximum of 14, so the variance corresponds roughly to a 10-20% coefficient of variation, 
typical for plant science studies.   

Each model was estimated using each simulated data set. The estimated coefficients were 
then used to compute predicted responses for all 125 1 2 3X X X× ×  treatment combinations in the 
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population. The adequacy of each model-design combination was assessed by computing the 
correlation between the “true” and predicted responses and the sum of squared prediction errors 
over the 125 1 2 3X X X× ×  treatment combinations. Estimation used PROC GLM for the 2nd 
order and augmented polynomial models and the Hoerl model. For the Hoerl model, the right-
hand side of equation (4) was fit to log(Y) as shown in equation (4) and directly to the response 
variable, Y. This was done to shed light on our experience that applying the right-hand side of the 
linearized Hoerl directly to Y was producing better results.  PROC NLIN was used for the 
Gompertz and Mitscherlich models. Since PROC NLIN is an iterative procedure, it failed to 
converge for some of the simulated data sets. As some designs were more prone to non-
convergence than others, the convergence proportion was an additional criterion for the 
simulation study.  

Table 4 shows the results of the simulation study. Figures 12 through 17 show the average fit 
of the Mitscherlich, Hoerl, and augmented polynomial models over factors X1 and X2 at X3=0 
and X3=4. Visually, the Gompertz model fit is virtually indistinguishable from the Mitscherlich. 
The 2nd order polynomial is not shown, but is basically similar to the grossly inadequate fit 
shown in Figure 7.  

From Table 4, several conclusions emerge. First, the D-optimal design with respect to the 
Hoerl appears to be the most robust design. The two nonlinear models, Gompertz and 
Mitscherlich, and the linearized Hoerl with Y, not log(Y) used as the response variable, all 
produce results with SS(prediction error) < 200 and correlation(Y, ) > 0.95. The convergence 
proportion for each nonlinear model is at or close to 100%. The two nonlinear models perform 
nearly as well with the augmented face centered cube as with the D-optimal Hoerl design. The 
Hoerl with log(Y) as the response variable, the augmented polynomial, and the 2

Ŷ

nd order 
polynomial are worse, in that order. With the D-optimal design with respect to the augmented 
polynomial, the augmented polynomial model’s performance is indeed optimized, but even with 
this design, its fit is noticeably worse that that the Hoerl and Gompertz, although while the 
Gompertz has the best fit when it converges, its convergence rate is only 85.3%.  The designs 
ostensibly optimized for the Gompertz and Mitscherlich in practice perform no better than the D-
optimal Hoerl design for their intended models and show severely degraded performance with 
respect to the other models under investigation. This suggests that a design strategy based on 
obtaining a D-optimal design with respect to the Hoerl, regardless of the model one ultimately 
uses to fit the data, is a good all-purpose strategy. The Hoerl model does not require guesses, 
educated or otherwise, of nonlinear parameters and is far more capable of fitting linear plateau or 
diminishing returns type response surfaces typical of agricultural research. 

Figure 12 through 17 verify that the realized fits using these models with the D-optimal 
Hoerl response surface design follow the theoretical fits shown in Figures 7-9 very closely. The 
nonlinear models and the Hoerl, using Y as the response variable, provide an average fit very 
close to the actual data, whereas the polynomial, even augmented with terms analogous to the 
higher-order interaction terms in the Hoerl model, yields a poor and misleading fit.   

 
5. Discussion 
 

These results suggest that the nonlinear Gompertz and Mitscherlich models and the linearized 
form of the Hoerl model used in conjunction with a D-optimal response surface design optimized 
for the Hoerl provide a good general purpose approach to exploratory investigation of nonlinear, 
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diminishing return response surfaces in agriculture when resources are limited. While the 
simulation study is limited to a specific scenario, it is a typical scenario for many kinds of 
agricultural research from a variety of disciplines.  

Further research underway in this area focuses on several issues. First, we are in the process 
of verifying that the results for the three-factor case simulated in this paper hold for the four-
factor case. Second, we are looking at alternative scenarios, such as ones of interest observed by 
Paparozzi, et al. (2005). Third, we are investigating in more detail design optimization for 
nonlinear models including the question of how many levels and what spacing might improve the 
estimates of nonlinear models without compromising the Hoerl model. Fourth, we are looking at 
a wider variety of models, including linear plateau models and possibly logistic models. Finally, 
we are taking a closer look at the reasons for nonconvergence. In some cases, such as the 
approximate D-optimal design with respect to the Gompertz generated by PROC OPTEX, the 
design is obviously flawed and if anything it is surprising that the convergence rates are as high 
as they are. In other cases, e.g. the U-optimal design that appears to provide excellent 
performance with the nonlinear models, the convergence rates are around 97%. Might it be 
possible with a little tweaking to get the convergence rate up to 100%? 

In any event, the results presented here clearly demonstrate two things. First, standard 
response surface methods based on 2nd order polynomial regression really do appear to be 
unsuited to many agricultural applications, so it should hardly be surprising that they are not used 
as often as one might expect. Second, with suitable modification, the methods for nonlinear 
response surface investigation work very well and can be efficient and effective tools for 
agricultural researchers. 

  
6. Summary 
 
 This research investigated design and analysis for response surface problems suggested by a 
plant science example. Specifically the response involves several factors, each of which are 
limiting, and each of which has a sigmoidal response over the factor levels. Previous work has 
shown that standard response surface methods provide inadequate characterization of such dose-
response profiles. Nonetheless, the need to accurately characterize these profiles in a single 
experiment and the limits on the size of such experiments make adaptation of response surface 
methods essential. The simulation study in this paper provides compelling evidence that 
incomplete factorial designs from a candidate set with 5 levels per factor, constructed to be D-
optimal with respect to the linearized form of a multi-factor Hoerl model, in conjunction with 
estimates from the Hoerl model or the Gompertz or Mitscherlich nonlinear regression models, 
provide efficient and accurate characterization of the dose-response relationship illustrated by the 
plant science example used in this paper. 
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Table 1. Design size characteristics for Three to Six factors. 

 

 

Factors 

 

5N Factorial 

# levels 

 

Parameters 
Needed for 

Hoerl* 

# Trt Comb in 
Central 

Composite 
Design 

 

# Trt Comb in 
Augmented 

Face Ctr Cube 

3 125 14 15  23  

4 625 30 25 41 

5 3125 62 43  75 

6 15625 126 77  141 

* Not including intercept. 
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Table 2. Designs generated as Optimal with respect to Models under study. 

D-optimal wrt Hoerl D-optimal wrt aug-
polynomial 

D-optimal wrt 
Gompertz 

U-optimal wrt  
Mitscherlich 

 
 

Obs X1 X2 X3 X1 X2 X3 X1 X2 X3 X1 X2 X3 

1 0 0 0 0 0 0 0 0 0 0 0 4 

2 0 0 0 0  0 4 0 0 0 0 1 1 

3 0 0 2 0 2 2 0 0 0 0 2 2 

4 0 0 4 0 2 4 0 0 4 0 3 3 

5 0 2 0 0 4 0 0 0 4 0 3 4 

6 0 2 4 0 4 2 0 4 0 0 4 0 

7 0 4 0 0 4 4 0 4 0 0 4 4 

8 0 4 1 2 0 0 0 4 0 1 0 2 

9 0 4 4 2 0 2 0 4 4 1 1 3 

10 1 0 4 2 0 4 0 4 4 1 2 0 

11 1 1 1 2 2 0 0 4 4 1 3 1 

12 1 4 1 2 2 2 1 1 3 2 0 2 

13 1 4 4 2 2 2 1 3 1 2 2 0 

14 2 0 0 2 2 4 3 1 1 2 2 2 

15 2 4 0 2 4 2 3 3 3 3 0 2 

16 4 0 0 2 4 4 4 0 0 3 0 3 

17 4 0 2 4 0 0 4 0 0 3 0 4 

18 4 0 4 4 0 2 4 0 4 3 1 1 

19 4 1 0 4 0 4 4 0 4 3 3 0 

20 4 1 1 4 2 0 4 0 4 4 0 0 

21 4 1 4 4 2 2 4 4 0 4 0 4 

22 4 4 0 4 2 4 4 4 0 4 2 2 

23 4 4 1 4 4 0 4 4 0 4 3 0 

24 4 4 4 4 4 2 4 4 4 4 4 0 

25 4 4 4 4 4 4 4 4 4 4 4 4 
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Table 3. A- and D-optimality Criteria for Designs under consideration 

Design 

(all designs have 25 
observations) 

 

D-opt ( ( )log X X′ ) 

 

A-opt ( ) ( ) 1trace X X −⎡ ⎤′⎣ ⎦

Augmented Face-Centered 
Cube 

63.7 22.0 

D-optimal wrt Hoerl 77.0 3.4 

D-optimal wrt aug Polynomial 72.0 7.7 

D-optimal wrt Gompertz 49.0 14.3 

U-optimal wrt Mitscherlich 42.8 150.8 

CCD 

(replication at center point 
only) 

24.9 10306 

CCD 

(replication at axial points) 

29.1 8109 

CCD 

(replication at corner points) 

28.3 7922 
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Table 4. Small sample performance of design-model combinations     

Design  

Model 

 
Criteria1

Aug 
face 
ctr 

cube 

D-opt 

Hoerl 

D-opt aug 
polynomial

D-opt 
Gompertz

U-opt 
Mitscherlich

Gompertz SS(p.e.) 
ˆ( , )Corr Y Y  

converge 
% 

167 

0.96 

 

98.6 

148 

0.97 

 

99.0 

163 

0.97 

 

85.3 

145 

0.98 

 

89.1 

166 

0.97 

 

96.7 

Mitscherlich SS(p.e.) 
ˆ( , )Corr Y Y  

converge 
% 

146 

0.97 

 

100 

141 

0.97 

 

100 

347 

0.93 

 

71.9 

1242 

0.74 

 

78.1 

161 

0.97 

 

97.7 

Hoerl (Y) SS(p.e.) 
ˆ( , )Corr Y Y  

424 

0.91 

197 

0.96 

256 

0.94 

3602 

0.57 

3024 

0.63 

Hoerl  

( ) log( )Y

SS(p.e.) 
ˆ( , )Corr Y Y  

503 

0.89 

273 

0.94 

no estimated computed 

2nd order 
Polynomial 

SS(p.e.) 
ˆ( , )Corr Y Y  

807 

0.78 

546 

0.86 

481 

0.87 

1432 

0.60 

768 

0.84 

augmented 
Polynomial 

SS(p.e.) 
ˆ( , )Corr Y Y  

545 

0.86 

491 

0.90 

382 

0.90 

1748 

0.57 

1241 

0.89 

 

1 denotes “sums of squared prediction errors” = ( . .)SS p e ( )2ˆY Y−∑  over 125 factor level 

combinations in population from which simulated data sets generated. Y denotes true value, 
denotes predicted value from estimated model coefficients Ŷ
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Figure 1. Visual Response of Poinsettia to Levels of N and S Applied  
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Figure 2. Plot of Poinsettia Dose-Response Profile 
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Figure 3. Quadratic Approximation of Diminishing Returns Response 
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Figure 4. Gompertz and Mitscherlich Approximations of Diminishing Returns Response 
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Figure 5. Hoerl Approximation of Diminishing Returns Response 
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Figure 6. Olson’s “CELEPSO” Three-Factor Response Surface Design 
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This page shows Figures 7 though 9. 

Figure 7. Two-factor 2nd Order Polynomial fit of Figure 2 Dose-Response Surface 

 

Figure 8. Two-factor Hoerl fit of Figure 2 Dose-Response Surface 

 

Figure 9. Two-factor Gompertz fit of Figure 2 Dose-Response Surface 
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Figure 10. Two-factor augmented Polynomial fit of Figure 2 Dose-Response Surface 
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Figure 11. “Ideal” Population for Simulation Study – Three Factor “Diminishing Returns” 
Nonlinear Response Surface 
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This page shows Figures 12 and 13. 
 
Figure 12. Average fit of Mitscherlich model estimated from D-optimal wrt Hoerl design at 

X3=0 
 

 

 

Figure 13. Average fit of Mitscherlich model estimated from D-optimal wrt Hoerl design at 
X3=4 

 

 

  

Conference On Applied Statistics In Agriculture 239

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2006/proceedings/13



This page shows Figures 14 and 15. 
 
 
Figure 14. Average fit of Hoerl model estimated from D-optimal wrt Hoerl design at X3=0 
 

 

Figure 15. Average fit of Hoerl model estimated from D-optimal wrt Hoerl design at X3=4 
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This page shows Figures 16 and 17. 
 
 
Figure 16. Average fit of Hoerl model estimated from D-optimal wrt Hoerl design at X3=0 
 

 

Figure 17. Average fit of Hoerl model estimated from D-optimal wrt Hoerl design at X3=0 
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