January 2015

Swine Day 2015 Supplements

R. D. Goodband
Kansas State University, Manhattan, goodband@k-state.edu

M. D. Tokach
Kansas State University, Manhattan, mtokach@k-state.edu

S. S. Dritz
Kansas State University, Manhattan, dritz@k-state.edu

J. M. DeRouchey
Kansas State University, Manhattan, jderouch@k-state.edu

See next page for additional authors

Follow this and additional works at: http://newprairiepress.org/kaesrr

Part of the [Other Animal Sciences Commons](http://newprairiepress.org/kaesrr)

Recommended Citation

This report is brought to you for free and open access by New Prairie Press. It has been accepted for inclusion in Kansas Agricultural Experiment Station Research Reports by an authorized administrator of New Prairie Press. Copyright January 2015 Kansas State University Agricultural Experiment Station and Cooperative Extension Service. Contents of this publication may be freely reproduced for educational purposes. All other rights reserved. Brand names appearing in this publication are for product identification purposes only. No endorsement is intended, nor is criticism implied of similar products not mentioned. K-State Research and Extension is an equal opportunity provider and employer.
Abstract
It is with great pleasure that we present the 2015 Swine Industry Day Report of Progress. This report contains updates and summaries of applied and basic research conducted at Kansas State University during the past year. We hope that the information will be of benefit as we attempt to meet the needs of the Kansas swine industry.

Keywords
swine

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

Authors
Foreword

It is with great pleasure that we present the 2015 Swine Industry Day Report of Progress. This report contains updates and summaries of applied and basic research conducted at Kansas State University during the past year. We hope that the information will be of benefit as we attempt to meet the needs of the Kansas swine industry.

2015 Swine Day Report of Progress Editors
Bob Goodband, Mike Tokach, Steve Dritz, Joel DeRouchey, and Jason Woodworth
Standard Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADG</td>
<td>average daily gain</td>
</tr>
<tr>
<td>ADF</td>
<td>acid detergent fiber</td>
</tr>
<tr>
<td>ADFI</td>
<td>average daily feed intake</td>
</tr>
<tr>
<td>AI</td>
<td>artificial insemination</td>
</tr>
<tr>
<td>avg</td>
<td>average</td>
</tr>
<tr>
<td>bu</td>
<td>bushel</td>
</tr>
<tr>
<td>BW</td>
<td>body weight</td>
</tr>
<tr>
<td>cm</td>
<td>centimeter(s)</td>
</tr>
<tr>
<td>CP</td>
<td>crude protein</td>
</tr>
<tr>
<td>CV</td>
<td>coefficient of variation</td>
</tr>
<tr>
<td>cwt</td>
<td>100 lb</td>
</tr>
<tr>
<td>d</td>
<td>day(s)</td>
</tr>
<tr>
<td>DE</td>
<td>digestible energy</td>
</tr>
<tr>
<td>DM</td>
<td>dry matter</td>
</tr>
<tr>
<td>DMI</td>
<td>dry matter intake</td>
</tr>
<tr>
<td>F/G</td>
<td>feed efficiency</td>
</tr>
<tr>
<td>ft</td>
<td>foot(feet)</td>
</tr>
<tr>
<td>ft²</td>
<td>square foot(feet)</td>
</tr>
<tr>
<td>g</td>
<td>gram(s)</td>
</tr>
<tr>
<td>µg</td>
<td>microgram(s), .001 mg</td>
</tr>
<tr>
<td>gal</td>
<td>gallon(s)</td>
</tr>
<tr>
<td>GE</td>
<td>gross energy</td>
</tr>
<tr>
<td>h</td>
<td>hour(s)</td>
</tr>
<tr>
<td>HCW</td>
<td>hot carcass weight</td>
</tr>
<tr>
<td>in</td>
<td>inch(es)</td>
</tr>
<tr>
<td>IU</td>
<td>international unit(s)</td>
</tr>
<tr>
<td>kg</td>
<td>kilogram(s)</td>
</tr>
<tr>
<td>kcal</td>
<td>kilocalorie(s)</td>
</tr>
<tr>
<td>kWh</td>
<td>kilowatt hour(s)</td>
</tr>
<tr>
<td>lb</td>
<td>pound(s)</td>
</tr>
<tr>
<td>Mcal</td>
<td>megacalorie(s)</td>
</tr>
<tr>
<td>ME</td>
<td>metabolizable energy</td>
</tr>
<tr>
<td>mEq</td>
<td>milliequivalent(s)</td>
</tr>
<tr>
<td>min</td>
<td>minute(s)</td>
</tr>
<tr>
<td>mg</td>
<td>milligram(s)</td>
</tr>
<tr>
<td>mL</td>
<td>cc (cubic centimeters)</td>
</tr>
<tr>
<td>mm</td>
<td>millimeter(s)</td>
</tr>
<tr>
<td>mo</td>
<td>month(s)</td>
</tr>
<tr>
<td>MUFA</td>
<td>monounsaturated fatty acid</td>
</tr>
<tr>
<td>N</td>
<td>nitrogen</td>
</tr>
<tr>
<td>NE</td>
<td>net energy</td>
</tr>
<tr>
<td>NDF</td>
<td>neutral detergent fiber</td>
</tr>
<tr>
<td>NFE</td>
<td>nitrogen-free extract</td>
</tr>
<tr>
<td>ng</td>
<td>nanogram(s), .001 Fg</td>
</tr>
<tr>
<td>no.</td>
<td>number</td>
</tr>
<tr>
<td>NRC</td>
<td>National Research Council</td>
</tr>
<tr>
<td>ppb</td>
<td>parts per billion</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>psi</td>
<td>pounds per square inch</td>
</tr>
<tr>
<td>PUFA</td>
<td>polyunsaturated fatty acid</td>
</tr>
<tr>
<td>SD</td>
<td>standard deviation</td>
</tr>
<tr>
<td>SE</td>
<td>standard error</td>
</tr>
<tr>
<td>SEM</td>
<td>standard error of the mean</td>
</tr>
<tr>
<td>SEW</td>
<td>segregated early weaning</td>
</tr>
<tr>
<td>SFA</td>
<td>saturated fatty acid</td>
</tr>
<tr>
<td>UFA</td>
<td>unsaturated fatty acid</td>
</tr>
<tr>
<td>wk</td>
<td>week(s)</td>
</tr>
<tr>
<td>wt</td>
<td>weight(s)</td>
</tr>
<tr>
<td>yr</td>
<td>year(s)</td>
</tr>
</tbody>
</table>
K-State Vitamin and Trace Mineral Premixes

Diets listed in this report contain the following vitamin and trace mineral premixes unless otherwise specified.

- **Trace mineral premix:** Each pound of premix contains 12 g Mn, 50 g Fe, 50 g Zn, 5 g Cu, 90 mg I, and 90 mg Se.

- **Vitamin premix:** Each pound of premix contains 2,000,000 IU vitamin A, 300,000 IU vitamin D₃, 8,000 IU vitamin E, 800 mg menadione, 1,500 mg riboflavin, 5,000 mg pantothenic acid, 9,000 mg niacin, and 7 mg vitamin B₁₂.

- **Sow add pack:** Each pound of premix contains 100,000 mg choline, 40 mg biotin, 300 mg folic acid, and 900 mg pyridoxine.

Note

Some of the research reported here was carried out under special FDA clearances that apply only to investigational uses at approved research institutions. Materials that require FDA clearances may be used in the field only at the levels and for the use specified in that clearance.
Biological Variability and Chances of Error

Variability among individual animals in an experiment leads to problems in interpreting the results. Animals on treatment X may have higher average daily gains than those on treatment Y, but variability within treatments may indicate that the differences in production between X and Y were not the result of the treatment alone. Statistical analysis allows us to calculate the probability that such differences are from treatment rather than from chance.

In some of the articles herein, you will see the notation “$P < 0.05$.” That means the probability of the differences resulting from chance is less than 5%. If two averages are said to be “significantly different,” the probability is less than 5% that the difference is from chance, or the probability exceeds 95% that the difference resulted from the treatments applied.

Some papers report correlations or measures of the relationship between traits. The relationship may be positive (both traits tend to get larger or smaller together) or negative (as one trait gets larger, the other gets smaller). A perfect correlation is one (+1 or -1). If there is no relationship, the correlation is zero.

In other papers, you may see an average given as 2.5 ± 0.1. The 2.5 is the average; 0.1 is the “standard error.” The standard error is calculated to be 68% certain that the real average (with unlimited number of animals) would fall within one standard error from the average, in this case between 2.4 and 2.6.

Using many animals per treatment, replicating treatments several times, and using uniform animals increase the probability of finding real differences when they exist. Statistical analysis allows more valid interpretation of the results, regardless of the number of animals. In all the research reported herein, statistical analyses are included to increase the confidence you can place in the results.
Index of Key Words

adsorbents floor space phytase stability
amino acid formaldehyde pig
amino acid ratio gene expression pork
analysis gilt prediction equation
antibiotics grain protein quality
bacon grinding cost Ractopamine
bioassay growth roller mill
birth weight growth performance sequencing
boar exposure intermittent suckling sodium metabisulfite
by-product iodine value sorghum
carcass fat quality lactational estrus sow
chemical treatment litter separation sow nutrition
copper lysine space allowance
copper sulfate lysine requirement split-weaning
corn mash spray-dried bovine plasma
creep feeding meal stocking density
crystalline AA method survey
dehydration methodology swabs
decontamination minimum infectious dose swine
deoxynivalenol mycotoxins swine industry
dried milk nursery pig thermal mitigation
dried milk oregano topping
dried milk particle size trace minerals
dried milk particle size analysis tribasic copper chloride
dried milk PCR tryptophan
dried milk PDI ulcer
dried milk PEDV valine
dried milk pellet vitamins
dried milk pelleting vitamin D
dried milk pellet size zinc
dried milk performance 25(OH)D$_3$
dried milk phosphorus 3-sieve
dried milk phytase
energy phytase stability
extrude pig
feed pork
feed line prediction equation
feed matrix protein quality
feed mill Ractopamine
feed preference roller mill
feed safety sequencing
feed truck sodium metabisulfite
fines sorghum
finishing pig sow
fish meal sow nutrition

Kansas State University Agricultural Experiment Station and Cooperative Extension Service
Acknowledgments

Appreciation is expressed to these organizations for assisting with swine research at Kansas State University.

Abilene Animal Hospital, Abilene, KS
Advanced Ag Products, Hudson, SD
Ajinomoto Heartland LLC, Chicago, IL
Anitox Corporation, Lawrenceville, GA
Dave and Lois Baier, Abilene, KS
Biomin USA, San Antonio, TX
DFS Inc., Newell, IA
DNA Genetics, Columbus, NE
DSM Nutritional Products, Parsippany, NJ
Elanco Animal Health, Indianapolis, IN
Farmland Foods LLC, Crete, NE
Feedlogic Corporation, Willmar, MN
Gourley Bros., Webster City, IA
Holden Farms, Northfield, MN
Hord Livestock Company, Bucyrus, OH
Hubbard Feeds, Mankato, MN
ILC Resources, Urbandale, IA
International Ingredient Corporation, St. Louis, MO
JYGA Technologies, St. Nicolas, Quebec, Canada
Kalamboch Feeds, Upper Sandusky, OH
Kansas Pork Association, Manhattan, KS
Kansas Swine Alliance, Abilene, KS
Kemin Industries, Inc., Des Moines, IA
Livestock and Meat Industry Council, Manhattan, KS
Micronutrients, Indianapolis, IN
Midori USA, Cambridge, MA
Midwest Livestock Systems, Inc., Beatrice, NE
National Pork Board, Des Moines, IA
Natural Foods Holdings, Sioux City, IA
New Fashion Pork, Jackson, MN
New Horizon Farms, Pipestone, MN
Novus International, St. Charles, MO
Nutraferma, Dakota Dunes, SD
PIC USA, Hendersonville, TN
Purco, Edgerton, MN
Tech-Mix, Stewart, MN
Triumph Foods, St. Joseph, MO
United Sorghum Checkoff Program, Lubbock, TX
USDA National Institute of Food and Agriculture, Washington, D.C.
Zinpro Corp., Eden Prairie, MN
Zoltenko Farms Inc., Hardy, NE
We especially appreciate the assistance and dedication of Kansas State University employees Duane Baughman, Frank Jennings, Mark Nelson, Terry Gugle, Joel McAtee, Chance Fiehler, and Theresa Rathbun.

Appreciation is also expressed to: Allan Morris, Richard Brobjorg, Heath Houselog, Marty Heintz, Craig Steck, and Bob Taubert, New Horizon Farms, Pipestone, MN, for their dedicated support.

Appreciation is expressed to Triumph Foods LLC, St. Joseph, MO, for collecting jowl fat and conducting the iodine value analysis and to Jerry Lehenbauer, David Donovan, Ann Smith, Brad Knadler, and Brittany Kimler for technical assistance.

Swine Industry Day Committee

Duane Davis
Joel DeRouchey
Steve Dritz
Bob Goodband
Joe Hancock
Jim Nelssen
Mike Tokach
Jason Woodworth

Kansas State University Agricultural Experiment Station and Cooperative Extension Service
The Livestock and Meat Industry Council, Inc.

The Livestock and Meat Industry Council, Inc. (LMIC) is a nonprofit charitable organization supporting animal agriculture research, teaching, and education. This is accomplished through the support of individuals and businesses that make LMIC a part of their charitable giving.

Tax-deductible contributions can be made through gifts of cash, appreciated securities, real estate, life insurance, charitable remainder trusts, and bequests as well as many other forms of planned giving. LMIC can also receive gifts of livestock, machinery, or equipment. These types of gifts, known as gifts-in-kind, allow the donor to be eligible for a tax benefit based on the appraised value of the gift.

Since its inception in 1970, LMIC has provided student scholarships, research assistance, capital improvements, land, buildings, and equipment to support students, faculty, and the industry of animal agriculture. If you would like to be a part of this mission or would like additional information, please contact the Livestock and Meat Industry Council/Animal Sciences and Industry, Weber Hall, Manhattan, Kansas 66506 or call 785-532-1227.

LMIC Board Members
Kyle Bauer Greg Henderson Jan Lyons
David Clawson Roy Henry Bill Miller
Joe Downey Patsy Houghton Stanton O’Neil
Galen Fink Virgil Huseman Tom Perrier
Mark Gardiner Justin Janssen Rich Porter
Craig Good Larry Jones Ken Stielow
Lyle Gray Mark Knight Warren Weibert
Ken Grecian Pat Koons
Frank Harper Kelly Lechtenberg

Royal Board Members
Dell Allen Bernie Hansen Phil Phar
Jerry Bohn Steven Hunt Harland Priddle
Richard Chase Steve Irsik Lee Reeve
Calvin Drake Larry Jones Don Smith
Stan Fansher Kenny Knight Mikel Stout
Randy Fisher Gina Miller Kathleen Strunk
Sam Hands Andrew Murphy Duane Walker