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Abstract 

Water quality information obtained through intensive spatial sampling using automated devices 
provides opportunities to monitor and forecast the spatial distribution of nutrients and 
phytoplankton concentrations, and help establish water circulation patterns in estuarine and 
coastal waters. To be cost effective, efficient sampling designs and estimation methodologies 
must first be developed. As a starting basis, we applied an original transect sampling design that 
was used to estimate the spatial distribution of chlorophyll a, salinity, and temperature in the 
Cienaga Grande de Santa Marta, a coastal lagoon in Colombia. We superimposed the transects 
over satellite images of the lagoon obtained in the period 1993-2001 to evaluate the efficiency 
and accuracy of using such transects to estimate the distribution of water quality variables. The 
satellite images were taken in 1993 (SPOT-3), 1995 (Landsat-6), and 1999 (Landsat-6), and 
water reflectance values were used as a “proxy” for the water quality variables. Spatial 
prediction using kriging and thin-plate smoothing splines were used to predict reflectance for a 
grid network of points taken from the images, and predictions were compared with observed 
values to compare methods and transect routes. Rapid changes in reflectance in short distances 
(for example , caused by phytoplankton blooms), complicated the analysis, and neither method 
proved superior over all transect routes and images, although the kriging predictor remained 
relatively consistent in performance over the various selected sampling routes. 

1. Introduction 

A water quality sampling strategy was employed in the Cienaga Grande de Santa Marta estuary 
system in Colombia, South America, to measure chlorophyll a, salinity, and temperature in the 
system at monthly intervals from March 19, 1999 through February 28, 2001. The system itself 
had been impacted through levees and water diversion structures and interest is in reestablishing 
the system to the extents possible to its prior state (Twilley et al 1998). To help understand how 
the system has been impacted, and how changes to water management might mitigate the 
impacts mentioned, knowledge of current salinity, temperature, and primary productivity levels 
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of the system are required. As the system is dynamic, measurements through time including 
seasonal changes, replicated over years is also required. Rueda (2001) previously studied this 
estuary system using systematic sampling with 115 sampling locations spaced 2 km apart on a 
grid network sampled once during each major season. 

To permit large-scale water sampling within a short interval of time, thus providing a “snap-
shot” of the system, a high-speed mapping and water sampling device was used. This sampling 
device consisted of a small boat outfitted with a geographic positioning system (GPS) device, a 
water pass-through system with sensors that conducts fluorometry (used to measure chlorophyll 
a) and salinity measurements at 10 second intervals, and a data logger to record geographic 
position and the water quality measurements. In this particular system, water temperature was 
recorded manually at 1 minute intervals. By driving the boat along a predetermined route at 
constant speed, water quality data are collected at very short intervals of space along the routes. 
Example sampling routes are shown in Figures 1a and 1b.  

 

Figure 1a. Sampling routes employed in sampling water quality data from the Cienaga Grande 
de Santa Marta estuary system (March 19 1999-May 9, 2000). 
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Figure 1b. Sampling routes employed in sampling water quality data from the Cienaga Grande 
de Santa Marta estuary system (June 27 2000-February 28, 2001). 

The challenge for the data analysis is to use data collected along the routes at each of the 
sampling dates to predict the water quality information for the entire system. In addition, very 
large or small “outlier” or “spike” values would be observed when the boat crossed particular 
currents, eddies, and juxtaposed water bodies along the sampling routes. These currents and 
water bodies are associated with freshwater inputs from rivers emptying into the system, and 
from saline inputs from the Caribbean Sea.  

Spatial data such as the water quality data collected in this study have been analyzed and 
spatially interpolated or predicted using a variety of methods. In particular, trend surface models 
using polynomial regressions, ordinary kriging and its generalizations, and smoothing splines 
have frequently been used (see e.g., Cressie 1991 for a variety of examples). To understand the 
usefulness of ordinary kriging and of smoothing splines for prediction and interpolation of the 
water quality data, a simulation study was developed to compare the methods. LANDSAT and 
SPOT images of the Cienaga Grande de Santa Marta system were available for 1993, 1995, and 
1999. These images show spatial variability within the system thought representative of 
variability that would likely be observed in chlorophyll a, salinity, and temperature 
measurements. Indeed, data “spikes” are also contained within the images. Our objective was to 
provide a simple approach with a set of sequential steps to make this analysis as simple as 
possible (“user oriented”) once the main algorithms were selected.  Thus we did not consider 
specific analysis for the spikes or outliers when their frequency was low. Although in cases when 
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this frequency of outliers/spikes is high further analyses (post-stratification, de-trending) might 
need to be included.   

2. Simulation Methods 

Reflectance values were sampled from each geo-referenced SPOT 1993, LANDSAT 1995, and 
LANDSAT 1999 image. Although the images do not represent true replicates since each image 
was captured during large scale climatic events (El Niño Southern Oscillation/La Niña), each 
image still represents a point of reference to assess changes in reflectance at a regional scale for 
each individual date. This inter-annual variability is part of the system behavior and needs to be 
incorporated in the analysis. Each sampling route (19 routes) was superimposed upon each image 
and the reflectance for the nearest pixel to each sampling point along each route was retrieved. 
Thus, the satellite image was treated as “ground truth” data, and the superimposed routes were 
used to provide simulated samples representing the original water quality samples. An example 
of such a sampled route is given in Figure 2. 
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Figure 2. Sampled log standardized reflectance values using the route of November 19, 1999. 

A square grid of 2500 points was also placed over each image and the reflectance value at each 
grid point was obtained. These points would serve as target points for prediction and evaluation 
of the estimation methods. Any grid points that fell outside of the Cienaga Grande system were 
excluded. Predictions were made to each grid point and mean square prediction errors were 
computed for comparisons among routes and between analysis methodologies for each image. 
Data were analyzed on the observed and log-transformed scales, and with and without the outlier 
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or “spike” data included. Outliers were detected as points outside of the outer fence of a box-plot 
of all of the reflectance values in the sampled route. 

PROC VARIOGRAM of the SAS System was used to estimate empirical robust variograms for 
the sampled track data. Exponential and spherical variogram models were then fit to the 
empirical robust variograms using PROC NLIN, though we have reported only the results using 
the exponential variogram herein, as there were not great differences between kriging predictions 
between the variogram types. An example fitted variogram is given in Figure 3.  
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Figure 3. Fitted exponential and spherical variogram models superimposed upon the robust 
empirical variogram. Only the exponential variogram was used in this simulation study. 

Resulting parameter estimates of the variogram models were then passed to PROC MIXED for 
kriging prediction to the grid points assuming a constant mean structure. PROC TPSLINE was 
used to fit thin-plate smoothing splines to the surface generated from each of the sampling 
routes. Default procedure settings were used to control the fit of the spline models to the data. By 
default TPSLINE selects its smoothing parameter using generalized cross validation, and the 
order of the derivative for the penalty function for the penalized least-squares estimate is max(2, 
INT(d/2)+1), where d is the number of smoothing variables (SAS Institute Inc. 2005).  

In addition, characteristics of each sampling route or track were computed and included the 
number of sample points in the track, the total length of the track (sum of all track segment 
lengths), and the largest nearest neighbor distance from grid points to track points. It was thought 
that longer tracks and tracks that minimized the largest nearest neighbor distance would tend to 
have superior prediction properties, and therefore, would provide insight into optimal sampling 
designs with respect to track layouts. 

Applied Statistics in Agriculture 35

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2004/proceedings/4



3. Results 

Predictions based upon the log transformed data appeared much superior to those using the 
untransformed data when rescaled. Results herein will focus upon the predictions using the log 
transformed data. In general, predictions from either method that did not exclude outliers from 
the training data sets (Table 1) had considerably larger prediction errors than when the outliers 
were excluded (Table 2). The predictions produced using the thin-plate splines tended to produce 
a more complex surface than when using kriging (Figure 4). 

 

Figure 4. Kriging (left) and thin-plate smoothing spline (right) predictions of reflectance for the 
LANDSAT 1999 image using the November 19, 1999 sampling route. 

The kriging estimator produced more consistent results (similar mean-squared errors of 
prediction) across the different sampling tracks when sampling from the same image, than did 
the thin-plate smoothing spline predictor. For the 1993 and 1995 images with outliers included, 
the sampling route of 02OCT2000 produced a very large prediction error relative to other routes 
for the thin-plate smoothing spline, while the kriging estimator showed little variation in 
prediction performance for this route when compared to the other routes. Note that this route is 
quite different in its spatial arrangement relative to the other routes (Figure 1b). 

The mean-squared errors of prediction from the various routes, images, and prediction methods 
were then related to the route characteristics. No associations were noted between the mean-
squared prediction errors and route characteristics. It was thought that the maximum nearest 
neighbor distance of the grid points to the track might be most important though the observed 
relationship was noisy (Figure 5). 

1.6782
1.6880

1.6978
1.7076

Y
0.9524

0.9610

0.9696

0.9782

X-3.65

-0.93

1.78

4.49

Estimate

1.6782
1.6880

1.6978
1.7076

Y
0.9524

0.9610

0.9696

0.9782

X-2.31

-0.38

1.55

3.48

Pred

36 Kansas State University

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2004/proceedings/4



Kriging No Outliers
TPS No Outliers

M
ea

n 
S

qu
ar

ed
 P

re
di

ct
io

n 
E

rro
r

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Maximum Nearest Neighbor Distance
0.0040 0.0045 0.0050 0.0055 0.0060 0.0065 0.0070

 

Figure 5. Mean-squared prediction error of kriging and thin-plate smoothing spline predictors 
for the 1999 LANDSAT image using all routes as a function of the maximum nearest neighbor 
distance of the grid points to the sampled route points. Outliers were excluded from the route 
data prior to the computation of the predicted values. 

4. Discussion 

The water quality data collected during the actual study contains outliers or “spikes” at 
irregularly-spaced intervals along the sampled routes. The same phenomenon was observed 
when sampling from the SPOT and LANDSAT images. The results from this simulation study 
suggest that removing these outliers prior to surface prediction is important in order that the 
major surface trends are correctly predicted. Further the thin-plate smoothing spline predictions 
appeared to be more sensitive to the outliers than those of the kriging estimator. Alternative 
models will need to be explored if prediction of the “spike” process is desired. Overall the 
kriging estimator outperformed the thin-plate smoothing spline estimator for surface prediction 
for the routes and images considered in this study. Ramsay (2002) proposes a penalized 
smoothing bivariate finite-element process to deal with interior holes and irregular boundaries 
and found that his technique worked better than thin-plate splines for two examples that he 
considered. These sampling routes do leave holes in the domain and the boundaries are 
somewhat irregular. Thus, the finite-element technique of Ramsay (2002) should be investigated 
for these data. O’Connell and Wolfinger (1997) found little difference between the performance 
of kriging and thin-plate spline predictors in their simulation study, though both of these methods 
outperformed polynomial trend-surface models. Laslett (1994) contends that kriging never 
performs worse than splines, but that sometimes it greatly outperforms spline prediction. He 
finds that the sampling regime determines when they are similar or when kriging will work much 
better, and states that clustered sampling sites favor the kriging estimator over splines. Our study 
supports the findings of Laslett (1994) and strongly suggests that analyses and future sampling 
routes be based upon kriging estimation. Local kriging and detrending methods, including post-
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stratification, warrant study as well as we are predicting over a large geographic area relative to 
the spatial scale of sampling. 

Track or route characteristics such as length of track, number of points in the sample, and 
maximum nearest neighbor distance of the grid points to the sampled route points appear not to 
be associated with prediction performance. However, the track layouts are all quite similar and 
so alternative tracks not employed in the actual survey should be added into this simulation 
study. It appears that the spline estimator is much more sensitive to the route taken than is the 
kriging estimator, though the characteristics measured do not indicate the exact nature of this 
relationship. 

5. Summary 

The use of sampled satellite imagery to mimic intense spatially-acquired water quality data 
appears to generate data that have characteristics much like observed water quality data, 
including outliers and rapidly changing contours. This known imagery data is then used to help 
validate approaches to data analysis that practitioners of precision-sampled water quality data are 
likely to use. Our findings suggest that an ordinary kriging approach using a robust variogram 
estimate is more likely to result in smaller mean square prediction errors than would a spline 
fitted surface to the data. Additional research into optimal sampling trajectories with respect to 
these estimation methods, and exploration of other spatial modeling methodologies is needed to 
help identify the most robust approaches for this type of data. 
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Table 1. Mean-squared prediction error (MSPE) for kriging and thin-plate smoothing spline 
(TPS) predictors for the 1993, 1995, and 1999 satellite images for the 19 sampling routes using 
log transformed reflectance and including outliers in the analysis. 

Sampling 
Route 
Date 

Kriging 
MSPE 
1993 

TPS 
MSPE
1993 

Kriging
MSPE
1995 

TPS 
MSPE
1995 

Kriging
MSPE
1999 

TPS 
MSPE 
1999 

19-Mar-99 0.962 1.242 1.820 1.815 0.819 0.830 

10-Sep-99 1.558 2.459 2.212 2.424 0.939 1.418 

25-Oct-99 2.003 1.855 3.021 3.183 0.962 1.562 

19-Nov-99 2.423 5.642 2.575 2.902 0.954 2.511 

15-Dec-99 1.675 1.710 2.622 2.527 0.807 1.078 

14-Jan-00 1.923 7.721 2.670 2.538 0.835 3.138 

10-Feb-00 1.319 1.962 2.722 3.218 1.010 2.618 

29-Mar-00 3.012 2.762 2.714 2.888 1.301 1.383 

8-Apr-00 3.187 3.431 3.009 3.485 1.282 1.624 

10-Apr-00 2.590 2.784 2.252 2.216 1.207 1.499 

27-Apr-00 1.447 11.316 2.372 2.672 0.933 5.170 

9-May-00 3.518 3.413 2.780 2.821 1.426 1.705 

27-Jun-00 3.005 2.951 2.373 2.555 1.275 1.379 

11-Jul-00 3.408 3.279 2.727 2.566 1.310 1.437 

8-Aug-00 2.665 3.841 2.664 2.620 1.234 1.852 

2-Oct-00 2.749 21.290 2.743 4.288 0.915 5.167 

5-Oct-00 2.486 2.416 2.653 2.845 1.259 1.379 

8-Nov-00 2.313 2.790 2.445 2.437 1.316 1.984 

28-Feb-01 2.237 2.460 2.636 2.570 1.123 1.342 
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Table 2. Mean-squared prediction error (MSPE) for kriging and thin-plate smoothing spline 
(TPS) predictors for the 1993, 1995, and 1999 satellite images for the 19 sampling routes using 
log transformed reflectance but excluding outliers prior to the analysis. 

Sampling 
Route 
Date 

Kriging 
MSPE 
1993 

TPS 
MSPE
1993 

Kriging
MSPE
1995 

TPS 
MSPE
1995 

Kriging
MSPE
1999 

TPS 
MSPE 
1999 

19-Mar-99 1.010 1.068 2.238 2.248 0.792 0.843 

10-Sep-99 0.961 0.951 2.269 2.477 0.678 0.694 

25-Oct-99 1.009 0.954 2.528 2.612 0.781 1.192 

19-Nov-99 0.969 1.142 2.575 2.902 0.809 1.121 

15-Dec-99 0.848 0.800 2.594 2.577 0.701 0.838 

14-Jan-00 0.865 1.012 2.528 2.433 0.703 0.815 

10-Feb-00 0.905 0.990 2.557 2.661 0.747 0.839 

29-Mar-00 0.947 0.937 2.420 2.558 0.780 0.794 

8-Apr-00 1.083 1.454 2.859 3.192 0.771 0.918 

10-Apr-00 0.869 0.913 2.332 2.331 0.724 0.778 

27-Apr-00 0.938 1.436 2.416 2.752 0.826 1.178 

9-May-00 0.953 1.043 2.634 2.667 0.873 1.049 

27-Jun-00 0.986 1.094 2.433 2.553 0.770 0.772 

11-Jul-00 1.190 1.040 2.360 2.438 0.738 0.776 

8-Aug-00 0.924 0.966 2.530 2.542 0.757 0.854 

2-Oct-00 1.058 1.326 2.650 4.011 0.820 0.875 

5-Oct-00 0.850 0.895 2.525 2.690 0.809 0.903 

8-Nov-00 0.862 0.851 2.379 2.443 0.787 1.018 

28-Feb-01 0.945 0.935 2.536 2.507 0.741 0.752 
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