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Abstract.  Information products derived from multi-spectral remote sensing images, LIDAR 
elevations, or data products from other sensor systems (soil electrical conductivity 
measurements, yield monitors, etc.) characterize potential crop productivity by mapping bio-
physical aspects of cropland variability.  These sensor systems provide spectral, spatial, and 
temporal measurements at resolutions and accuracies describing the variability of in-field, 
physical characteristic phenomena, including management practices from cropland preparation, 
selection of crop cultivars, and variable-rate applications of inputs.  In addition, DGPS-equipped 
(differential, global positioning system) harvesters monitor yield response at closely spaced, geo-
referenced points.  Geographic information system and image processing techniques fuse diverse 
information sources to spatially characterize cropland, describe management practices, and 
quantify the variable yield response.  Following fusion of information sources, effectiveness of 
spatially applied management practices may be evaluated by designed experiments assessing 
impacts on yield caused by geo-referenced relationships between (1) uncontrollable spatial 
components (the environment) and (2) controllable management practices (cultivar selection, 
fertility management, herbicide, insecticide, and plant growth regulator applications, etc.).  These 
kinds of experiments can be designed because farming equipment can be computer controlled 
through DGPS giving farmers the ability to continuously change applied treatments for many 
farming operations.  A mixed linear model involving both uncontrollable and controllable 
management attributes attached as spatial descriptors to yield monitor points evaluates effects of 
management practices on yield.  An example based upon cotton production demonstrates the 
methodology.  Additional strategies for designing studies in commercial cotton fields involving 
spatial information are discussed. 
 
I. Introduction. 
 

Several years of attempts to build designed experiments to evaluate site-specific 
(precision agriculture) management (Dupont et al. 2000) of cotton in commercial fields have 
demonstrated the need for new analytical methods.  Traditional experimental designs (CRD, 
RCB, Split-Plot, Lattices, etc.) do not perform well within large commercial fields because it is 
difficult for farm operators to impose planned treatments to randomized, replicated, small-sized 
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plots and complete other necessary farming operations.  Traditional designs also generally fail to 
incorporate spatial characteristics of harvested sub-samples within and among (small) plots 
(experimental units).  Defining representative units of replication (Mead 1988; Milliken and 
Johnson 1992) and their size in commercial fields is also difficult.  If experimental units are 
arbitrarily defined, deciding how to assign site-specific (or even control) treatments is 
problematic due to crop growth being influenced by uncontrollable sources of spatial and 
temporal variability.  Uncontrollable variability results from interactions among weather, soil 
types, and elevation causing variation in water utilization and assimilation of nutrients available 
for plant growth.  Influences of past management practices may be difficult to prevent (e.g., 
choice of herbicides applied the previous year, land leveling operations, etc.).  These sources of 
uncontrollable agricultural, edaphic, or environmental influences often mask planned treatment 
effects if a traditional, small plot based experiment is implemented in a large commercial field.  
Similarly, the spatial application of one crop input is often not coincident in time or space with 
other precision agriculture practices in large fields, complicating assessment of joint effects 
when using small plots.  Further, responses of spatial management practices may differ for other 
fields (or farms) making it difficult to define the inferential space (Stroup 1989) of results from 
analysis of small plots.  With experimental units (plots) of the same size and shape, traditional 
techniques of random assignment of treatments and increases in replications do not solve these 
problems in commercial fields. 
   

Therefore, there are opportunities to develop new designs for experiments in commercial 
agricultural fields where precision agriculture is practiced.  These ‘topological experimental 
designs’ (TED) geographically apply traditional treatments and site-specific practices to different 
zones in the field.  These zones are not artificial, symmetrical arrangements of small plots.  
Topological relationships among various layers of spatial information (including uncontrollable 
and controllable sources) allow DGPS (Kennedy 1996), variable-rate (VR) farm equipment to 
assign different treatments to various polygons (zones) at geographic locations in fields.  Several 
forms of regression models analyze these spatial designs.  At least one approach is to build a 
mixed linear model of yield (omitting yield data from site-specific management zones) as a 
function of traditional management practices, including environmental factors (or other site 
characteristics) as covariates.  Using covariates, this model predicts yield at the coordinates of 
yield monitor points within each site-specific zone as if the traditional management practice had 
been applied.  Diverse covariate values of field topography, measured by remote sensing, are 
extracted by GIS analysis at the geographic coordinates of yield points.  These predicted yields 
(assuming the traditional practice) are compared to the actual site-specific yields to compare 
effects of management.  This general methodology can be extended to more than one new 
management practice. 

 
The objective of this paper is to describe the integration of agricultural, GIS, remote 

sensing, and statistical disciplines by demonstrating analysis of an unreplicated cotton cultivar 
trial that includes one spatially variable application of a plant growth regulator (PGR).  We 
illustrate spatial processing of different data types using geographic information system (GIS) 
and statistical techniques.  Summary results illustrate further applications of the methodology.  
Additional strategies for designing studies in commercial fields utilizing spatial information are 
discussed. 
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II. Methods. 
 

Designing, completing, and analyzing a site-specific experiment in a commercial cotton 
field requires teamwork throughout three distinct phases.  The first part is fieldwork, requiring a 
producer’s cooperation and other farm resources.  However, in order to apply site-specific 
management practices, spatial information has to be acquired and processed into ‘farm ready’ 
formats.  Thus, the second part is participation of service providers, who acquire, process, and 
deliver spatial data products to the farm.  This exchange occurs many times throughout the 
season and continues through harvest.  Once harvesting is finished, the third part is analysis 
involving spatial and statistical processing, iterative analysis and model building procedures, and 
interpretation. 

 
The Field Study:  During the 2003 production season, the case study TED was established in 
the western part of a 160 acre (64.75 ha) field at Good’s Longview Farm, Noxubee County, 
several miles east of Macon, MS.  The row spacing was 30 in (0.762 m) to promote yield 
production while reducing soil erosion in a dryland production system.  The selected study area 
was comprised of 17 cotton cultivars (Table 1) in a configuration of 8 rows by 0.5 mi (804 m) in 
length for each cultivar.  A cultivar was planted using an 8-row planter where hopper bins were 
thoroughly emptied between changes to the next cultivar.  Planting occurred within 2 days of 22 
April 2003 with the planter set at a seeding rate 48,521 seeds/ac (120,101 seeds/ha) for all 
cultivars.  Other planting requirements were the application of N-Sol® at 10 gal/ac (93.7 l/ha), 
Caporal® at 1 pt/ac (1.2 l/ha), Ammo® at 1.3 oz/ac (0.07 l/ha), GammoxonMax® at 0.7 pt/ac (0.8 
l/ha), Temik® at 6 lbs/ac (2.72 kg/ha), and TSX® (fungicide) at 9.4 lbs/ac (4.26 kg/ha).  The total 
area involved was approximately 22 acres (8.88 ha).  The cultivar trial is an unreplicated strip-
plot design (Milliken and Johnson, 1992) and was the first management factor of the TED. 
   

The first application of PGR (mepiquat pentaborate) to these cultivars was a broadcast 
application (5 oz/ac (0.37 l/ha)) applied 26 June 2003, using a tank mix applied by a John Deere® 
Model 6800 sprayer.  The second and last application was a variable-rate PGR prescription (the 
second management factor of the TED) applied 18 July 2003 using a CASE-IH® Model SPX 
2130 sprayer equipped with a Mid-West Technologies® (Springfield, IL) 6600 variable-rate 
controller and injection system.  The PGR was applied to each cultivar using a boom width of 
20’ (6.09 m).  The water carrier channel was set to apply 30 gal.  of water/ac (281 l/ha).  The 
four rates of PGR applied were 0, 4, 6, and 8 oz/ac (0, 0.29, 0.43, and 0.59 l/ha) according to a 
prescription map built from a multi-band image composite acquired 9 June 2003. 
 

Harvesting took place 16 September 2003, using a John Deere® Model 9965 4-row cotton 
picker equipped with an Ag-Leader® (Ag Leader Technologies, Ames, IA) 3000 Pro Yield 
Monitor.  Differential, global positioning information was supplied to the yield monitor using the 
OmniSTAR® DGPS subscription service (www.omnistar.com).  The yield monitor supplies 
several attributes of each yield point, including load_id, time and location.  Yield data were 
collected once every two seconds and (as harvester speed varied) the distance between logged 
points slightly differed (3.30 – 14.60 ft (1.00 – 4.45m)). 
 

The cooperating farm conducted all field operations (including harvest) except for the 
second variable-rate application of PGR in July, accomplished in cooperation with the 
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Department of Weed Science, Mississippi State University.  All other inputs were blanket 
applications applied to all cultivars and were not included in the analysis. 
 
Imagery and LIDAR Acquisitions: Endogenous traits of the field can be measured by remote 
sensing (RS) and LIDAR (LIght Detection And Ranging) systems on aircraft (or ground based 
equipment).  Imagery and LIDAR data were acquired in cooperation with the GeoSpatial 
Resources Institute (GRI) at Mississippi State University. 
 

Multi-spectral images were acquired by the GeoVantage camera system 
(www.geovantage.com) flown by GeoData Airborne and Mapping, Inc. (Weir, MS).  Multi-
spectral imagery was obtained at pixel resolutions of 0.5 m2.  The center bands of the imagery 
were: 450 nm (blue), 550 nm (green), 650 nm (red), and 850 nm (near infrared (NIR)).  Three 
image dates utilized were bare ground imagery from 15 January 2002, and two in-season images 
acquired on 9 June 2003, and 17 July 2003.  Image data products were delivered as geo-
referenced mosaics in the Universal Transverse Mercator (UTM) projection, Zone 16, using the 
North American 1983 (NAD83) datum. 
 

LIDAR data were acquired 11-12 May 2003 (0.5 m2 horizontal resolution and 8.1-10.7 
cm RMSE (vertical resolution)) by Earthdata, Inc. (Frederick, MD) using the ALS50 Airborne 
Laser Scanner developed by Leica Geosytems (www.gis.leica-geosystems.com).  LIDAR data 
were delivered in point theme format to GRI, Mississippi State University, but were not available 
for the 2003 growing season.  The initial three-dimensional coordinates were compiled in a mass 
point file of x, y, z on the UTM projection.  Ellipsoidal heights were converted to NAVD88 
using Geoid 99.  These data were converted to a digital surface model (DSM) with 1 m2 ground 
resolution using specially developed scripts in the ArcInfo® macro language.  The coordinate 
system of the DSM was the UTM projection, Zone 16, using the NAD83 datum. 

 
Geographic Information System Analyses of Data:  Using ERDAS Imagine® 8.7 or ArcInfo® 
Workstation, multispectral imagery was converted from its native bitmap format into raster grids.  
Information in the imagery was processed using unsupervised classification procedures (Pouncey 
et al. 1999; Richards and Jia 1999) emphasizing the normalized vegetation index (NDVI).  
Generally, the NDVI varies over the growing season, particularly before peak bloom, due to 
interactions among soil type, weather, and management practices.  Focal processing 
(Anonymous 1997) prepared the variable-rate PGR prescription file (using the NDVI values of 9 
June) and is an operation involving a grid where the output value of the currently processed cell 
depends upon the values of its neighboring cells in the defined focal area.  In summary, the in-
season GIS/RS processing steps include (1) evaluating the NDVI value for each cell in the grid 
form of the image, (2) focal smoothing and re-grouping of the NDVI values into three classes, 
(3) re-sampling of the original image spatial resolution (1.64 ft (0.5 m)) to a spatial resolution 
matching the boom width (20 ft (6.096 m)) of the sprayer, (4) assignment of a PGR rate 
(according to the class codes established in step 2) to each cell in the sprayer grid, (5) imbedding 
any ‘overlap plots’ to serve as controls (0 PGR) for future analysis, and (6) conversion of the 
prescription grid into a polygon coverage.  This coverage was converted to a shapefile (latitude 
and longitude in decimal degrees in the NAD83 datum) for proper translation by the sprayer 
controller while applying the variable-rate PGR to the cotton. 
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Once harvest was completed, it was necessary to establish the data structure (a dBase IV 
table derived from a shapefile) characterizing the TED.  The data structure is assembled by one 
or more GIS procedures applied to the yield file obtained by the cotton yield monitor, where 
records are initially sorted by load number (two loads per cotton cultivar) and location/time 
stamp.  Harvesting of cultivars occurred from west to east.  These techniques (see Anonymous 
1997; Theobald 2003 for details) generally involve converting yield point and prescription 
shapefile themes into arc coverage formats, converting raster images into raster grids, and 
geographic sub-setting (masking) of spatial information to only the area of interest (AOI).  Focal 
processing of yield data within a cultivar strip was necessary in order to align (east-west) 
adjacent picker passes, because the two picker passes differed in direction of travel (north and 
south) while harvesting a strip.  Additional focal processing converted the yield point theme into 
a surface (or grid) to depict yield response across all cultivars.  Yield points are originally in a 
spherical format (latitude and longitude as decimal degrees in the WGS84 datum); therefore, GIS 
processing projected these data to the UTM, Zone 16, NAD83 planar coordinate system 
(Bugayevskiy and Snyder 1995). 
 

GIS processing derived several topographic (environmental) variables from raster images 
and LIDAR DSM to be covariates in the regression model.  One new feature derived from the 
images represented relative NDVI change between January 2002 and June 2003.  This grid of 
NDVI change captured those regions of the field where the cotton crop first emerged after 
planting.  These plants had the most developed leaf canopy at the time of the June acquisition.  
Another covariate was the NDVI status on 17 July 2003.  (While doing these GIS operations in 
preparation for analysis, it was found necessary to geographically adjust (ca. 3-5 m south to 
north) the June and July mosaics using ERDAS Imagine® and ESRI ArcInfo®.  The 15 January 
2002 image did not need geometric corrections.)  Additional grids of hydrology covariates were 
derived from the DSM grid. 
 

Once all data layers were prepared, the final, key GIS processing step bilinearly 
interpolated an estimate of the PGR rate and other covariate values at the UTM coordinates 
(easting, northing) of each yield point.  Intersecting yield point coordinates with each vector or 
grid theme extracted a location specific ‘spot’ parameter value attached to every yield record.  
Variables (see Appendix 1 for acronyms) in the yield attribute table prior to regression analysis 
were: fieldname, load_id, yield monitor serial number, crop type (cotton), record number, track 
degree heading of the harvester, swath width, distance (ft) to next point, time duration between 
data logging of points, differential status of the GPS unit, date, time, cotton flow (analog output), 
seed cotton yield (lbs/ac), PGR rate as a ‘grid_code’ (0 = 0 oz, 1 = 4 oz, 2 = 6 oz, and 3 = 8 oz), 
the x-coordinate (easting), y-coordinate (northing), slope (percent), aspect (a categorical number 
corresponding to compass direction), flow accumulation (m2), concavity/convexity (negative to 
positive real numbers), Euclidean distance from a synthetic stream (m) network, and elevation 
(m).  The attribute table also included the following NDVI values at different times of the year: 
NDVI_1 = 15 January 2002, NDVI _2 = 9 June 2003, NDVI_717 = 17 July 2003, and 
NDVI_Dif is the grid subtraction of NDVI_2 – NDVI_1.  Plant et al. (2001) and Willers et al. 
(1999) discuss other NDVI applications in cotton production. 
 
Statistical Analyses of Data:  The treatment structure of the case study TED was the 17 cotton 
cultivars and the 4 levels of the variable-rate PGR application.  These factors represent the 
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controllable management attributes.  Additional field information affecting data preparation and 
analysis is (1) a buffer strip of 40 rows was planted on the west border of the trial, (2) an extra 
load was logged on the east side outside of the study area, and (3) the west to east order of the 
cultivar strips (ascending Plot ID, Table 1) was established by (grower and research) opinions.  
These decisions determined the 9 stacked gene cultivars (Plots 5-13, Bollgard® and Round-up 
Ready®) would be planted in one ‘block’ and the 8 single gene cultivars (Plots 14-21, Round-up 
Ready® only) would be planted in another ‘block’.  The PGR application in July also progressed 
one cultivar strip at a time from west to east.  The design structure of the TED was comprised of 
17 strips of 8 rows harvested in 2 loads from 2 passes per cultivar by a 4-row cotton picker and 
the various spatial management zones for the variable-rate PGR application. 
   

Once the data structure of the TED was available in shapefile format, the attribute table 
was imported into SAS®.  A mixed regression model (Gotway and Stroup 1997; Littell et al. 
1996), or mixed analysis of covariance model (Milliken and Johnson 2001) described seed cotton 
yield as a function of cultivar, PGR rate (Rate), and the site characteristic variables.  Additional 
variables computed in a SAS® data step were cultivar name, load_id, pass (or direction ‘north’ 
or ‘south’ traveled by the harvester within a cultivar strip), logfac = log(fac+1), logeuc = 
log(euc), one_cvx = 1/exp(cvx), one_ndvi = 1/exp(ndvi_dif), and index = log(fac+1)/(slo).  The 
UTM coordinates of each yield point were also adjusted to a new origin (0 m, 0 m) in the 
southwest corner of the field, where new_y is the northing value minus 3666170.70 m (a range 
from 0 to 800 m) and new_x is the easting value minus 361084.77 m (a range from 0 to 135 m).  
A variable called RateClass was generated to denote areas of the field where each level of PGR 
was applied.  The intersection of PGR rate class boundaries and cultivar strips defines 
experimental units for the treatment structure. 
 

The initial model included explanatory variables as well as interactions of explanatory 
variables with cultivar.  Rate and Rate2 as well as DSM and DSM2 were used in the modeling 
and were included in interactions with cultivar and with other explanatory variables.  Load_id 
within cultivar was used as a random effect.  The complete data set initially consisted of 8745 
data points and included data from 10 load_ids not belonging to the study AOI.  These data from 
load_id = L1-L9 and L55 were deleted, as well as observations with cvx < -900 and slo < -900 
(missing values occurring during GIS pre-processing), leaving a data set with 7465 observations.  
There were some outlying yield monitor data points occurring at the ends of the cotton rows as 
well as during times when the harvester went through a water way or ditch.  The first and last 30 
feet of each harvest load were deleted from the data set since the yield monitor often produced 
extreme readings in these portions of the load.  These values were caused by changes in speed, 
etc., as the harvester reached the end of a load, turned around, and started the next load for a 
cultivar strip.  The data set now consisted of 6550 data points.  The yield monitor data are quite 
variable from one time point to the next because of the process of measuring yield, thus a Loess 
filter smoothed the data to lessen extreme values.  The focal and loess processing steps jointly 
adjusted seed cotton yield values to create a dependent variable named ‘say’ (or smoothed 
adjusted yields).  The correlation between focal-smoothed (orig_say) and twice-smoothed 
predicted values (say) was 0.97039.  Thus, little information was lost by the loess smoothing 
process, but several very extreme values were shrunken. 
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The first analysis step was to fit the whole model to this filtered data set and compute 
residuals.  Observations that had outliers greater than 1000 lbs. seed cotton in magnitude were 
removed from the data set, leaving 6307 observations.  Next, a stepwise deletion process 
simplified the model where variables and interactions were removed, one at a time, until all 
remaining variables were significant at 0.05 or less.  The exception was for variables involved 
with significant interactions with cultivar, as deleting them from the model would not improve 
the fit.  Before the model evaluated cultivar effects, residuals were examined one more time and 
observations with residuals greater in magnitude of 800 lbs. were deleted, leaving the final data 
set with 6301 observations.  The distribution of residuals was very symmetric, but the 
distribution tails were quite long, even after deleting observations with large residuals.  An even 
more aggressive filtering process may provide residuals that have tails more like a normal 
distribution.  The following SAS® statements fit the filtered data for this case study TED: 

 
proc mixed data=predres1; where -800<res1<800; 
title 'analysis with site characteristics'; 
class pass  cultivar   load_id; 
model say = cultivar    rate rate*rate  cultivar*rate 
cultivar*rate*rate   Slo   LogFac   Cvx logEuc  Dsm     
Ndvi_dif index one_cvx ndvi_717  logfac*cvx  Dsm*cultivar      
Dsm*rate  Cvx*cultivar*rate  logEuc*cultivar*rate       
ndvi_717*cultivar*rate LogFac*cultivar*rate*rate     
logEuc*cultivar*rate*rate  Dsm*cultivar*rate*rate         
ndvi_717*cultivar*rate*rate  LogFac*rate 
cvx*cultivar*rate*rate Ndvi_dif*cultivar*rate*rate   
Slo*cultivar*rate*rate index*cultivar*rate     
Ndvi_dif*cultivar*rate Slo*rate  logfac*dsm   slo*dsm  
logfac*ndvi_dif  one_ndvi dsm*dsm*cultivar  
/outp=preds solution;**say is smoothed yield; 
random load_id/subject=cultivar; 
repeated /type=sp(GAU)(new_y) 
subject=load_id(rateclass*cultivar) local; 
lsmeans cultivar/at means diff; 
lsmeans cultivar/at rate=0 diff; 
lsmeans cultivar/at rate=2 diff; 
lsmeans cultivar/at rate=4 diff; 
lsmeans cultivar/at rate=6 diff; 
lsmeans cultivar/at rate=8 diff;  

 
The random load_id/subject=cultivar statement specifies that load_id’s within a 
cultivar are random effects.  The ‘repeated / type = sp(GAU)(new_y) subject = 
load_id(rateclass*cultivar) local;’ statement specified that residuals within a 
harvest pass of a cultivar intersected with a rate class are spatially correlated.  The Gaussian 
spatial correlation model provided the smallest AIC value over all other spatial correlation 
structures.  The ‘lsmeans cultivar/at means diff;’ statement requests that adjusted 
cultivar means evaluated at average values of the response variables be computed.  These means 
can be thought of as being computed by predicting the response of a cultivar at each yield 
monitor point in the entire field and taking the mean of those points.  That is, these least square 
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means are predictions of the mean yield of the cultivars as if each had been grown on the 
complete field.  The other lsmeans statements provide predictions as if each cultivar would have 
been grown on the complete field using the specified blanket rate of PGR.  The ‘outp=preds’ 
part of the model statement provides a data set with a predicted value for each observation. 
 
 For comparison purposes, another analysis of the final data set was completed without 
site characteristics, but used the PGR rate as a continuous variable entered as both a linear effect 
and a quadratic effect.  The following Proc Mixed code fit the data set: 
 

proc mixed data=predres1;where -800<res1<800; 
title 'model without site characteristics'; 
class load_id cultivar; 
model say= cultivar rate cultivar*rate 
cultivar*rate*rate/ddfm=satterth; 
random int /subject=load_id(cultivar) ; 
repeated /type=sp(sph)(scaled_new_y) subject = 
load_id(rateclass*cultivar) local; 
lsmeans cultivar/at means diff; 
lsmeans cultivar/at rate=0 diff; 
lsmeans cultivar/at rate=2 diff; 
lsmeans cultivar/at rate=4 diff; 
lsmeans cultivar/at rate=6 diff; 
lsmeans cultivar/at rate=8 diff; 

 
The ‘repeated /type=sp(sph)(scaled_new_y) subject = load_id 
(rateclass*cultivar) local;’ statement provides a spatial correlation (using the 
spherical option) among yield monitor measurements within a load_id of a cultivar intersected 
with the PGR rate class. 
 

Tables of LSD values for both types of models were also determined.  Both models 
estimate effects of a 2 oz PGR rate which was not applied as an actual rate in the field. 
 
III. Results. 
 
Geographic Information System/Remote Sensing Data Products:  Images and LIDAR data 
were acquired for the focus field and various data products were derived.  A site-specific 
application was made, field observations were collected (not discussed here), and the crop 
harvested with equipment monitoring continuous yield rates as discrete points.  These operations 
provided a great deal of information that must be extensively processed.  Therefore, the GIS 
objectives in the analysis of this TED were: 

 Extract information from remote sensing data to support site-specific application of a 
variable-rate application of PGR. 

 Implement ‘controls’ (named as overlap plots) in the field and embed them in the planned 
PGR application to automate their consideration; thereby removing the need to manually 
turn off the sprayer when ‘flagged control areas’ are encountered. 
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 Create highly accurate data products from high-resolution imagery and DSM data to 
explore interactions of topography, hydrology, and other topology relationships on cotton 
growth and yield. 

 Process and clean data products to address uncertainty, normalize data, and remove or 
minimize unwanted noise.  

 Utilize coordinates of monitored yield points to extract thematic information of field 
topography with a sample density sufficient to examine micro-variability effects on 
cultivar performance and PGR application effectiveness. 

 
Summarized in Figure 1 are intermediate data products (extracted from the raster image 

of 9 June 2003) used to build the variable-rate PGR prescription.  Focal processing resolved the 
continuous NDVI values into an intermediate grid of three comprehensible rate classes at the 
same spatial resolution of the original multispectral image.  Focal processing also ‘rasterized’ the 
information into another grid (Figure 1, far right) whose cell geometry matched the boom width 
of the sprayer that applied the PGR to each cultivar, 8 crop rows at a time along its travel path. 
 

The first data product (Figure 2) derived from the LIDAR digital surface model (DSM) 
was a computer-generated hillshade model of elevation providing perspective of the shadows 
caused by the sun at a particular angle and compass direction.  The hillshade surface is a 
visualization tool (Theobald 2003) providing analysts with graphical information about field 
topography and was not part of the statistical modeling process.  The DSM also provided several 
hydrological data products (Figure 2).  The concavity/convexity grid is a measure of whether 
water would pond or runoff at a particular cell in the grid and was highly relevant to the 
statistical modeling work. 
 

Yield data points have spatial coordinates and provide measurements about crop yield at 
that location.  These point data provide the best resolution for studying relationships among 
topographic variables influencing growth, the spatially variable management practice (PGR rate), 
and cotton cultivar effects on yield.  (These point data ‘on the ground’ are actually small areas 
defined by the swath width and 2 sec recording time of the picker.)  The yield data were highly 
variable and noisy between north and south picker loads within a cultivar.  This problem was 
first addressed through focal processing of the point coverage within the cultivar strips (see 
example for loads 30 and 31, Figure 3).  Next the yield point data (Figure 4, left) were 
transformed to a grid (Figure 4, middle) and spatially averaged over the area of study using a 
second focal processing step to create a final surface grid (Figure 4, right) of seed cotton yield. 
   

GIS functions applied at locations of yield data coordinates extracted attributes from 
various thematic layers to create an output file (one record per yield point) that captured spatial 
relationships among management practices and topography.  Intersecting yield data points with 
various thematic layers at different spatial scales is illustrated in Figure 5. 
 
Statistical Analyses:  The general, linear mixed model analysis of the TED data table was 
insightful.  To complete the first part of the analysis, site characteristics (topography themes) and 
variable-rate PGR application (i.e., grid_code) classes were used to model each cultivar’s yield 
response at each yield point coordinate within every ‘load_id’.  For example, for cultivar 215, 
Figures 6a and 6b compares focal data (orig_say), focal-loess smoothed data (say), and predicted 
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data for picker loads 10 and 11.  These data are displayed using adjusted Northing coordinate 
information from south (0 m) to north (ca. 800 m).  These graphs show that modeling yield 
response using site characteristics of each different yield point provides a good fit.  The 
statistical model predicted seed cotton yield for the other 16 cultivars (data not shown) with 
equally comparable results.  Table 2 summarizes these models by showing the correlation 
coefficients between predicted values and either loess-and-focally smoothed (say) or focally 
smoothed (orig_say) yield monitor data by cultivar.  The correlation coefficients range from 
0.614 to 0.797 for twice-smoothed data and from 0.592 to 0.775 for only focally smoothed data.  
Using random and repeated statements with a Gaussian spatial structure, the load_id(cultivar) 
variance component was estimated as 13.96, sill estimate was 32,465, range estimate was 
8.0767, and nugget effect estimate was 0.0146. 
 
 Statistical models built on the basis of topographical site characteristics and PGR 
prescription rates obtained seed cotton yield predictions at the coordinates of other cultivar yield 
points as if a selected cultivar were grown for the entire study area (and not only the strip where 
it was actually grown).  The SAS® output of this modeling process produced additional tables 
keyed to the original data table through the UTM coordinates of the yield points.  These 
predicted ‘whole’ field means compared performance among cultivars.  The results of these 
lsmean statements are displayed in Table 3 where predicted yields of different PGR rates are 
named rate_0, rate_2, rate_4, rate_6, and rate_8.  The mean PGR rate for the field was 6.17 
oz/acre providing results very similar to those for 6 oz/acre; thus, results for the mean PGR rate 
are not included in the table.  Cultivar ranks within a PGR rate are also included (for general 
comparison to the cultivar ranks in Table 1, if these predicted seed cotton weights are adjusted 
(not shown) to lint weights). 
 
 Once a model of cultivar response at different sites was possible, other models examining 
cultivar responses to PGR rates could be built.  It is possible to answer questions about the effect 
of different PGR rates on each cultivar with different combinations of site characteristics.  To our 
surprise, analyses of spatial PGR application by cultivar were quite productive and rich (> 600 
pages of tables and graphs).  Differences of predicted means at each rate were computed and the 
mean, minimum, and maximum standard errors of the difference were determined (Table 4).  
The standard errors were multiplied by a t-value to provide a 0.05 LSD value for the three 
standard error values for each rate.  Since the mixed model is a regression model, the estimated 
standard errors are larger for 0 and 8 oz/per acre and smaller values for 6 oz/acre, a value close to 
the mean rate. 
  

In general, there are several interaction terms involving cultivar, indicating that yield 
models for each cultivar are different functions of the independent variables.  The rate of PGR 
also occurs in several interaction terms (both Rate and the square of Rate), indicating effects of 
PGR rate on a cultivar’s yield depends on both site and cultivar characteristics at the coordinates 
of the yield points.  The analysis of variance table of fixed effects (Table 5) indicates that several 
characteristics interact with the cultivar yield responses, including Rate, Rate2, DSM, DSM2, 
Rate*Cvx, Rate2*Cvx, Rate*Index, etc.  These results suggest one can apply too high of a PGR 
rate to vigorous growing cotton residing in regions of fields that collect water and cause 
decreases in yield.  Many of these interactions spatially correspond to the middle right region 
displayed in Figure 4 (any panel) showing yellow hues for seed cotton yield.  The agricultural 
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application of simultaneous site and cultivar interactions with PGR rate classes is that spatial 
prescription maps cannot be generated by an elementary process.  This implies the processing 
(Figure 1) building our PGR application map was too simplistic. 
 

 Figure 7 is a summary display of predicted values of seed cotton yield for each cultivar 
at 5 levels of PGR based upon a mixed model using site characteristics.  Most cultivars perform 
better at lower levels of PGR than at higher levels of PGR.  This evidence suggests that the 
initial 5 oz/acre blanket rate in June has cumulative effects with the spatial application of PGR 
rates in July.  These exploratory results (total PGR amount applied at any location ≤ 13 oz/acre) 
suggest that current recommendations typically averaging about 16 oz/acre per season may be 
too high for managing growth of many cotton cultivars.  Other optimization experiments on total 
PGR amounts topographically applied throughout a season need to be planned. 
  
 The above analysis employing site characteristics can be compared to a second analysis 
without yield point site characteristics.  Using random and repeated statements with a spherical 
spatial structure, the estimate of the load_id(cultivar) variance component was 321.25, sill 
estimate was 96,110, range was 0.4678, and nugget effect was 0.9114.  These estimates of 
covariance parameters are a lot larger for the model without site characteristics than for the 
model with site characteristics.  The predicted yields for each cultivar evaluated at 5 levels of 
PGR without site characteristics are displayed in Table 6.  The ranks of cultivars within a level of 
PGR are also included.  Table 7 contains the mean, minimum, and maximum estimated standard 
errors of the difference between pairs of cultivar means and corresponding 0.05 LSD values.  
Again, estimated standard errors for 0 and 8 oz/acre are larger than those close to the mean PGR 
rate of 6.17 oz/acre.  Standard errors of the differences are functions of the covariance 
parameters, thus estimated standard errors and corresponding LSD values are much smaller for 
analysis that incorporates site characteristics than for analysis without site characteristics.  Table 
8 presents the analysis of variance table of the model without site characteristics.  Figure 8 
summarizes predicted seed cotton yields for cultivars at five levels of PGR and similarly 
indicates most cultivars have depressed yields at higher rates of PGR.  A few cultivars have a 
larger response at both 0 and 8 oz/acre than at the middle rate ranges.  Such a response may be 
due to the ‘luck of the draw’ for yield points at these locations within these cultivar strips. 
 

Two different types of general linear mixed models analyzed the case study TED and 
provided diverse results evaluating both cultivar and PGR performance.  Of the two approaches, 
analyses utilizing site characteristics provided models with greater precision.  The VR controller, 
yield monitor, and other sensors installed on aircraft generated the required spatial information 
needed to develop these analyses. 
 
IV. Discussion. 
 
  The capability to apply different rates of crop inputs to different areas of fields raises the 
issue of how to design and analyze experiments to demonstrate treatment effects.  Many authors 
(Conquest 2000; Hurlbert 1984; McDonald et al. 2000; Murtaugh 2000; Scheiner and Gurevitch 
2001) discuss various difficulties in analyzing landscape level experiments from an ecological 
perspective.  A common theme is how to establish controls for comparisons and obtain 
replications of treatments (see also Mead 1988).  However, around the mid-1990’s, yield 
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monitors (Pierce et al. 1997) and high resolution, RS capabilities (Jensen 2000; Moran et al. 
1997; Pinter et al. 2003; Willers et al. 1999) began to appear upon the market.  As result, it is 
now possible to address the problem of experimental design in more detail than described by 
Gotway et al. (1997) or Doerge and Gardner (1999).  The major change is thinking differently 
about the characteristics and arrangements of plots.  The ability of sensor systems to map several 
uncontrollable, spatially variable factors and the capabilities of VR controllers to apply (and 
map) spatial inputs of agrichemicals allows one to geographically establish adaptable 
experimental units (zones) and treatment and design structures needed to answer questions.  In a 
TED, geo-referenced experimental units do not need to be symmetrically arranged, similar in 
size, or in close proximity to one another, and should not be randomly assigned to treatments.  
Experimental units are established by geometric relationships between travel paths of the largest 
sized toolbar (or boom) on equipment applying spatial inputs and the producer’s intent to 
differently manage diverse geographic zones in the field.  Therefore, in a TED, treatments are 
assigned to experimental units by producer’s (or researcher’s) judgment and not through a 
process of randomization, because randomization results in irrelevant assignments of treatments 
to some experimental units.  Independent treatments are achieved by changes in state of the VR 
controller as it spatially applies different recommendations along paths of travel. 
 

High data density provided by high resolution imagery, LIDAR, and yield monitors 
(Birrell et al. 1996) provide valuable covariate information to better test hypotheses.  
Topological relationships of field topography provided by these sensors best allow one to define 
experimental units useful for replication and to have independence between control and site-
specific treatments.  Our analysis method builds upon several assumptions and is dependent (as 
noted above) upon capabilities of VR equipped machinery.  First, the VR path of the sprayer or 
implement is only possible in long strips (polygons).  The strips are straight lines or curves 
following contours or property boundaries.  Second, precision agricultural practice prescriptions 
are formulated to be applied to polygons of interest (management zones) and are spatially varied 
along the travel path of the farm equipment.  Third, demographic characteristics of the polygons 
are available at the same spatial resolution (or greater) provided by the harvester.  To create an 
analysis approach, spatial demographics of various thematic layers within fields create large 
zones where ‘recommended’ (traditional or precision) agricultural practices are applied.  Other 
‘experimental’ (traditional or precision) agricultural practices can be evaluated against 
recommended practices by using smaller ‘overlap plots (or zones)’ imbedded by analysts into 
paths of travel of VR farm equipment.  Overlap zone locations and recommendations are both 
built into the prescription file (following recommendations by field personnel) and the VR 
controller directs the farm equipment to apply the spatial management practices.  The key for 
obtaining data to evaluate (traditional or precision) agricultural practices is to establish overlap 
zones of alternate management practices within larger zones where recommended practices are 
applied.  This overlapping process provides the necessary control data.  The various agricultural 
practices are evaluated using analysis of covariance to obtain regression effects describing both 
the large (i.e., recommended or traditional) and overlap (i.e., site-specific or alternative) 
management zone demographics.  For this analysis, treatments applied to experimental units 
(zones) are fixed effects, while the locations of experimental units are random effects. 
 

A TED must be easily implemented in a commercial field.  If the experiment is difficult 
to accomplish by the operator, then definite changes in design are necessary.  At times, some 
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agricultural inputs are applied to all areas of the field, and here the creation of overlap zones is 
straightforward.  Other times, management practices are applied at different times and locations 
and require one or more styles of overlap zones to evaluate their effectiveness.  Often, spatial 
applications of one agrichemical cannot be tank mixed with blanket applications of other 
products applied to the field, unless ‘off/on’, or changes in rate, criteria are appropriate.  Multiple 
travel paths by equipment to apply several different inputs in various spatial arrangements can be 
inconvenient to the farm’s schedule of events, thus some questions may be too expensive and 
time consuming.  (However, multiple channel, multi-product injection systems now available on 
some equipment solve this type of limitation.) 
 

Questions of interest addressed by a TED are of at least three general types.  The first 
question evaluates only a single management tactic at one point in time.  The second type 
compares one or more management tactics at one point in time.  The third, and more complex 
question, evaluates one, two or more management approaches throughout a season.  The long-
term goal of the project is to develop several styles of site-specific experiments to appropriately 
assess (1) agronomic and entomological research in cotton and (2) provide producers and 
consultants the ability to implement and analyze TEDs on production farms. 

 
It would be best with a TED to state a priori planned comparisons of interest; however, 

unplanned comparisons are to be expected because one cannot predict in advance how seasonal 
(weather) and/or other agronomic conditions (market prices, pest outbreaks, etc.) exactly play 
out in commercial fields.  In these cases, the fact that any changes in management practices are 
topologically registered information will be of great advantage.  Flexibility in planning is 
possible and the TED can keep the best interests of the cooperating farm in mind. 
 

The methods developed to implement and analyze the case study TED provided excellent 
insight on effects of topography and site-specific management (the PGR application) on yield of 
several cotton cultivars.  Preliminary conclusions from the analysis provide insight for 
developing additional directions of agricultural research.  The inference space of results will 
require more investigation.  We expect the integrated methodology to apply to other difficult to 
replicate experiments established in commercial fields.  
 
IV. Summary. 
 

To implement a TED at the field level requires close cooperation among the producer(s), 
his consultant(s), farm staff, research team, extension agent, and one or more commercial 
companies (or research organizations) in order to acquire, process and apply various information 
layers.  The analysis also requires close cooperation among the skills of various analysts and 
intensive applications of diverse types of spatial information. 
 
V. References.  
 
Anonymous, 1997.  Understanding GIS.  The ARC/INFO Method.  ESRI Press, Redlands, CA. 
 
Birrell, S. J., K. A. Suddeth, and S. C. Borgelt.  1996.  Comparisons of sensors and techniques 
for crop yield mapping.  Comp. Elec. Agric.  14. 215-233. 

 

Applied Statistics in Agriculture 53

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2004/proceedings/5



 
Bugayevskiy, L. M. and J. P. Snyder.  1995.  Map Projections.  A Reference Manual.  Taylor and 
Francis, Philadelphia, PA. 
 
Conquest, L. L.  2000.  Analysis and interpretation of ecological field data using BACI designs:  
Discussion.  J. Agric. Biol. Env.  Stat. 5: 293-296. 
 
Doerge, T. A and D. L. Gardner.  1999.  On-farm testing using the adjacent strip comparison 
method.  In Precision Agriculture (P. C. Robert, R. H. Rust, and W. E. Larson (eds)).  Am. Soc. 
Agronomy, Crop Science Soc. America, and Soil Science Soc. America, Publishers.  Madision, 
WI. 
 
Dupont, J. K., R. Campenella, M.R. Seal, J. L.Willers and K. B. Hood.  2000.  Spatially variable 
insecticide applications through remote sensing.  Proc. Beltwide Cotton Conf., San Antonio, TX.  
Vol. 1: 426- 429. 
 
Gotway, C. A., D. G. Bullock, F. J. Pierce, W. W. Stroup, G. W. Hergert, and K. M. Eskridge.  
1997.  Experimental design issues and statistical evaluation techniques for site-specific 
management.  In The state of site-specific management for agriculture (F. J. Pierce and E. J. 
Sadler (eds)).  Am. Soc. Agronomy, Crop Science Soc. America, and Soil Science Soc. America, 
Publishers.  Madision, WI. 
 
Gotway, C. A. and W. W. Stroup.  1997.  A generalized linear model approach to spatial data 
analysis and prediction.  J. Agric. Biol. Env.  Stat. 2: 157-178. 
 
Hurlbert, S. H.  1984.  Pseudoreplication and the design of ecological field experiments.  Ecol. 
Monog.  54: 187-211. 
 
Jensen, J.R.  2000.  Remote sensing of the environment: An earth resource perspective.  Prentice-
Hall, Upper Saddle River, NJ. 

 
Kennedy, M.  1996. The Global Positioning System: An Introduction.  Ann Arbor Press, Chelsea, 
MI, USA.  268 pp. 
 
Littell, R. C., G. A. Milliken, W. W. Stroup and R. D. Wolfinger.  1996.  SAS® System for Mixed 
Models.  SAS Institute Inc., Cary, NC. 
 
McDonald, T. L., W. P.  Erickson and L. L. McDonald.  2000.  Analysis of count data from 
before-after control-impact studies.  J. Agric. Biol. Env.  Stat. 5: 262-279. 
 
Mead, R.  1988.  The design of experiments: Statistical principles for practical application.  
Cambridge University Press, Cambridge. 
 
Milliken, G. A. and D. E. Johnson.  1992.  Analysis of Messy Data, Vol. 1.  Designed 
Experiments.  Chapman and Hall/CRC, New York.  
 

 

54 Kansas State University

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2004/proceedings/5



Milliken, G. A. and D. E. Johnson.  2001.  Analysis of Messy Data, Vol. 3.  Analysis of 
Covariance.  Chapman and Hall/CRC, New York.  
 
Moran, M.S., Y. Inoue, and E.M. Barnes.  1997.  Opportunities and limitations for image-based 
remote sensing in precision crop management.  Remote Sens. Environ.  61:319-346. 
 
Murtaugh, P. A.  2000.  Paired intervention analysis in ecology.  J. Agric. Biol. Env. Stat. 5: 280-
292. 
 
Pierce, F. J., N. W. Anderson, T. S. Colvin, J. K. Schueller, D. S. Humburg, and N. B. 
McLaughlin.  1997.  Yield mapping.  In The state of site-specific management for agriculture (F. 
J. Pierce and E. J. Sadler (eds)).  Am. Soc. Agronomy, Crop Science Soc. America, and Soil 
Science Soc. America, Publishers.  Madision, WI. 
 
Pinter, P. J., J. L. Hatfield, J. S. Scheppers, E. M. Barnes, M. S. Moran, C. S. T. Daughtry, and 
D. R. Upchurch.  2003.  Remote sensing for Crop Management.  Photogramm.  Engr. & Rem. 
Sens.  69: 647-664. 

 
Plant, R. E.,  D. S. Munk, B. R. Roberts, R. N. Vargas, R. L. Travis, D. W. Rains and R. B. 
Hutmacher.  2001.  Application of remote sensing to strategic questions in cotton management 
and research.  J. Cot.  Sci. 5: 30-41. 
 
Pouncey, R., K. Swanson and K. Hart (ed.) 1999.  ERDAS Field Guide, 5th ed. ERDAS, Atlanta, 
GA. 
 
Richards, J. A. and X. Jia.  1999.  Remote Sensing Digital Image Analysis.  An Introduction, 3rd 
ed.  Springer, Berlin. 
 
Scheiner, S. M. and J. Gurevitch, eds.  2001.  Design and Analysis of Ecological Experiments, 
2nd ed.  Oxford University Press, Oxford. 
 
Stroup, W. W. 1989.  Predictable functions and prediction space in the mixed model procedure.  
Applications of Mixed Models in Agriculture and Related Disciplines, Southern Coop. Ser. Bull. 
No. 343.  Louisiana Agricultural Experiment Station, Baton Rouge. 
 
Theobald, D. M.  2003.  GIS Concepts and ArcGIS® Methods.  Conservation Planning 
Technologies, Fort Collins, CO. 
 
Willers, J. L., M. R. Seal, and R. G. Luttrell.  1999.  Remote sensing, line-intercept sampling for 
tarnished plant bugs (Heteroptera: Miridae) in Mid-south cotton.  [Online].  J. Cotton Sci. 3(4): 
160-170.  Available at http://www.jcotsci.org (verified 10 Mar. 2005). 
 
Acknowledgements.  The July 2003 spatial PGR prescription was applied in cooperation with 
Dr. Dan Reynolds, Mr. Matt Kirkpatrick and Mr. Tom Barber, Department of Weed Science, 
Mississippi State University.  Appreciation is expressed to Mr. Paul Good and Mr. Dale Weaver 
of Good’s Longview Farm for cooperation in this research.  The cultivar trial was planted in 

 

Applied Statistics in Agriculture 55

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2004/proceedings/5

http://www.jcotsci.org/


cooperation with Good’s Longview Farm, and sponsored by Mr. Dave Roberts, Delta Pine and 
Land Seed Company, Scott, MS and Dr. Will McCarty, State Agronomist, Mississippi State 
University Extension Service.  Research was supported in part by grant funds from the 
GeoResources Institute, Mississippi State University and the USDA-ARS, Special Project, Area-
Wide Pest Management of the Tarnished Plant Bug. 
 

Disclaimer.  Mention of trade names or commercial products in this publication is solely 
for the purpose of providing specific information and does not imply recommendation or 
endorsement by the U.S. Department of Agriculture. 
 
  

 

56 Kansas State University

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2004/proceedings/5



Table 1.  Ranked (high to low) yield responses (lint (lbs/acre) of 17 cotton cultivars and their 
percent turnouts.  These yields were obtained using traditional methods without any adjustment 
for effects of topography and the variable PGR prescription.  (Courtesy of Dennis Reginelli, 
Mississippi Cooperative Extension Service, Noxubee County, MS) 

 
 

Cultivar 

 
 

Plot ID 

 
Lint 
Yield 

(Lbs/Ac
re) 

 

 
Percent 

Turnout 

SG 501 BR 6 951 37.9 
SG 215 BR 5 940 39.3 
FM 991 BR 13 933 36.6 
DP 494 R 21 897 38.8 

ST 5599 BR 10 890 36.3 
FM 960 BR 12 887 35.1 
ST 5303 R 20 861 37.4 
DP 5415 R 14 856 39.0 
FM 989 R 19 832 36.0 
DP655 BR 11 830 37.7 

ST 4892 BR 9 829 37.2 
SG 521 R 17 828 38.3 
ST 4793 R 15 824 38.2 
DP 451 BR 7 817 34.8 
FM 989 BR 8 806 36.3 
DP 436 R 16 767 34.9 
DP 5690 R 18 764 35.4 
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Table 2.  Pearson correlation coefficients between predicted values from mixed model using site 
characteristics and focal-loess smoothed data points (say) and focal smoothed data points 
(orig_say) for each cultivar. 
 

Cultivar say orig_say

501 BR 0.75540 0.73281

215 BR 0.61408 0.59210

991 BR 0.74590 0.68756

494 R 0.72194 0.66983

5599 BR 0.75436 0.72852

960 BR 0.75265 0.68892

5303 R 0.63507 0.57841

5415 R 0.78542 0.74210

989 R 0.62923 0.56943

655 BR 0.70470 0.67695

4892 BR 0.79670 0.77531

521 R 0.69374 0.56814

4793 R 0.74602 0.72055

451 BR 0.72781 0.70838

989 BR 0.74890 0.73175

436 R 0.69458 0.65572

5690 R 0.61695 0.53376
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Table 3.  Predicted seed cotton yield means for each of the cultivars for a second blanket 
application (above the base rate of 5 oz) of PGR at 0, 2, 4, 6, and 8 (oz/acre) denoted by 
rate_0,…rate_8 with the ranks of the mean within a rate (rank_0,…,rank_8) from the model 
using site characteristics.  Cultivars are listed as presented in Table 1 to facilitate comparisons 
(after adjustments to lint yield using the gin turnout values in Table 1). 
 

Cultivar rate_0 rank_0 rate_2 rank_2 rate_4 rank_4 rate_6 rank_6 rate_8 rank_8

501 BR 2715 1 2604 3 2542 4 2530 1 2569 1

215 BR 2702 2 2660 2 2571 2 2436 5 2253 5

991 BR 2652 3 2666 1 2603 1 2463 2 2246 6

494 R 2162 17 2102 17 2008 17 1879 17 1715 17

5599 BR 2295 14 2434 5 2484 5 2445 4 2317 3

960 BR 2488 5 2554 4 2543 3 2454 3 2287 4

5303 R 2416 8 2310 11 2204 11 2098 12 1992 12

5415 R 2471 6 2432 7 2336 8 2183 10 1973 13

989 R 2384 9 2281 13 2194 13 2123 11 2066 11

655 BR 2302 13 2434 6 2461 6 2384 6 2203 9

4892 BR 2236 16 2383 9 2430 7 2377 7 2224 8

521 R 2306 12 2212 16 2125 16 2045 16 1972 14

4793 R 2352 11 2294 12 2201 12 2072 15 1908 16

451 BR 2570 4 2397 8 2331 10 2372 8 2519 2

989 BR 2433 7 2383 10 2335 9 2289 9 2244 7

436 R 2292 15 2263 14 2194 14 2084 14 1933 15

5690 R 2357 10 2226 15 2139 15 2096 13 2096 10
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Table 4.  Standard deviation information for pairwise comparisons among the cultivars and 0.05 
LSD values computed using mean standard deviation (mn_std), minimum standard deviation 
(min_std) and maximum standard deviation (max_std) for each of the rates of PGR from a 
regression model using site characteristics. 
 

rate mn_std LSD_mn min_std LSD_min max_std LSD_max 

0.00 92 194 86 180 104 218 

2.00 64 134 59 125 72 152 

4.00 55 115 46 98 66 138 

6.00 38 80 34 72 43 90 

6.17 37 77 34 71 41 85 

8.00 58 122 39 81 98 206 
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Table 5.  Tests of the fixed effects for the model with site characteristics (continued next page).  
See Appendix 1 for label descriptions for effects. 
 

Type 3 Tests of Fixed Effects 

Effect 
Num 

DF
Den 
DF F Value Pr > F 

cultivar 16 17 10.28 <.0001 
rate 1 5979 2.82 0.0933 
rate*rate 1 5979 4.45 0.0349 
rate*cultivar 16 5979 6.18 <.0001 
rate*rate*cultivar 16 5979 7.41 <.0001 
Slo 1 5979 3.00 0.0834 
logfac 1 5979 21.60 <.0001 
Cvx 1 5979 544.65 <.0001 
logeuc 1 5979 3.92 0.0477 
Dsm 1 5979 527.19 <.0001 
Ndvi_dif 1 5979 3.09 0.0788 
index 1 5979 0.05 0.8207 
one_cvx 1 5979 678.02 <.0001 
Ndvi_717 1 5979 2.54 0.1112 
logfac*Cvx 1 5979 290.96 <.0001 
Dsm*cultivar 16 5979 10.35 <.0001 
rate*Dsm 1 5979 2.80 0.0944 
rate*Cvx*cultivar 17 5979 9.77 <.0001 
rate*logeuc*cultivar 17 5979 1.91 0.0135 
rate*Ndvi_71*cultivar 17 5979 5.94 <.0001 
rate*rate*logf*cultivar 17 5979 8.29 <.0001 
rate*rate*loge*cultivar 17 5979 1.89 0.0145 
rate*rate*Dsm*cultivar 17 5979 7.40 <.0001 
rate*rate*Ndvi*cultivar 17 5979 4.85 <.0001 
rate*logfac 1 5979 1.52 0.2176 
rate*rate*Cvx*cultivar 17 5979 9.62 <.0001 
rate*rate*Ndvi*cultivar 17 5979 3.18 <.0001 
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Type 3 Tests of Fixed Effects 

Effect 
Num 

DF
Den 
DF F Value Pr > F 

rate*rate*Slo*cultivar 17 5979 64.09 <.0001 
rate*index*cultivar 17 5979 8.76 <.0001 
rate*Ndvi_di*cultivar 17 5979 3.85 <.0001 
rate*Slo 1 5979 0.79 0.3748 
logfac*Dsm 1 5979 22.91 <.0001 
Slo*Dsm 1 5979 2.89 0.0894 
logfac*Ndvi_dif 1 5979 51.67 <.0001 
one_ndvi 1 5979 2.79 0.0947 
Dsm*Dsm*cultivar 17 5979 55.82 <.0001 
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Table 6.  Predicted seed cotton yield means for each of the cultivars for blanket application 
(above a base of 5 oz) of PGR at 0, 2, 4, 6, and 8 (oz/acre) denoted by rate_0,…rate_8 with the 
ranks of the mean within a rate (rank_0,…,rank_8) from a regression model without site 
characteristics.  Cultivars are listed as presented in Table 1 to facilitate comparisons. 
 
 

Cultivar rate_0 rank_0 rate_2 rank_2 rate_4 rank_4 rate_6 rank_6 rate_8 rank_8

501 BR 3093 1 2538 6 2348 10 2522 5 3061 1

215 BR 2967 3 2548 5 2371 8 2436 7 2743 4

991 BR 2791 5 2728 3 2658 3 2580 3 2494 9

494 R 2422 16 2454 11 2354 9 2122 17 1759 17

5599 BR 2725 7 2769 2 2783 2 2768 1 2723 5

960 BR 2795 4 2834 1 2800 1 2694 2 2515 8

5303 R 2585 11 2476 7 2372 7 2275 12 2184 16

5415 R 2557 12 2460 9 2375 6 2305 10 2247 11

989 R 2602 10 2449 12 2347 11 2295 11 2293 10

655 BR 2694 8 2645 4 2603 4 2570 4 2546 7

4892 BR 2673 9 2467 8 2412 5 2510 6 2759 3

521 R 2458 15 2312 15 2226 15 2199 13 2233 13

4793 R 2474 14 2341 14 2250 14 2199 14 2189 15

451 BR 2973 2 2458 10 2270 13 2410 8 2877 2

989 BR 2766 6 2414 13 2288 12 2388 9 2714 6

436 R 2398 17 2276 17 2202 16 2174 16 2194 14

5690 R 2493 13 2304 16 2200 17 2181 15 2247 12
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Table 7.  Standard deviation information for pairwise comparisons among the cultivars and 0.05 
LSD values computed using mean standard deviation (mn_std), minimum standard deviation 
(min_std) and maximum standard deviation (max_std) for each of the rates of PGR from model 
without using site characteristics. 
 

rate mn_std LSD_mn min_std LSD_min max_std LSD_max 

0.00 216 455 214 449 232 487 

2.00 190 398 163 342 223 468 

4.00 203 427 168 353 248 520 

6.00 144 303 125 263 169 354 

6.17 138 290 122 256 159 335 

8.00 190 399 178 373 208 436 
 
 
 
 
 
Table 8.  Tests of the fixed effects for the model without site characteristics. 
 

Type 3 Tests of Fixed Effects 

Effect 
Num 

DF
Den 
DF F Value Pr > F

cultivar 16 3139 1.80 0.0257
rate 1 6250 23.36 <.0001
rate*cultivar 16 6250 2.05 0.0082
rate*rate*cultivar 17 3440 3.43 <.0001

 
Num DF = Numerator Degrees of Freedom;  
Den DF = Denominator Degrees of Freedom
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Figure 1.  NDVI data products are generated to apply spatially variable-rates of a plant growth 
regulator (PGR) to control cotton growth.  From left to right, the NDVI index is classified (left), 
focally clarified (second from left), and re-classed into three codes (third from left).  The patterns 
are refined and filled to match the geometry of the sprayer boom (right).  Imbedded are two 
control strips (no PGR applied) for statistical analysis of the variable-rate PGR application after 
harvest.  Overlaid numbers (4, 6, 8) correspond to different PGR rates applied to the underlying 
three color classes during July 2003. 
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Hillshade Slope
 

 

Aspect Distance  
 

Concavity
 

Figure 2.  LIDAR technology can generate highly detailed, accurate terrain data.  These are 
pictorial examples of at least five data products (grids) derived from the digital surface model 
(DSM).  Shown is all of Field 160 where the western edge (Figure 1) was utilized for the 2003 
cultivar trial.    
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Figure 3.  For a given cultivar, the north- and south-bound picker loads exhibited noisy (top) 
yield response characteristics addressed through focal processing (bottom).  Shown here are 
loads 30 (blue line) and 31 (black line). 
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Figure 4.  The yield point data (left panel) were transformed to a raster grid (center panel) and spatially averaged (right panel) using 
focal geometry (see Fig. 3) spanning the two picker passes (4 rows each) within each cultivar strip of 8 rows.  Focally adjusted yield 
data (orig_say) were extracted at their coordinate locations for statistical analysis. 
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Vector Theme 

Grid ThemeTwo 

Grid Theme One 

Figure 5.  Illustration showing yield data point coordinates (left panel inset) intersected (represented by the brown vertical rods) with 
two grid themes (at different spatial scales) and a vector theme using GIS functions.
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Figure 6a.  Graph of the focal smoothed seed cotton yield data (orig_say), the focal-loess 
smoothed (say) data and the predictions from the model for cultivar 215 and load L10. 

 
Figure 6b.  Graph of the focal smoothed seed cotton yield data (orig_say), the focal-loess 
smoothed (say) data and the predictions from the model for cultivar 215 and load L11. 
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Figure 7.  Graph of the predicted responses (seed cotton yield) from the model using site characteristics for each of the cultivars for 
five rates of PGR (applied above the base rate of 5 oz).
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Figure 8.  Predicted responses (seed cotton yield) from the model without site characteristics for each of the cultivars at five PGR 
rates (applied above the base rate of 5 oz).
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Appendix 1 
 

Variable Labels and Acronymns 
(Most abbreviations in general order of appearance as presented in Table 5) 

 
1. Cultivar-The factor for one of 17 cotton cultivars used in the study.  See Table 1 for the cultivar labels. 
2. Rate-The factor for one of the plant growth regulator (PGR) rates applied to the cotton cultivars in July according to a 

variable-rate prescription. 
3. Slo-The slope of the land at the location of the yield point coordinate. 
4. logfac (=logf)-The log of the flow accumulation (fac) to a point in the field. 
5. Cvx-The convavity/convexity value at a yield point coordinate. 
6. Logeuc (=loge)-The log of the Euclidean distance of a yield point coordinate from a synthetic stream network. 
7. Ndvi (=NDVI)-The normalized difference vegetation index on 9 June 2003, which is a ratio of the (near infrared band minus 

the red band) divided by the (near infrared band plus the red band). 
8. Ndvi_dif (=Ndvi_di)-The raster difference between the Ndvi value on 9 June 2003 and the Ndvi value on 15 January 2002. 
9. Ndvi_717-The Ndvi value on the 17 July 2003. 
10. Index-The logfac divided by the tangent of the slope.  The index indicates ‘bogginess’ for a grid cell in the digital surface 

model (DSM). 
11. Dsm (=DSM)-The elevation (m) of a yield point coordinate provided by the LIDAR digital surface model. 
12. one_cvx- The reciprocal of the Cvx value. 
13. PAT-The point attribute table of a point theme. 
14. VR-Variable-rate. 
15. RS-Remote sensing. 
16. GIS-Geographic Information System. 
17. DGPS-Differential Global Positioning System. 
18. AOI-Area of interest; the geographic boundaries of a study. 
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