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GENETIC MAPPING OF GENE EXPRESSION LEVELS:
EXPRESSION LEVEL POLYMORPHISM ANALYSIS FOR DISSECTING

REGULATORY NETWORKS OF PLANT DISEASE RESISTANCE

Kyunga Kim1, Marilyn A. L. West2, Richard W. Michelmore2,
Dina A. St. Clair2, and R. W. Doerge1,3

1 Purdue University, Department of Statistics, West Lafayette, IN 47907, USA
2 University of California, Department of Vegetable Crops, Davis, CA 95616, USA
3 Purdue University, Department of Agronomy, West Lafayette, IN 47907, USA

Abstract

The genetic basis of inherited traits has been studied through different approaches in many
areas of science. Examples include quantitative trait locus (QTL) analysis and mutant
analysis in genetics, genome sequencing and gene expression analysis in genomics. Each of
these approaches is used for the investigation of complex traits, such as disease resistance,
but also provides knowledge on components of complex biological systems. We introduce
a novel functional genomics approach that integrates two areas, genetics and genomics, by
applying QTL analysis to quantitative differences in the mRNA abundance of trait-related
genes. This approach allows comprehensive dissection of regulatory networks for complex
traits at a systems biology level. We also address statistical issues, and suggest guidelines
for future experiments in this new framework. (Key words: QTL mapping, gene expression,
microarrays, expression level polymorphism, gene regulatory networks, e-QTL.)

1. Introduction

The molecular basis of complex traits (e.g., gene regulatory networks of disease response) has
been studied with increasing interest using various approaches, such as quantitative trait lo-
cus (QTL) analysis (Mauricio, 2001; Doerge, 2002) and mutant analysis (Glazebrook, 2001)
in genetics; genome sequencing (The Arabidopsis Genome Initiative, 2000) and gene expres-
sion analysis (Duggan et al., 1999; Lipshutz et al., 1999) in genomics. While the underlying
regulatory mechanism of complex traits has been investigated in each area of genome sci-
ence, our understanding of the entire process as a whole remains a great challenge (Kitano,
2002). In particular, QTL analysis identifies genomic regions associated with disease resis-
tance, and mutant analysis even isolates the resistance genes that encode disease resistance
(Michelmore, 2000), but the regulation and function of these regions/genes remain poorly
understood. Recent technological and methodological progress is providing ways to improve
our understanding of the molecular dissection of complex traits at a systems biological level,
by incorporating the methodologies of genetics and genomics (Jansen and Nap, 2001; Do-
erge, 2002) to pursue a more comprehensive dissection of complex traits and their genomic
architecture.

QTL analysis is an approach that relies on a detailed genetic map and statistical theory
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to reveal the association between the genotype of genetic markers with a quantitative trait
(phenotype) for the purpose of identifying chromosomal regions associated with the trait
(Lander and Botstein, 1989; Jansen, 1993; Zeng, 1993). These QTL (or genomic regions)
may contain structural genes that encode for proteins that are responsible for the realization
of the quantitative trait, but these QTL may also be regulatory genes that may be responsi-
ble for the control (or regulation) of structural genes. Differentiating between structural and
regulatory genes that are associated with a quantitative trait of interest is the challenge at
hand and can be addressed by assessing the transcript abundance of genes that are expressed
during the control of a quantitative trait. This can be accomplished using microarray tech-
nology (Duggan et al., 1999; Lipshutz et al., 1999) which measures transcript abundance for
thousands of genes under different conditions, treatments, or cell types, and hence enables
gene expression analysis on a global scale.

The union of quantitative genetics with genomics (i.e., gene expression) in this man-
ner has been referred to by Jansen and Nap (2001) as ‘genetical genomics’, and has been
accomplished in various ways (Jin et al., 2001; Brem et al., 2002; Wayne and McIntyre,
2002; Yvert et al., 2003). All of these investigations, however, employed rather simplistic
statistical analyses (e.g., the Wilcoxon-Mann-Whitney test, χ2 test, ANOVA) with limited
population sizes (6-40 individuals). A more advanced investigation by Schadt et al. (2003)
employed an F2 population of 111 mice from two standard inbred strains that were known to
have significant differential expression among the 23,574 genes in the mouse genome. Each
gene that was differentially expressed between the parents was treated as a quantitative trait
and evaluated for transcript abundance in each of the 111 F2 individuals. Interval mapping
(Lander and Botstein, 1989) was employed to identify genomic regions, called expression
quantitative trait locus (e-QTL), that accounted for variation of gene expression for each
gene (i.e., quantitative trait). While these investigations have produced results, the statis-
tical methods that have been used in current genetical-genomic approaches have not been
examined as to their statistical power in these applications. We expect the power to detect
e-QTL to be low due to the simplicity of the statistical models relative to the complexity
of the biological systems, small sample size, and the technological issues that are associated
with any microarray experiment.

In our simulation study we use Arabidopsis which is the model organism for plants and
spotted cDNA microarrays to assess gene expression levels induced by two experimental
treatment conditions. The conditions of interest are a control and the response to an appli-
cation of salicylic acid (SA). The role of SA as a signaling intermediate in disease resistance
pathways has been studied through mutant analysis (Glazebrook, 2001). We are particularly
interested in the genes that respond to the SA treatment, especially the regulatory genes
that are involved in the control of the structural genes that are providing the response. We
define the variation involved in the genes that are providing the response to be an ‘expres-
sion level polymorphism’ (ELP), and employ an existing QTL methodology, namely multiple
trait analysis (Jiang and Zeng, 1995) to decompose the ‘variation in the expression levels’
(ELP) across individuals in a recombinant inbred segregating population into genetic and
non-genetic factors, and their interactions. In addition to the identification of genetic deter-
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minants of ELP, this application of multiple trait analysis also provides statistical tests for
ELP-by-treatment interactions, and may give us insight into the gene regulatory system of
complex traits. Through simulation studies, we demonstrate the consequences of the par-
ticular sources of variation (e.g., treatment, dye, array, etc.) on the application of multiple
trait QTL analysis to these data, as well as address other statistical issues, such as statistical
power, sample size, and effective number of technical (spot) replicates. We also put forth a
global view of ELP analysis, including experimental design, data collection, ELP mapping,
bioinformatics on mapping results, and reconstruction of gene regulatory networks (Figure
1).

2. Methods

Recently, genetic/allelic variation in gene expression levels have been recognized in several
studies (Cowles et al., 2002; Oleksiak et al., 2002; Yan et al., 2002). As mentioned previously,
natural variation that is seen in induced gene expression levels across individuals in a popu-
lation is defined as expression level polymorphism, or ELP (Doerge, 2002). By decomposing
sources of ELP into genetic and nongenetic factors, and their interactions, one can identify
genetic determinants of ELPs, which contribute to gene expression changes, and map them
to specific genomic regions. This approach will help to further characterize a complex trait
by using the information gained from ELP analysis to infer the genes involved in the path-
way of the trait. In cooperation with physical and genetic map information, the putative
determinants of expression level polymorphism can be categorized into a ‘structural locus’
that is a gene whose expression levels are under investigation and ‘regulatory loci’ that are
other genes which control/regulate the expression of the structural gene.

2.1 Genetic models for regulatory pathways of ELP

Gene regulatory networks are typically very complex and include a large number of com-
ponents (e.g., stimuli, structural and regulatory determinants). For simplicity we illustrate
three simple pathway models based on one structural gene with one or two regulatory de-
terminants (Figure 2; taken from Kim et al. (2005)). Our investigation will be based upon
the simplest model (Model 1 in Figure 2) that consists of a single structural gene and one
regulatory locus that controls the expression changes of the structural gene that is in turn
providing the response to the stimulus. According to the proposed pathway models, the
regulatory loci/genes react to an outside stimulus, and their products physically bind to the
promoter site of the structural gene to promote or repress expression of the structural gene
(Lewin, 2000). Each pathway model can be characterized by a genetic model that reflects
components of both the pathway and the experiment. Assuming there is allelic variation
in gene expression, one can decompose the variation in gene expression into several compo-
nents: genetic components such as sequence polymorphism (allele difference) of each ELP
determinant, non-genetic component such as treatment effect (the nature of the stimulus),
interactions between genetic and non-genetic component (genotype and the stimulus), and
also systematic or technological components such as dye effect and array effect.
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A decomposition of the sources of variation of this type often relies on linear models,
which are well established, and have been applied extensively in both QTL mapping (Zeng,
1993; Jiang and Zeng, 1995) and microarray analysis (Kerr et al., 2000). As such, we pro-
pose a linear genetic model for the dissection of a regulatory pathway of a single structural
gene with a regulatory locus. It is straightforward to generalize this model with multiple
regulatory loci (e.g., Models 2 and 3 in Figure 2). Under the assumption of additive genetic
effects (no epistasis), and a segregating recombinant inbred line (RIL) population, let i and
j denote the genotypes of regulatory and structural loci, respectively, for each individual in
the RIL population, and let yijklmr denote the measurement of transcript abundance for the
structural gene as gained from spotted cDNA microarrays. This expression measurement is
in the original or log scale under treatment k with dye l on array m in replication r:

yijklmr = µ + αi + βj + τk + (ατ)ik + δl + Am + εijklmr (1)

where i = 1, 2, j = 1, 2, k = 1, 2, l = 1, 2, m = 1, 2, and r = 1, · · · , R; µ is overall mean;
α, β, τ and δ are the additive effects of the regulatory and structural loci, treatment effect,
and dye effect; ατ is interaction between the regulatory ELP and the treatment; A is the
array effect and assumed to be distributed as a random normal with mean 0 and variance σ2

A;
εijklmr is the measurement error distributed as a random normal with mean 0 and variance
σ2

ε . The array effect and measurement error are assumed to be independent of each other
and between individuals.

2.2 ELP experimental design

As in any QTL analysis use of the appropriate segregating population is crucial to the success
of the mapping. Typically, such populations are developed via experimental mating systems
from two homozygous and inbred parental lines that are genetically different for the phe-
notype of interest. Recombinant inbred line (RIL) populations are commonly used in QTL
experiments, and especially recommended for complex trait research due to the advantage of
being able to study low-heritability traits, and/or QTL by environmental interaction effects
(Mackay, 2001; Jansen, 2003). In order to determine which parental inbred lines will produce
reasonable differences in the expression levels of a gene (i.e., ELP; Figure 3), a preliminary
experiment using oligonucleotide microarrays (Affymetrix chips) was conducted with a set
of natural accessions of Arabidopsis thaliana, and differential changes in expression between
each parental pair were examined based on a mixed linear model and t-tests with a multiple
comparisons adjustment, such as Holm’s procedure or false discovery rate (West et al., 2004).

Microsatellites provide information on the Arabidopsis genome via marker genotypes
that are observed for each of N RILs as derived from the parental pair selected in the
preliminary analysis (Figure 4). Because we are using spotted cDNA arrays for transcript
assessment, a collection of cDNAs that represent genes (including those genes detected with
potential ELPs in the preliminary analysis) are derived and spotted on glass slides to provide
the arrays that will be hybridized. Once the arrays are made, then each RIL individual
provides mRNA samples collected under two treatment conditions (i.e., no SA or the control,
and SA). A dye-swap experimental design (Black, 2002) is used, and four measurements of
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expression levels for each gene are collected from two arrays for each individual RIL. The
benefits of the dye-swap design are to control the dye effect which is often the result of
an unequal incorporation of one dye over the other, and to provide technological replicates
(i.e., two measurement for each treatment condition, with different dyes) which contribute
to improving the power of statistical analysis.

2.3 ELP mapping using multiple trait mapping

ELP mapping in this context uses multiple measurements of gene expression over different
treatment and dye conditions to identify and map genetic determinants of a single ELP.
These multiple expression measurements can be regarded as multiple phenotype evaluations
over different environments as in multiple trait analysis (Jiang and Zeng, 1995). Multiple
trait analysis is an advanced QTL methodology extended from single trait QTL analysis to
multiple correlated traits. For each individual in a RIL population, wp denotes the phenotypic
value of the pth trait among P quantitative traits. The statistical model for multiple trait
composite interval mapping (CIM) is:

wp = β0p + β∗
px

∗ +
t∑

l=1

βlpxl + εp (2)

where p = 1, · · · , P ; β0p is overall mean for trait p; β∗
p is the additive effect of the putative

QTL on trait p; x∗ is the number of one allele of the putative QTL for the individual; βlp is
partial regression coefficient of wp on xl; xl is the number of the allele of marker l (among t
markers used for controlling residual genetic variation) on the individual; εp is the residual
effect on trait p for the individual, and the residual effects are correlated among traits within
individuals while they are independent among individuals. By accounting for the correlation
structure among the traits, multiple trait CIM provides a statistical test for the gene-by-
treatment interactions, as well as for genomic regions that are associated with the multiple
traits. Four transcript measurements of a structural gene from the ELP experiment (see
equation (1) and section 2.2) can be viewed as four traits in the context of multiple trait
CIM, as described in Kim et al. (2005):

w1 =
1

R

R∑

r=1

yij111r = µ + αi + βj + τ1 + (ατ)i1 + δ1 + A1 +
1

R

R∑

r=1

εij111r

w2 =
1

R

R∑

r=1

yij221r = µ + αi + βj + τ2 + (ατ)i2 + δ2 + A1 +
1

R

R∑

r=1

εij221r (3)

w3 =
1

R

R∑

r=1

yij122r = µ + αi + βj + τ1 + (ατ)i1 + δ2 + A2 +
1

R

R∑

r=1

εij122r

w4 =
1

R

R∑

r=1

yij212r = µ + αi + βj + τ2 + (ατ)i2 + δ1 + A2 +
1

R

R∑

r=1

εij212r

Applied Statistics in Agriculture 101

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2004/proceedings/7



Based on the representation in equation (3), we can apply multiple trait analysis to our ELP
data to identify chromosomal regions or genetic determinants of expression level polymor-
phism that are associated to the treatment response (e.g., salicylic acid).

2.4 Bioinformatics and regulatory networks

ELP mapping yields genomic locations of ELP determinants, as well as information about
their interactions with treatment. However, it is hard to assess whether these determinants
are structural genes, or cis- or trans-regulatory regions. The cis-acting regulatory elements
reside in the vicinity of the structural gene (e.g., promoter regions), whereas the trans-
acting regulatory genes are usually located away from the structural gene, even on different
chromosomes. Incorporation of the statistical interaction information with the physical map
information enables further characterization of putative cis- and/or trans-acting regulatory
regions, and allows one to construct a regulatory pathway for each gene. By integrating
pathways for each of many genes, a putative regulatory network of related genes may be
estimated.

3. Simulation study

We conducted simulation studies based on the simple genetic model (Model 1 in Figure 2;
equation (1)) as the first step in validating the application of multiple trait QTL analysis
to the ELP framework, and to examine the effect of sample size, as well as spot number
(technical) replication. We simulated segregating populations consisting of 100, 200, 300,
400, 500, 700, and 1000 RILs. For the details about simulation settings, see Kim et al.
(2005). The JZmapqtl procedure in QTL Cartographer (Basten et al., 2002) was employed
to conduct multiple trait composite interval mapping on the simulated data.

Using the Arabidopsis genome as our model organism, we considered 5 chromosomes
whose lengths are 135, 100, 100, 125, and 140 cM. Over the genome, 125 markers were equally
distributed. Two unlinked ELP determinants (a regulatory and a structural) were generated
with equal additive effects (0.1 and 0.5) and placed at 98 cM from the left end of chromosome
1 and 27cM from the left end of chromosome 2, respectively. The other chromosomes contain
no ELP determinants. Each ELP determinant, as well as each marker was assumed to
be biallelic, and the genotypes of each ELP determinant and each unlinked marker were
randomly assigned according to their allele frequencies. Assuming a recombination process
with moderate interference, we used Kosambi’s map function. The genotype of each linked
marker on chromosome 1 and 2 was assigned based on both the recombination fraction and
genotype of the corresponding ELP determinant.

One structural gene, whose expression levels are assumed to be significantly different
over treatment conditions between parental lines, was considered. Transcript abundance of
the structural gene was simulated according to a dye-swap experimental design using spotted
cDNA arrays. Gene expression for each RIL individual based on the linear genetic model
(1), with various number of spot (technical) replicates (R = 1, 2, 3, 4, 5, 7, 10) resulted.
Corresponding to various examples of potential ELP (Figure 3), a range of parameter values
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(Table 1 in Kim et al. (2005)) was considered.
The simulated data were then analyzed using the JZmapqtl procedure (QTL Cartogra-

pher version 1.61v; Basten et al. (2002)). Empirical thresholds based on 1000 permutations
(Churchill and Doerge, 1994) were estimated for both tests, namely detecting a significant
determinant for ELP and its significant interaction with the treatment. When estimating
permutation thresholds of multiple traits mapping, it is essential that the randomizations
maintain the correlation structure between traits within each individual. To validate our
approach and to investigate the effective sample size, we conducted multiple trait CIM with
200 data sets which were repeatedly simulated under each parameter configuration and with
each sample size and no replicate spots. The statistical power to detect an ELP determinant
was estimated by calculating the proportion of genes that multiple trait CIM significantly
identified as well as located in a 1 cM neighborhood of its true location. The power to
detect the ELP-by-treatment interaction was also examined based on how many times the
interaction was significantly detected out of 200 simulation runs. The effective number of
spot replication was also investigated via simulations under each parameter configuration
and with sample size of 500.

4. Results

Using representative examples of the simulation results (Figures 5 and 6), several findings
based on simulations with various parameter configurations can be summarized. First, ELP
mapping via multiple trait CIM detected the regulatory determinant relatively well with
good identification of the treatmental interaction, whereas it showed poor power to detect
the structural gene, especially with a low additive effect. The estimated detection power
for the regulatory locus was observed to be higher than for the structural locus over all pa-
rameter settings, although their additive effects are same. Accounting for gene-by-treatment
interaction boosts the power of our approach to detect a genetic determinant which responds
to treatment condition. By examining the increasing pattern of the power over sample size
(Figure 5), we found that the continued gain in power becomes less after the sample size
approaches 500. Furthermore, the benefit of technological (spot) replicates in ELP mapping
via multiple trait CIM is largest when replicates are introduced, even for a small number of
technical replicates (e.g., from no replicate to two replicates; Figure 6).

For more complicated genetic models with multiple regulatory genes (e.g., Models 2
and 3 in Figure 2) simulations were conducted, but are not presented here. However, it
was demonstrated that ELP mapping using multiple trait CIM has much less power to
detect ELP determinants under complex genetic models, and hence requires even larger
sample sizes. We also performed further exploration on the properties of the estimates
when applying multiple trait CIM by examining the sample means and standard deviations
(over all 200 runs) of positions and additive effects for ELP determinants. In addition to
higher detection power, the position and additive effect were more precisely estimated for
the regulatory determinant than for the structural determinant. However, the estimates of
the additive effect show relatively large bias for the regulatory locus (Figure 5), and this
phenomenon may result from the existing non-genetic effects in statistical model, such as
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treatment effect and ELP-by-treatment interaction. Interestingly, the employment of spot
replicates reduces this bias (Figure 6), which is not adjusted by an increment of sample size.

5. Summary

We have introduced expression level polymorphism (ELP) mapping as an approach that com-
bines an advanced QTL analysis in genetics with gene expression experiments in genomics.
This approach provides some insight into comprehensive dissection of regulatory pathways
for complex traits. While other studies based on genetical genomics (Jin et al., 2001; Brem
et al., 2002; Steinmetz et al., 2002; Wayne and McIntyre, 2002; Schadt et al., 2003; Yvert
et al., 2003) have used gene expression levels for only one parental line or one treatment
condition at a time as related to a complex trait, our ELP analysis uses all gene expression
levels quantified under different treatment conditions at the same time so that one can as-
sess proper surrogates of the complex trait and identify genetic determinants of ELPs. The
approach proposed here relies on the application of multiple trait interval mapping to the
ELP data, and provides a way to account for possible interactions between regulatory loci
and the treatment for the purpose of effective detection of ELP determinants. The statistical
consideration of the ELP-by-treatment interaction in multiple trait platform allows our ap-
proach to potentially outperform other approaches based on the standard interval mapping
(Schadt et al., 2003). The results from the simulations also revealed that statistical power
for detecting regulatory loci is increased when there are interactions with the treatment,
and that the statistical models employed to dissection of complex traits should be able to
accommodate these interactions.

Our limited simulation studies show that the proposed approach based on multiple
trait QTL mapping has great potential. The statistical power of multiple trait CIM for
the detection of treatment-interacting ELPs is fairly good when the additive effects of the
ELPs are not too small, and the underlying genetic model is simple (Model 1 in Figure 2),
especially when gene replicates are employed. However, as also revealed by these simulations,
multiple trait CIM application has its limitations. The detection power decreases, and the
benefit of spot replicates degrades as the biological system becomes complex (Models 2 and
3 in Figure 2). In order to overcome the limitations of the multiple trait CIM application,
we are developing a new methodology that is tailored for the ELP analysis and dissects the
sources of ELPs with better power by completely accounting for non-genetical factors from
microarrays.

In this work, we not only proposed the ELP mapping method, but we also demonstrated
an evaluation process for ELP analysis that initiates from experimental design and concludes
with the reconstruction of regulatory networks involved in complex traits (Figure 1). Our
simulation studies suggest some practical guidelines for experimental issues, such as the
proper sample size and the effective number of technical (spot) replicates.
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Figure 1: Framework for expression level polymorphism analysis. At each step
(top to bottom), a newly added input(s) (in addition to inputs from the previous steps) is
presented in a dashed box whereas an output(s) is in a solid box.

(a) Model 1 Stimulus - Regulatory locus Structural locus-
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Figure 2: Biological models for simple regulatory pathway models. Although there
is great diversity in biological models of regulatory pathways, three simple models are illus-
trated for a single structural gene with one or two regulatory ELP(s). Note that this figure
was taken from Kim et al. (2005).
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Figure 3: Examples of gene expression profiles with potential ELP. Dashed lines
indicate one parental line (reference line); solid lines indicate the other parental line. The
vertical axis is for (relative) expression levels where the expression level for the reference
line with no treatment (control) was adjusted to 0. The cutoff value for potential expression
level polymorphisms was assumed to be adjusted to 2-fold change.
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Figure 4: Experimental details and data collection for expression level polymor-
phism analysis. ‘RIL’ denotes a recombinant inbred line. For each individual RIL, mi-
crosatellites are employed to collect marker genotype data, and ‘A’ and ‘B’ stand for homozy-
gous genotypes of either parent, respectively. Two spotted cDNA microarrays are used to
measure transcript abundance levels under two treatment conditions (control vs. SA) with
dye-swap design. For each gene, four numbers indicate transcript abundance levels relative
to combinations of two treatment conditions and two dyes.
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Figure 5: Power and estimates according to sample size. Results based on 200 sim-
ulation runs for configuration 1. True locations for a regulatory and a structural genes are
98cM and 27cM, respectively. Additive effect was 0.1 for both genes. For (a), (d) the solid
lines represent detection power for ELP determinants; For (b), (c), (e), (f) the solid lines
represent the sample mean of the estimates of location and additive effect; dotted lines rep-
resent the corresponding 1-standard error limits. Note that this figure was taken from Kim
et al. (2004).
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Figure 6: Power and estimates according to replicates. Results based on 600 sim-
ulation runs with sample size of 500 for configuration 5. True locations for a regulatory
and a structural genes are 98cM and 27cM, respectively. Additive effect was 0.1 for both
genes. For (a), (d) the solid lines represent detection power for ELP determinants; dashed
lines represent detection power for treatmental interaction. For (b), (c), (e), (f) the solid
lines represent the sample mean of the estimates of location and additive effect; dotted lines
represent the corresponding 1-standard error limits.
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