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ESTIMATING RHEOLOGICAL PROPERTIES OF YOGURT USING 
DIFFERENT VERSIONS OF THE FREUNDLICH MODEL AND DESIGN 

MATRICES 
 

M. Zhou1, A. M. Parkhurst1, H. K. Voss2, and C. L. Weller3

 
1. Department of Statistics, University of Nebraska at Lincoln 
2. Department of Food Science and Technology, University of Nebraska at Lincoln 
3. Department of Biological Systems Engineering, University of Nebraska at Lincoln 
 

ABSTRACT 
 

The rheological properties described by the consistency coefficient and flow behavior 
index can be estimated from the relationship between shear stress and shear strain rate 
following a Freundlich model.  An additional rheological property of concern to food 
scientists studying yogurt is yield stress.  They extend the Freundlich model to include 
a three-parameter model called the Herschel-Bulkley model.  In addition, the 
Herschel-Bulkley model is often linearized by taking logarithms of both sides.  An 
additional complication is the viscometer limits the range of shear strain rates.  The 
objectives of this study are to compare parameter estimates from the three models and 
to investigate the effects of different designs on the models. 
 

1. INTRODUCTION 
 

Rheology is the science which deals with the deformation and flow of matter.  It is the 
study of the manner in which materials respond to applied stress or strain.  All 
materials have rheological properties.  
 
Rheological properties of yogurt can be described by yield stress, consistency 
coefficient, and flow behavior index.  Yield stress is the minimum shear stress which 
is required to initiate the flow of yogurt. The consistency coefficient is a measure of 
yogurt’s resistance to flow.  The flow behavior index actually characterizes the 
rheological nature of a material.  Different materials have different flow behavior 
indices.  For example: the index of water is 1.00; the index of 40% raw corn starch 
solution is greater than 1.00; and, the index of yogurt in this study is between 0 and 
1.00.  A material with a flow behavior index of 1.00 is a Newtonian material.  By 
definition, the ratio of shear stress (applied force) to shear rate (flow or deformation) 
for a Newtonian material remains constant when the material undergoes deformation 
(flow).  Yogurt in the study was non-Newtonian in nature because its flow behavior 
index does not equal 1.00.  
 
Since yogurt in the study is a non-Newtonian fluid, its rheological properties can be 
estimated from the relationship between shear stress and shear strain rate by the 
Herschel-Bulkley model (Steffe, 1996), which is an extension of Freundlich model to 
a three-parameter model in the field of statistics: 
 

2~ (0, )Y X N Iτδ β ε ε σ= + ⋅ +                                    Eq.1 
 

Where Y is shear stress (Pa), X is shear strain rate (1/sec), δ is yield stress (Pa), β is 
consistency coefficient (Pa·sn), and τ is flow behavior index.  
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Some properties of the 3-parameter Freundlich model are: 1) the rate of change of Y 
is not constant, rather it is proportional to a power of the current shear strain rate, X, 

1Y X
X

τβ τ −∂
= ⋅ ⋅

∂
                                                    Eq.2 

2) δ is the value of Y at X = 0; 3) β·τ is the proportionality constant; and 4) τ is the 
power constant.  
 
The patterns governed by the parameters can be seen in Figures 1 and 2.  Figure 1 
focuses on the flow behavior index, τ, and shows the relationship between X, and Y, 
when the consistency coefficient, β is held constant.  As τ increases to 1, the initial 
curvature becomes less prominent finally dissolving to a straight line when τ equals 1.  
Figure 2 focuses on β, the consistency coefficient and the pattern between X and Y for 
a constant value of τ.  After the initial curvature, the rate of increase steepens sharply 
in a linear fashion for higher β (>1). 
 
Researchers in food science estimate the rheological parameters of yogurt using the 
following procedure.  First, the data is plotted, the curve is extended to the Y-axis, and 
the Y-intercept is estimated visually as yield stress, δ.  Then, the Herschel-Bulkley 
model is reduced to a 2-parameter model and is linearized by taking logarithms of 
both sides: 
 

ln( ) ln( ) ln( ) *Y Xδ β τ ε− = + ⋅ +                                           Eq.3 
 

Where the ε* are assumed identical and independent normally distributed with mean 0 
and variance σ*2.  Finally, a linear regression of ln(Y- δ) as a function of ln(X) is 
fitted to estimate β and τ.  This procedure of estimating rheological parameters of 
yogurt has several problems.  First, yield stress, δ, is visually estimated.  This choice 
of δ greatly influences the estimates β and τ.  Finally, bias is introduced when 
linearizing a nonlinear model if the errors are additive. 
 
The objectives of this study are: to illustrate problems with the conventional method 
of estimation; to find estimates for the 3-parameter Freundlich model and to study 
their validity; to compare the 3-parameter Freundlich model with its expected value 
parameterization; and, to investigate different choices of shear strain rates, X. 

 
2. Materials and Methods 

 
2.a Data 
H. K. Voss (2002) studied the effect of Fructooligosaccharides (FOS) on the 
rheological properties of yogurt.  Yogurt was made on two separate occasions 
(Tuesday and Friday) using the same method.  It was then divided into five portions, 
and either 0, 1, 2, 3, or 4% (wt/vol) FOS was added.  An automatic filler was then 
used to dispense the yogurt mixtures into individual containers.  The containers were 
incubated at 43 to 45ºC until the pH of selected samples reached 4.4 ± 0.03.  Yogurt 
containers were then transferred to a cooler (2 to 4ºC) and held for the length of the 
study.  For the rheological analyses, yogurt samples were randomly taken from the 
storage cooler 18 (± 6) h after incubation ended.  These samples were designated as 
the time zero samples.  Yogurt samples were subsequently tested at weekly intervals 
for four weeks.  A Brookfield Viscometer (model RVT DV-I, Middleboro, MA) was 
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used to obtain values of shear stress and shear strain rate for each yogurt sample.  
Then the consistency coefficient, β, flow behavior index, τ, and yield shear stress, δ, 
were determined for each yogurt sample using Eq.1.  A #2 LV-type spindle was used 
and measurements were taken every 10 s at 6 separate rpm settings.  The entire study 
was replicated, and for each test of the rheological properties, duplicate samples were 
made.  All yogurt samples in this study were analyzed but only one yogurt block-
treatment-sample over time is used as an illustration in this paper (Table 1). 
 
2.b Simulation Studies 
Simulation studies were conducted to illustrate the problems with the conventional 
estimation procedure and to investigate the coverage of the joint confidence regions 
and simultaneous confidence intervals.  First, a Freundlich model was fit to the data 
(Table 1) using PROC NLIN in SAS (1999).  The nonlinear least squares estimates, 
SE’s, and CI’s were obtained for all parameters, as was the residual mean squares, 
MSE.  These estimates were used to generate 1000 data sets of size n = 6.  The values 
of X (0.21, 0.54, 1.09, 2.19, 4.37, 10.93) were the same for each simulated data set.  
The error distribution was chosen to be additive and normally distributed with mean 
zero and variance equal to MSE.  The SAS function, RANNOR with a given seed 
generated the standardized random errors to be multiplied by the MSE. 
 
2.b.i Simulation used to Show the Problems with the Conventional Procedure 
The 3-parameter Freundlich model was fitted.  Then for each of the 1000 data sets, the 
rheological parameters of yogurt were estimated by the conventional procedure.  But, 
instead of visual estimation, δ was estimated by fitting a linear regression of Y as a 
function of X using the first three observations (PROC REG, SAS 1999).  The 
intercept in the linear model was used as an estimate of δ.  Finally, a linear regression 
of ln(Y- δ) as a function of ln(X) was fitted to estimate β and τ (PROC REG, SAS 
1999). 
 
2.b.ii Simulations used to Calculate the True Coverage Level of Joint Confidence 
Regions (JCR) and Simultaneous Confidence Intervals (SCI) 
The parameter estimates for both the 3-parameter Freundlich model and its expected 
value parameterization were obtained for each of the 1000 simulated data sets.  PROC 
NLIN (SAS 1999) was used to fit the nonlinear model.  Then Eq.4 and Eq.5 were 
checked to see whether or not the true values of the parameters were inside the 95% 
simultaneous confidence intervals and Eq.6 was checked to see whether or not the 
true values of the parameters were inside the 95% JCR.  The difference between Eq.4 
and Eq.5 is that Eq.4 constructs the simultaneous confidence intervals using univariate 
confidence intervals.  For p confidence intervals considered simultaneously, the 
confidence coefficient (1-α)p is much lower.  Bonferroni method (Eq.5) used here 
gives a lower bound for the confidence coefficient. 
 

/ 2, / 2,
ˆ ˆ( ) ( )t SE t SEα υ α υ

ˆθ θ θ θ− ≤ − ≤                                  Eq.4 
 

/(2 ), /(2 ),
ˆ ˆ( ) ( )pt SE t SEα υ α υ

ˆ
pθ θ θ θ− ≤ − ≤                       Eq.5 

 
2

, ,
ˆ ˆ( ) ' ' ( ) pV V pF sα υθ θ θ θ− − ≤                                       Eq.6 
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Where θ are true values of parameters, θ̂  are simulated estimates of parameters, SE(θ̂ ) 
are standard errors of estimates, V is the p x n matrix of the first derivatives evaluated 
at the simulated estimates, p is the number of parameters, α=0.05 is the type I error, υ 
is the degree freedom for error, and s2 is the MSE.  The number covered is equal the 
number of times the simulated parameters satisfied the inequality.  The true coverage 

level is 1
1000

(Number Covered) × 100%.  

 
2.c Reparameterization 
Rewriting a nonlinear model in its expected value parameterization can greatly reduce 
the model’s parameter effects curvature.  The expected value parameterization 
technique advocated by Ratkowsky (1990) has many other advantages, such as: 
estimators are more normally distributed, less biased, and less correlated; standard 
errors of estimators are more precise; and the model converges more quickly.  
Therefore, this method was used to reparameterize the 3-parameter Freundlich model.  
We decided to replace only δ and β with their expected value equivalent for two 
reasons:  First, τ has good nonlinear properties; Secondly, it’s impossible to replace 
all three parameters with their expected value equivalent simultaneously for 3-
parameter Freundlich model. 
 
The following steps are used to get the expected value parameterization for 3-
parameter Freundlich model.  First, we defined µ1 and µ2 as the predicted values of Y 
at Xmin and Xmax, respectively. 
 

1 1 1,X X Xτµ δ β= + = min

ax

                      Eq.7 
 

2 2 2, mX X Xτµ δ β= + =               Eq.8 
 
Solving these two equations for δ and β leads to 
 

1 2 2 1 2 1( ) ( )X X X Xτ τ τδ µ µ= − − τ                          Eq.9 
 

2 1 2 1( ) ( )X Xτ τβ µ µ= − −                     Eq.10 
 
After substituting back into Freundlich model and rearranging, we get the final 
expected value parameterization model:  
 

22 1
1 1

2 1

( ) ~ (0,Y X X N
X X

τ τ
τ τ )Iµ µµ ε ε σ−

= + − +
−

               Eq.11 

                       
2.4 Designs 
The viscometer used to measure shear stress in the study only has 6 rotational speeds, 
which are 1, 2.5, 5, 10, 20, 50 rpm (Voss, 2002).  An interesting question is whether 
or not the design is optimal.  If the design is not optimal, then finding an optimal 
design for the constraints of the viscometer would be useful.  
 
The shear strain rate, X, is a linear function of the rotational speed.  Assuming the 
rotational speed can be any value between 1 and 50 rpm, then X can be any between 

202 Kansas State University

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2004/proceedings/14



0.21 and 10.93.  In total, we considered four different designs, which are shown in 
Table 2. 
 
The D-optimal design was applied to nonlinear regression models by Box and Lucas 
(1959).  Their procedure is to: First, pick the initial design using P points for a P-
parameter nonlinear model.  Then maximize the determinant of V0, which is the first 
derivative evaluated at some specified initial parameter estimates.  Finally, repeat the 
design points to get more precise estimates.  In our study, the determinant of V0 
depends only on τ and τ generally takes values between 0.3 and 0.8.  We set τ equal to 
0.55 and got three experimental points, which were 0.21, 2.94, and 10.93.  The final 
D-optimal design was obtained by repeating the three points once.  For the modified 
D-optimal design, one 10.93 point was changed to 4.37 for two reasons: 1) To 
estimate intrinsic curvature, at least four different points are needed for 3-parameter 
nonlinear model; 2) Shear stress, Y, at Shear Strain Rate, X, equal to 10.93 is difficult 
to observe and is sometimes missing. 
 
2.5 Assessing Nonlinear Behavior 
Least squares estimation of parameters in nonlinear regression needs two assumptions: 
planarity and uniformity of coordinates.  Bates and Watts (1980) proposed relative 
measures for intrinsic and parameter-effects curvature to assess how close a model-
data set combination is to satisfying these asymptotic properties.  Intrinsic curvature 
(IN) measures the relative curvature of the expectation surface at the point of 
convergence.  IN increases as the curvature of the expectation surface increases, 
invalidating the linear estimation procedure.  Large IN values indicate unacceptable 
deviation from the tangent plane assumption.  Parameter-effects curvature, PE, 
measures the lack of uniformity of the parameter lines on the tangent plane.  A higher 
PE indicates higher degree of departure from the assumption of parallelism.  The 
square root of the average squared curvature can be standardized by multiplying by 
F.05, p, n-p (Bates and Watts, 1980).   When the standardized curvature measure is less 
than or equal to 0.4, the curvatures are considered acceptable.   
 
Ratkowsky (1990) suggests examining the close-to-linear behavior of each parameter.  
The measures used in this paper are: Box’s approximate measure of bias (1972), 
percent excess variance based on Lowry and Morton’ s asymmetry measure (1983), 
and Hougaard’s approximate measure of skewness (1985).  Using the under 1% rule-
of-thumb for absolute %bias suggests all parameters appear to have close-to-linear 
behavior.  Lowry and Morton’s asymmetry measure can be expressed as percentage of 
excess variance.  Ratkowsky (quoted in Seber and Wild, 1989, p 188) gives reference 
values for the measure.  Expressed as percentage, values <1% indicate behavior is 
very close to linear. Skewness measures departure from symmetry.  Hougaard’s 
approximate skewness works well when n>150.  Ratkowsky (1983) gives reference 
values for skewness.  They are: |skewness| <0.1 indicates behavior is very close to 
linear; between 0.1 and 0.25, reasonably close to linear; between 0.25 and 1, apparent 
skewness; and >1, considerable skewness. Programs written in PROC IML (SAS, 
1999) were used to estimate intrinsic and parameter effects curvature (IN and PE) and 
close-to-linear behavior (%Bias, %excess variance and skewness). 
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3. RESULTS AND DISCUSSION 
 
The problems with the conventional method of estimating the parameters of the 
Herschel-Bulkley model are illustrated in Table 3.  The true values of the parameters 
are those used in the simulation.  The apparant standard errors (SE) are a function of 
the first derivatives evaluated at the true parameters.  Traditionally, visual estimation 
is used to estimate yield stress, δ.  We used linear regression which we would expect 
to be more accurate then the visual estimates.  But, even this objective method is 
highly biased (44.4%).  Furthermore, there is no estimate of the standard error and no 
possibility for statistical inference.  Traditionally, the visual estimate of δ is then 
removed from the Herschel-Bulkley model.  The consistency coefficient, β, and flow 
behavior index, τ, are then estimated from a linearization of the reduced Herschel-
Bulkley.  The result shows that β and τ are highly biased (>>1%) and the precision is 
less than ideal.  The standard errors of β and τ are greater than the apparant standard 
errors.  Moreover, the MSE is also highly biased (>>1%) and the estimated MSE 
(1.349) is much greater than the true MSE (0.00684). 
 
The Herschel-Bulkley model is a Freundlich model with an additional parameter for 
the Y-intercept.  Using fixed effects nonlinear parameter estimation on the original 
design provides a good approximation to the rheological properties.  All six 
observations are close to the predicted curve (Figure 3), the MSE (0.00684) is small 
and the 95% confidence intervals exclude zero.  Yet, the correlations among 
estimators are as high as 0.99, which may cause some problems (Table 4) and the 
nonlinear behaviors are less than ideal.  The parameter effects curvature is 8.78, 
which is much greater than the critical value of 0.4 (Table 5).  Table 8 shows δ and β 
have high percent bias and excess variance.  
 
On the other hand, when the expected value parameterization of the Freundlich model 
is used with original design the fit is as before and the nonlinear behavior improves.  
The PE is 0.47, which is only slightly greater than 0.4, and the %bias, %excess 
variance and skewness are satisfactory for all parameters (Table 8).  Also, correlations 
among the estimators for the expected value parameterization are much lower than 
those for Freundlich model.  Some correlations are as low as 0.1, while the highest 
correlation (0.68) appeared between µ1 and τ (Table 4). 
 
The SCI adjusted with Bonferroni method and JCR for both models with original 
design are illustrated in Figures 4 and 5.  The cubes are SCI and the ellipsoids are JCR.  
The big difference between the cube and ellipsoid indicates that it is inappropriate to 
use SCI instead of JCR for Freundlich model.  On the other hand, the difference 
between SCI and JCR of expected value parameterization is much smaller than that of 
Freundlich model. The results of the simulation study used to compare coverage 
levels are given in Table 6. The true coverage levels of 95% JCR for Freundlich 
model and its expected value parameterization are 92.2% and 95.7%, respectively; the 
true coverage levels of 95% unadjusted SCI for Freundlich model and its expected 
value parameterization are 94.4% and 90.8%, respectively; the true coverage levels of 
95% JCR adjusted with Bonferroni method for Freundlich model and its expected 
value parameterization are 98.2% and 97.2%, respectively.  Therefore, 95% joint 
confidence region for expected value parameterization is more reliable.  Also, the true 
coverage level of 95% SCI adjusted with Bonferroni method is much closer to that of 
95% JCR for expected value parameterization than for Freundlich model. 
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The precision and nonlinear behaviors of the three new designs were compared to 
those of the original design.  The expected precision is given in Table 7. The D-
optimal design is optimal since it minimizes the volume of the joint inference region.  
Therefore, it is expected to have the best precision. The modified D-optimal design, 
which was introduced to estimate intrinsic curvature, compares favorably with the D-
optimal design for the expected value parameterization and is even better than the D-
optimal design for the original parameterization of the Freundlich model.  Both 
designs provide an improvement over the original.  However, the equally spaced 
design, a common design for linear models, has slightly less precision than the 
original design.  
 
The nonlinear behaviors for all designs are given in Table 8.  The results for the new 
designs compared to the original parameterization of the Freundlich model were 
disappointing.  Although there are some improvements in PE, bias and excess 
variance, all behaviors still exceed the criteria (Tables 5 and 8).  The modified D-
optimal design has the smallest parameter effects curvature, 6.42, which is still much 
greater than 0.4. The estimates for the three additional designs are also highly 
correlated and provide no obvious improvement over the original design (Table 4).  
However, the additional designs did prove useful for the expected value 
parameterization, especially the modified D-optimal design, where PE equals 0.22, 
which is less than half of that for original design.  For all estimators, percent bias, 
percent excess variance and skewness are very small and most of them are close to 0.  
In addition, the correlations among the parameters are remarkably smaller (Table 4).  
Therefore, the modified D-optimal design with expected value parameterization is 
recommended.  Its precision is comparable to the D-optimal design; its intrinsic 
curvature can be estimated; and its nonlinear behavior is excellent.   
 

4. SUMMARY 
Herschel-Bulkley model is an extension of Freundlich model to a three-parameter 
model: δ is yield stress; β is consistency coefficient; and τ is flow behavior index.  
The conventional method which depends on the visual estimation of δ is problematic.  
The δ will have high bias, no standard error and no possibility for statistical inference.  
Also the estimation of β and τ will be affected.  In addition the linearization of the 
Freundlich model will lead to high bias as well. The nonlinear behaviors of 
Freundlich model are not ideal; its parameter effects curvature is much greater than 
0.4.  The high bias and excess variance of δ and β result in the high PE.  On the other 
hand, the Expected Value Parameterization has good nonlinear behavior.  Its PE is 
only slightly greater than 0.4.  Furthermore, the bias, excess variance and skewness 
for all estimators satisfy the criteria (<1%).  New designs are not very useful for the 
original parameterization of the Freundlich model in this experiment.  Although there 
is some improvements in PE, bias and excess variance, all still exceed the criteria.  
However, new designs are useful for Expected Value Parameterization, especially the 
modified D-optimal design, where PE is less than half of that for original design.  The 
percent bias, percent excess variance and skewness of all estimators are very small, 
most of them are close to 0.  Therefore, we recommend using the Expected Value 
Parameterization with modified D-optimal design to obtain excellent nonlinear 
behavior.  For future research on rheological properties, our study provides an 
efficient design and a nonlinear procedure to get accurate estimates of rheological 
parameters of yogurt, thus, enabling researchers to get better comparisons of the 
effects of chemical additives and storage time on rheological behavior of yogurt. 
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Figure 1  Examples of Shear Stress,Y, vs Shear 
Strain Rate, X, for a Range of Flow Behavior 
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Figure 2  Examples of Shear Stress,Y, vs Shear Strain 
Rate, X, for a Range of Consistency Coefficients, Beta

0
1
2
3
4
5
6
7

0 0.5 1 1.5 2 2.5

x

Y

beta=1
beta=2
beta=4

 

Figure 3  Freundlich Model for Original Design
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Y X τδ β= + ⋅

MSE=0.00684 
 θ SE  Approx 95% CI 

Lower           Upper 
δ 1.3174 0.24 0.54 2.09 
β 1.4817 0.26 0.67 2.30 
τ 0.4470 0.05 0.28 0.61 
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Figure 4    95% Simultaneous Confidence Interval and Joint Confidence Region 
for Freundlich Model 

 
 
Figure 5    95% Simultaneous Confidence Interval and Joint Confidence Region 

for Expected Value Parameterization 
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Table 1  Data Used to Estimate Rheological Properties of Yogurt 
Shear strain rate (1/sec) Shear stress (Pa) 

0.21 2.13 
0.54 2.34 
1.09 2.83 
2.19 3.45 
4.37 4.23 
10.93 5.61 

 
 

Table 2  Experimental Designs for Shear Strain Rate 
Design X 

Original 0.21, 0.54, 1.09, 2.19, 4.37, 10.93 
Equally Spaced 0.21, 2.354, 4.498, 6.642, 8.786, 10.93 

D-optimal 0.21, 0.21, 2.94, 2.94, 10.93, 10.93 
Modified D-optimal 0.21, 0.21, 2.94, 2.94, 4.37, 10.93 

 
 

Table 3  Estimates and Bias for Conventional Procedure 

Parameter True Value Apparant 
SE* Estimate Estimated SE Relative Bias 

(%) 
δ 1.3174 0.24 1.902 ---- 44.4 
β 1.4817 0.26 0.711 1.14 -52.0 
τ 0.4470 0.05 0.794 0.09 77.7 
σ2 0.00684 0.0827 1.349 1.161 196.2 

* Based on the true values of the parameters. 
 
 

Table 4  Correlations among Parameters 
Parameterization Original Freundlich Expected Value 

Design  δ β τ  µ1 µ2 τ 
δ 1 -0.99 0.96 µ1 1 0.10 0.68 
β  1 -0.99 µ2  1 0.48 Original 
τ   1 τ   1 
δ 1 -0.97 0.93 µ1 1 0.07 0.52 
β  1 -0.99 µ2  1 0.60 Equally Spaced 
τ   1 τ   1 
δ 1 -0.97 0.94 µ1 1 0 0.44 
β  1 -0.99 µ2  1 0.38 D-optimal 
τ   1 τ   1 
δ 1 -0.98 0.93 µ1 1 0.01 0.42 
β  1 -0.98 µ2  1 0.60 Modified D-optimal 
τ   1 τ   1 

 
 

Applied Statistics in Agriculture 209

Conference on Applied Statistics in Agriculture
Kansas State University

New Prairie Press
https://newprairiepress.org/agstatconference/2004/proceedings/14



Table 5  Measures of Curvature 
Parameterization 

Freundlich Expected Value 
 

Design 
IN PE IN PE 

Original 0.18 8.78 0.18 0.47 
Equally Spaced 0.12 12.50 0.12 0.28 

D-optimal N/A 8.0 N/A 0.22 
Modified D-optimal 0.05 6.42 0.05 0.22 
 
 

Table 6  True Coverage Level 
%True Coverage Level Nominal Coverage Level Freundlich Expected Value 

Unadjusted 95% SCI 94.4 90.8 
95% SCI Adjusted with Bonferroni Method 98.2 97.2 

95% JCR 92.2 95.7 
 

 
Table 7  Expected Precision: Coefficients for Covariance among Parameters 
Parameterization Original Freundlich Expected Value 

Design  δ β τ  µ1 µ2 τ 
δ 8.69 -9.00 1.79 µ1 0.73 0.09 0.37 
β  9.57 -1.93 µ2  0.94 0.29 Original 
τ   0.40 τ   0.40 
δ 8.92 -9.08 1.80 µ1 0.98 0.05 0.33 
β  9.73 -1.98 µ2  0.62 0.31 Equally Spaced 
τ   0.42 τ   0.42 
δ 5.64 -6.11 1.22 µ1 0.5 0 0.17 
β  6.97 -1.42 µ2  0.5   0.15 D-optimal 
τ   0.30 τ   0.30 
δ 5.34 -5.67 1.17 µ1 0.5 0 0.16 
β  6.33 -1.34 µ2  0.98 0.32 Modified D-optimal 
τ   0.30 τ   0.30 
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Table 8  Measures of Nonlinear Behavior: %Bias, %Excess Variance and 
Skewness 

Model Freundlich Expected Value 
Design Parm Bias ExVar Skew Parm Bias ExVar Skew 

δ -1.94 2.30 -0.58 µ1 -0.03 0.07 -0.03 
β 1.77 2.20 0.60 µ2 0.01 0.03 0.01 Original 
τ 0.17 0.24 0.09 τ 0.17 0.24 0.09 
δ -2.03 2.39 -0.56 µ1 -0.01 0.01 0 
β 1.90 2.43 0.64 µ2 0.01 0.03 0.02 Equally Spaced 
τ 0.10 0.15 0.05 τ 0.10 0.15 0.05 
δ -1.42 1.81 -0.51 µ1 0 0 0 
β 1.33 1.62 0.53 µ2 0 0 0 D-optimal 
τ 0.09 0.07 0.05 τ 0 0.07 0.05 
δ -1.44 1.98 -0.52 µ1 0 0 0 
β 1.35 1.86 0.56 µ2 0 0 0 Modified D-

optimal 
τ -0.01 0.08 -0.003 τ -0.01 0.08 0 
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